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SUMMARY

In a common ROC study design, several readers are asked to rate diagnostics of the same cases processed
under di�erent modalities. We describe a Bayesian hierarchical model that facilitates the analysis of
this study design by explicitly modelling the three sources of variation inherent to it. In so doing, we
achieve substantial reductions in the posterior uncertainty associated with estimates of the di�erences in
areas under the estimated ROC curves and corresponding reductions in the mean squared error (MSE)
of these estimates. Based on simulation studies, both the widths of coverage intervals and MSE of
estimates of di�erences in the area under the curves appear to be reduced by a factor that often exceeds
�ve. Thus, our methodology has important implications for increasing the power of analyses based on
ROC data collected from an available study population. Copyright ? 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

Multirater correlated receiver operating characteristics (ROC) analysis refers to a particular
type of study in which multiple readers rate several diagnostic tests generated from data
collected on the same subject. This design is common in radiologic studies where, for example,
radiologists evaluate images collected from the same patient using distinct image modalities
(e.g. PET, CT and MRI) or di�erent reconstruction algorithms within the same imaging
modality. Outcomes from such a study design represent correlated ordinal data.
As a concrete example of such a study (the motivating example for this manuscript) an

unpublished ROC study was conducted in 1993 in the UCLA Department of Radiology. The
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purpose of this study was to compare the diagnostic capabilities of chest �lm radiographs
to digitized images displayed on a 1K by 1K video display. The basis of comparison were
radiologists’ ability to detect lung nodules in the radiographs. A panel of expert radiologists
determined ‘truth’ by consensus on 772 archived chest radiographs (59 cases with nodules and
713 disease free cases). Each of the 772 radiographs were then digitized for video display.
Three experienced radiologists and two radiology residents read each case under both systems
(�lm versus video display) and ranked the presence of nodules on a scale of 1–5. Large
ratings represented high con�dence that nodules were present.
Much of the recent research in ROC methodology has focused on the inclusion of covariate

e�ects and the combination of independent rating information collected from multiple raters
(e.g. References [1–5]). In contrast, we propose a Bayesian hierarchical latent variable model
for analysing multirater correlated ordinal ROC data. Related models for data collected from
multiple raters but premised on a frequentist perspective are described in References [6–8].
Analyses of data collected in designs where only one reader rates the outcomes, both using
parametric [9] and non-parametric methods [10–12] have also been developed. After describing
our framework, we use simulation studies to compare our model to one of these alternatives
in the ‘A Data Analysis and Simulation Study’ section.
Bayesian approaches to this problem have also been explored. Among the earlier e�orts in

this direction are those detailed in Ishwaran and Gatsonis [3] and Johnson and Albert [13]. In
this article, we describe a hierarchical latent variable model for analysing multirater correlated
ordinal ROC data that combines modelling aspects from each of these two earlier approaches.
The primary innovation of this model over more commonly used ROC models is the manner
in which it accounts for three sources of variation inherent to this study design; namely,
variation in ratings attributable to di�erences in patient=subject characteristics, variation in
ratings introduced by inaccuracies in the procedures used to de�ne the diagnostic measure
(modality e�ects), and variation attributable to readers of the diagnostic test. By explicitly
modelling these three sources of variation, Bayesian models for ROC analysis are able to
achieve substantial increases in power for detecting modality e�ects, which are the primary
variables of interest in most ROC studies. This partitioning of error variances also facilitates
the study of individual reader characteristics and provides a natural mechanism for predicting
the diagnostic performance of a test when interpreted by a reader drawn randomly from the
larger population of potential readers.
This article is organized as follows. In the next section, we review what is arguably the

most widely used ROC model for the analysis of multirater correlated data, that of Dorfman
et al. [6] (henceforth referred to as DBM). Following that, we present a Bayesian hierarchical
model for the analysis of multirater correlated ROC data and highlight its connection to the
standard bivariate–binormal model. We then illustrate our model in the analysis of a radiolog-
ical data set intended to compare lung nodule detection using �lm versus a 1K by 1K video
display and compare the performance of our model with that of DBM through a simulation
study. We conclude with a sensitivity analysis and a brief discussion of results.
Throughout the remainder of the paper we �x ideas by assuming that the ROC study has

been designed to compare two (or more) imaging modalities as diagnostic tools for some
disease. We also assume that images from both modalities have been obtained from subjects
drawn from one of two populations: a population of healthy subjects and a population of
diseased subjects (here it is tacitly assumed that the true disease status of all subjects is
known). Since each subject contributes one image from each modality, the data (images) are

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. (in press)



BAYESIAN ROC ANALYSIS

correlated. We further assume that a random sample of radiologists (typically a small sample),
who are expert in reading images from both modalities, are drawn from the population of
all radiologists. Each radiologist is asked to rate, or score, both images contributed from all
subjects in a random order. The rating scale is an ordinal scale, say 1–5, where 1 represents
the radiologist’s belief that disease is de�nitely absent, 2 represents the belief that disease is
probably absent, 3 the belief that the absence=presence of disease cannot be determined, 4
the belief that disease is probably present and 5 represents the belief that disease is de�nitely
present.

THE JACKKNIFE METHOD OF DBM

DBM’s approach toward analysing multirater correlated ROC data [6] is probably the most
widely used method for analysing mulitrater correlated ROC data. This method utilizes a
two-stage procedure to evaluate multirater correlated ROC data. In the �rst stage, jackknifed
pseudo-values [14] of the area under the ROC curve, AZ , are obtained from the bivariate–
binormal ROC model [15]. These pseudo-values are then post-processed using standard mixed
e�ect analysis of variance (ME-ANOVA) software in the second stage.
Stage 1: In the �rst stage of modelling, the bivariate–binormal model is employed, one

radiologist at a time, to obtain jackknifed pseudo-AZ values for each radiologist. The bivariate–
binormal model assumes that there are two underlying latent bivariate normal distributions:
one for the healthy population and one for the diseased population. The components of each
bivariate distribution describe the joint distribution of latent ratings obtained from the modal-
ities on a continuous scale. These ratings represent ‘extent of disease.’ However, observed
ratings are not recorded on this continuous scale. Instead, raters are assumed to group images
into diagnostic categories, assigning an ordinal score to each. Assignment of images to ordinal
categories is assumed to depend on a set of latent thresholds, unique to the radiologist and
perhaps di�erent for each modality. The latent traits from diseased subjects are assumed to be
drawn from a bivariate normal distribution with mean (�1; �2)T and covariance matrix �. The
latent traits from healthy subjects are assumed to be drawn from a bivariate normal distribu-
tion with mean (0; 0)T, marginal variances equal to 1, and covariance (or correlation) �. The
(0; 0)T mean for the healthy population serves to centre the latent scale while the marginal
variances for both modalities are set to 1 to establish a scale. Figure 1 illustrates these
assumptions.
Based on this model, the area under the ROC curve for a modality (for a particular rater) is

de�ned as the probability that a random variable drawn from the disease distribution is greater
than an independently drawn variable from the healthy distribution [10]. That is, if U is a
random variable drawn from the diseased distribution, and V is a random variable drawn from
the ‘healthy’ distribution, then AZ = Pr(U¿V )=�(�=

√
1 + �2), where �(x) is the standard

normal distribution function and �2 is the marginal variance of the diseased population for
the modality under consideration.
This classical model for the analysis of correlated ROC data lacks a component for rater

variability. The marginal variances that result from the bivariate–binormal model are a con-
volution of the three components of variation: one due to the disease process itself, one for
the modality, and one for the rater. Further, the marginal variances cannot be deconvolved
into their constituent components. The model also lacks a natural mechanism for combining
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Figure 1. A graphical representation of the bivariate–binormal model. The healthy population is assumed
to have a bivariate normal distribution with mean (0; 0)T, marginal variances of 1 and a correlation of �.
Contour lines of this population are solid. The disease population has a bivariate normal distribution with
mean (�1; �2)T and covariance matrix �. Contour lines of this population are dashed. The light vertical
and horizontal dashed lines depict the rater threshold values. For example, a case whose latent value
lies at the ‘X’, would be classi�ed in category 2 under modality 1 and in category 5 under modality 2.

information across raters. Thus, several authors have proposed models that take resulting AZ

values (or pseudo-AZ values) from this model and use them as observed data in a second
stage model.
The DBM method uses the bivariate–binormal model to obtain jackknifed pseudo-AZ values

for each case and modality, one radiologist at a time. These pseudo-values are assumed to
behave as independent observations in the second stage of modelling.
Stage 2: The psuedo-AZ values are treated as observations in a ME-ANOVA model. Thus,

there is one ‘observation’ for each combination of radiologist, modality, and case. The par-
ticular model �tted under the DBM framework can be expressed

Âijk =�+ �k + Bj + Ci + (�B)kj + (�C)ki + (BC)ji + (�BC)kji + �ijk (1)

In this equation, Âijk represents the pseudo-AZ value for case i, modality k and radiolo-
gist j. We note that when each radiologist rates each image under each modality only once
(a common study design), the terms (�BC)kji and �ijk are inseparable. In DBM, the overall
mean � and the modality e�ects {�k} are considered to be �xed e�ects under the
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constraint that
∑

k �k =0. The radiologist e�ects, {Bj}, case e�ects, {Ci}, interaction terms
and model error terms are assumed to be mutually independent, mean zero normal random
deviates with variances �2B, �2C , �2�B, �2�C , �2BC , �2�BC and �2� , respectively. Typically, di�er-
ences between treatment means are assessed using Satterthwaite approximate F tests [16].
Con�dence intervals for parameters of interest are constructed using an approximate Student-t
distribution, although approximate con�dence intervals for treatment means may also be de-
rived using a reduced model de�ned by omitting all interaction terms except the rater-by-case
interactions.
Zhou, Obuchowski, McClish ([17], henceforth ZOM) summarize three major shortcomings

of this approach. First, they note that pseudo-values are treated as observed data. Using pseudo-
values as observed data has only limited utility, and previous attempts to extract more than
variance estimates from pseudo-values have not been successful [14]. Second, pseudo-values
are, in general, correlated. Assuming they are not, violates an assumption of the ME-ANOVA.
Third, this method applies the one-sample jackknife to a two sample problem (diseased and
healthy cases). Also, we note that each AZ value is supported on the interval [0; 1], but
observed pseudo-values often take values outside this interval.
Subsequent to the work of DBM, two alternative likelihood-based approaches for analysing

this type of data were developed [7, 8]. Both approaches are similar to that proposed by DBM
in that they both use a two-stage modelling procedure. At the �rst stage of modelling, AZ

values are computed one rater at a time using either the bivariate–binormal model or a non-
parametric alternative (e.g. Reference [11]). In the second stage of modelling, the AZ values
are combined across raters and modalities using a ME-ANOVA model. A more detailed
comparison and critique of these models is provided in ZOM. Because both methods produce
estimates that have statistical properties similar to estimates produced by the DBM method,
these models are not considered further here.

A BAYESIAN HIERARCHICAL MODEL

The model we propose is closely related to a simpler model described in Johnson and
Albert [13]; it is also close to being a special case of the model proposed in Ishwaran and
Gatsonis [3]. The primary generalization of this model over that described in Johnson and
Albert is the inclusion of a more �exible class of prior distributions on model parameters. In
contrast to the model proposed in Ishwaran and Gatsonis, we do not incorporate a regression
model for the underlying latent variables, nor do we consider semi-parametric link functions
to account for non-normality of the latent trait distributions. However, as Ishwaran and Gat-
sonis point out, such link functions are probably not necessary (or estimable) when ROC data
are collected using a small number of categories. This is the case of primary interest here, as
well as in most applications. We do, however, extend the Ishwaran and Gatsonis model by
allowing for distinct rater thresholds for each rater.
Suppose then that there are Nh healthy cases and Nd disease cases for total of N=Nh +Nd

subjects. Let D denote the set of subjects classi�ed as diseased and let H denote the set of
subjects classi�ed as healthy. Let J¿1 denote the number of readers of each diagnostic test
and assume that each reader rates subjects who are diseased and healthy using measurements
derived from each of K¿1 diagnostic tests. For notational simplicity, suppose that each subject
is placed into one of C ordered categories by each reader under each test. The observed rating
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from reader j scoring case i under test k is denoted by Yijk . We adopt the convention that
larger values of Yijk are indicative of a higher degree of con�dence that the subject has
the disease. We assume the latent variable representation for the data Y= {Yijk} detailed in
Reference [13]. Under this representation, the ordinal ratings of each case by each reader are
hypothesized to result from noisy observations of a continuous, scalar-valued random variable
representing the presence of a disease attribute. The distribution of this latent disease attribute
is assumed to be drawn from one of two distributions, one for healthy subjects and one for
diseased individuals. We adopt the binormal assumption and assume that these distributions
are Gaussian. The practicality of this assumption is discussed in Reference [15], where an
argument is presented to suggest that even non-Gaussian continuous data can be adequately
represented under this model (when thresholds for the ordinal categories are estimated from
data). The generality of this assumption is clari�ed further in Reference [18], who shows that
there exists a monotone transformation of the continuous data to make the distributions of the
healthy and diseased groups normal.
With these comments in mind, our hierarchical prior model for multirater correlated ROC

data may be speci�ed in stages as follows.
Stage 1: At the �rst level of the hierarchy we introduce variability inherent in the two pop-

ulations of interest: the healthy and diseased populations. We assume that the latent (disease)
trait for subject i (i=1; : : : ; N ), denoted by Zi, follows a normal distribution. We assume that
the latent value for healthy cases is marginally distributed as a N(0; 1) random variable, while
the latent value for a diseased individual is distributed as a N(�;  2) random variable. The
parameters � and  2 are unknown and so are estimated from data. The �rst level of the model
may be written as

Zi |�;  2 iid∼ N[�I(i ∈ D); ( 2 − 1)I(i ∈ D) + 1] ∀i (2)

where I(A) is the indicator function equal to 1 if A holds and 0 otherwise.
Stage 2: At the second level of the hierarchy, we introduce error terms that re�ect the

in�delity of each diagnostic test in representing the true disease state of a subject. Speci�-
cally, we assume that modality k contributes an independent N(0; �2k) error to the observation
of latent disease trait Zi. This term accounts for inaccuracies and distortions introduced by
the diagnostic modality. The parameter �2k denotes the variance of this error for modality k
(k=1; : : : ; K). We let Zik denote the value of the latent trait of case i that would be ob-
served by an ideal rater (a rater who scores the cases with no variability) using modality k.
That is

Zik |Zi; �2k
iid∼ N(Zi; �2k); ∀k (3)

Stage 3: At the third level of the model hierarchy, we model reader errors, allowing for the
fact that di�erent readers have di�erent levels of expertise in interpreting images. Thus, we
assume that the value Zik is further distorted by the addition of independent N(0; �2j ) random
variables that represent reader errors. The parameter �2j denotes the error variance particular
to the jth reader, j=1; : : : ; J . This stage of the model may be expressed as

Zijk |Zik ; �2j
iid∼ N(Zik ; �2j ); ∀j (4)
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Likelihood function: Given this prior structure, we complete the joint model speci�cation
by de�ning a sampling distribution for the observed data as follows. In so doing, we assume
that each reader uses a unique set of thresholds �j to assign cases to diagnostic categories. The
components of these threshold vectors satisfy −∞= �j0¡�j1¡ · · ·¡�jC−1¡�jC =∞. Reader j
assigns case i under modality k to category c if Zijk falls between the (c − 1)st and cth
threshold. That is,

Yijk = c if and only if �jc−1¡Zijk6�jc

From this assumption it follows that

Pr(Yijk = c | �j; Zijk)= I(�jc−1¡Zijk6�jc) (5)

from which it follows that each observation contributes a term of the form

f(yijk ; zi; zik ; zijk |�;  2; �2k ; �2j ; �j) = I(�jyijk−1¡zijk6�jyijk )

× 1
�j

�[(zijk − zik)=�j]× 1
�k

�[(zik − zi)=�k]

×
{
�[(zi − �I(i ∈ D))=

√
( 2 − 1)I(i ∈ D) + 1]

× 1√
( 2 − 1)I(i ∈ D) + 1

}

to the joint distribution over observations and parameters. In this expression, �[·] denotes the
density function of the standard normal distribution. From the assumed independence of error
terms in (2)–(4), we obtain

f(y; {zi}; {zik}; {zijk} |�;  2; {�2k}; {�2j}; {�j})

=
N∏
i=1

J∏
j=1

K∏
k=1

f(yijk ; zi; zik ; zijk |�;  2; �2k ; �2j ; �j)

Integrating over the latent observations yields

Pr(Y= y |�;  2; {�2k}; {�2j}; {�j}) =
∏
ijk

[
�

(
�jyijk − �I(i ∈ D)

sjk

)

− �
(
�jyijk−1 − �I(i ∈ D)

sjk

)]

where sjk =
√
( 2 − 1)I(i ∈ D) + 1 + �2k + �2j , and �(x) denotes the standard normal distri-

bution function.
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Prior assumptions on hyperparameters: We assume that the joint prior distribution on
model parameters satis�es the following factorization:

	(�;  2; {�2k}; {�2j}; {�j}) =
J∏

j=1

[
	(�2j )	(�j1; �jC−1)

C−2∏
i=2

	(�ji | �j1; �jC−1)
]

×
[

K∏
k=1

	(�2k)
]
	(�)	( 2)

There is, of course, some arbitrariness in de�ning the particular prior densities that appear
in this factorization. The choices speci�ed below are based on determining prior densities
on variance parameters that yield simulated data that re�ect the approximate inter- and intra-
rater concordance typically observed in ROC studies when moderate values of the disease
population mean are assumed. However, due to posterior sensitivity to the prior on the disease
mean, we take a relatively vague prior for this parameter. Sensitivity to prior assumptions is
discussed brie�y in the ‘Sensitivity Analysis’ section.
The speci�c prior densities assumed for model hyperparameters are as follows. We assume

an inverse gamma prior distribution with parameters 3 and 3 (i.e. IG(3; 3)) for  2. Under the
parametrization of the inverse gamma distribution adopted here, this distribution has a mean
of 1.5 and a mode of 0.75. This re�ects a prior belief that variability in the disease population
is typically larger than in the healthy population. Ninety per cent of the mass of this prior lies
between 0.48 and 3.7 (equal tail areas). We place a proper, but vague, normal prior (mean
1, variance 10 000) on the disease population mean, �. Inverse gamma prior distributions
with parameters 2 and 1 (i.e. IG(2; 1)) are assumed for both the rater variances {�2j} and the
modality variances {�2k}.
With this choice of priors for the reader and modality variances, propriety of the posterior

distribution depends on the choice of prior for the reader thresholds. The prior densities
speci�ed for the thresholds in Ishwaran and Gatsonis [3]—uniform for the components of �jc
on a �nite interval (subject to an obvious order constraint)—is adequate to establish a proper
posterior. However, simulation studies suggest that the marginal posterior distributions over �j,
{�2k} and {�2j} are sensitive to the length of the intervals chosen to bound the rater thresholds.
To reduce this posterior sensitivity, we assume a joint prior on the two extreme thresholds, �j1
and �jC−1, for each j. Conditionally on these extreme thresholds, we assume a uniform prior
on the remaining interior thresholds, 	(�ji | �j1; �jC−1)= (�jC−1 − �j1)−1, for i=2; : : : ; C − 2,
subject to the ordering constraint �j26 · · ·6�jC−2. We assume that the joint prior distribution
on (�j1; �jC−1) has the distribution of maximum and minimum values from a random sample
of size C −1 from a normal distribution with mean 0:5 and variance 6:5. This implies a prior
density on the rater thresholds of the form

	(�j1; �jC−1) = (C − 1)(C − 2)
[
�

(
�jC−1 − 0:5√

6:5

)
−�

(
�j1 − 0:5√

6:5

)]C−3

× 1√
6:5

�
(
�j1 − 0:5√

6:5

)
1√
6:5

�
(
�jC−1 − 0:5√

6:5

)
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Note that the mean of the normal distribution used to bound the extreme thresholds represents
the average of the prior mean (1) for the diseased population and the healthy population mean
(0). The variance of this normal distribution was obtained by summing the expected prior
marginal variances for a rater scoring a healthy subject E(1 +�2k + �2j )= (1 + 1+ 1)=3 and
a diseased subject E( 2 + �2k + �2j )= (1:5 + 1 + 1)=3:5. This completes the speci�cation of
the model.

Connection to the bivariate–binormal model

We now compare the distributional assumptions implicit to our hierarchical Bayesian model
for ROC data with the assumptions implicit to the classical bivariate–binormal model. To
this end, we adopt the following simpli�ed notation and assume that interest focuses on a
comparison of only two diagnostic tests for one particular rater, say rater j. Let Aj be a
two-by-two diagonal matrix with diagonal elements (1 + �21 + �2j )

−1=2 and (1 + �22 + �2j )
−1=2.

By marginalizing over {Zi} and {Zik} in (2)–(4) and applying the transformation of variables
(Xij1; Xij2)T =Aj(Zij1; Zij2)T, we �nd that the marginal distribution for the latent traits observed
under each modality for a healthy case can be expressed as

(Xij1; Xij2)T ∼ N((0; 0)T;�h) (6)

Similarly, the marginal distribution for the latent traits observed under each modality for a
diseased case is

(Xij1; Xij2)T ∼ N((�1; �2)T;�d) (7)

Conditionally on the observed values (yij1; yij2), the latent trait distributions are truncated to
the interval (�jyij1−1; �jyij1 ]Aj × (�jyij2−1; �jyij2 ]Aj, where

�1 =
�√

1 + �21 + �2j
and �2 =

�√
1 + �22 + �2j

and

�h=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1 + �2j√

(1 + �21 + �2j )(1 + �22 + �2j )

1 + �2j√
(1 + �21 + �2j )(1 + �22 + �2j )

1

⎞
⎟⎟⎟⎟⎟⎟⎠

�d=

⎛
⎜⎜⎜⎜⎜⎜⎝

 2 + �21 + �2j
1 + �21 + �2j

 2 + �2j√
(1 + �21 + �2j )(1 + �22 + �2j )

 2 + �2j√
(1 + �21 + �2j )(1 + �22 + �2j )

 2 + �22 + �2j
1 + �22 + �2j

⎞
⎟⎟⎟⎟⎟⎟⎠
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Equations (6) and (7) re�ect the distributional assumptions made for the latent variables in
the standard bivariate–binormal model. The primary di�erence between the classical bivariate–
binormal model and the model speci�ed here involves implicit constraints made on the co-
variance parameters in the Bayesian model. In the standard bivariate–binormal model, the
covariance matrix of the latent traits for the disease population between the two diagnos-
tic tests is completely arbitrary and the correlation between diagnostic tests in the healthy
population is unconstrained in the interval [−1; 1]. In contrast, the expressions above demon-
strate that the marginal correlations in the Bayesian model are constrained to lie in [0; 1]. We
feel that this constraint is natural, and so represents a feature of this model, rather than a
drawback. Of course, the major di�erence between the two approaches is that the standard
bivariate–binormal model must be applied to data from only one rater at a time, making it
necessary to �t a second stage ME-ANOVA model. The Bayesian model has the advantage of
making integration of data from more than one rater seamless. Apart from these di�erences,
the distributional assumptions underlying the two approaches are quite similar.

A DATA ANALYSIS AND SIMULATION STUDY

In this section we perform a data analysis and examine the frequentist properties of our
model. The particular parameters that we examine include AZ values obtained for individual
modalities and di�erences in AZ values obtained from an ideal rater, as well as the relative
values of rater variances. We also compare the coverage of posterior probability intervals to
their nominal frequentist values, and compare the lengths of these intervals to the lengths of the
corresponding con�dence intervals generated using the DBM method. Finally, we compare the
mean squared error (MSE) of estimates of AZ values and di�erences of AZ values computed
from our Bayesian hierarchical model to the multirater method of DBM.
A general problem that arises in performing this type of simulation study involves the

selection of appropriate study populations. Clearly, if we chose to simulate data according to
our prior model, then the posterior properties of parameter estimates would be optimal and
little would be learned concerning the relative performance of our model against alternative
formulations. Alternatively, we could compare parameter estimates obtained from di�erent
models for actual ROC data, but this is also problematic since the baseline truth for the data
is then not known. To overcome this di�culty, we decided to perform a simulation study
where we identi�ed a real ROC data set in which both models generated similar estimates
of the di�erence in AZ values on a rater-by-rater basis. After adding random noise to these
data, we then used a resampling procedure to obtain smaller samples from this data set, and
then compared AZ estimates obtained under each model based on the sub sampled data to AZ

estimates obtained under the given model using the full data set.

Data analysis

An unpublished ROC study was conducted in 1993 in the UCLA Department of Radiology.
The purpose of this study was to compare the diagnostic capabilities of chest �lm radiographs
to digitized images displayed on a 1K by 1K video display. The basis of comparison were
radiologists’ ability to detect lung nodules in the radiographs. A panel of expert radiologists
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determined ‘truth’ by consensus on 772 archived chest radiographs (59 cases with nodules and
713 disease free cases). Each of the 772 radiographs were then digitized for video display.
Three experienced radiologists and two radiology residents read each case under both sys-

tems (�lm versus video display) and ranked the presence of nodules on a scale of 1–5.
Large ratings represented high con�dence that nodules were present. We analysed this data
set with both the BHM and DBM methods. The outcome of variable of interest was assumed
to be the di�erence in AZ values. For the complete data set, the estimated posterior mean
di�erence in AZ values (�lm–video display) under the BHM model was −0:0002 with a 95
per cent posterior probability interval (−0:003; 0:002) (equal tail areas). Estimated median
rater variance ratios are displayed in Figure 2 along with the 95 per cent probability intervals.
Rater 4 had the smallest relative variance of any of the raters followed by raters 5, 1, 3 and 2,
respectively. Both rater 4 and rater 5 had relative variances that can be considered
substantively smaller than either rater 2 or 3. It is interesting to note that raters 2 and 3 were

Figure 2. Ratios of rater variance (rater j versus rater i denoted j : i) can be used to determine the
relative precision in which readers rate cases. Circles depict the median variance ratios, and vertical
lines re�ect the posterior 95 per cent Bayesian probability interval. The horizontal line at 1.0 indicates
no di�erence in rater variances. Rater 4 had the greatest precision in rating cases (smallest variance).
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radiology residents, both of whom had considerably less experience than the three senior
radiologists.
When we attempted to apply the DBM method to these data, we experienced two numerical

problems. First, the ratings obtained from one of the radiologists were ‘degenerate’. That is to
say, the likelihood-based estimation method failed due to the fact that this radiologists ratings
could be separated perfectly into disease and healthy populations. Second, while jackkni�ng
several of the cases for the other radiologists, the likelihood-based estimation methods failed
to converge. As a consequence, we were unable to obtain reliable estimates of AZ values for
the full data set using the DBM method.

Resampling corrupted ROC data

Because of these convergence problems, a simulation study was performed using a contami-
nated version of these data. The contaminated version of the data was generated by randomly
selecting 50 per cent of observations, and then perturbing the radiologist’s ratings of these
selected cases as follows: If a selected rating was between 2 and 4, it was changed by ±1
unit with probability 0.2; if between 1 and 5 it was changed to 2 and 4 and with probability
0.1, respectively. In other words, if a selected case’s rating by a radiologist was 2, then with
probability 0.1 it was changed to a 1 and with probability 0.1 it was changed to a 3. For the
extreme ratings of 1 and 5, with probability 0.1 the rating was changed by 1 unit toward the
centre of the rating scale.
The contaminated data set was then analysed under each model, and the point estimates

so obtained were assumed to represent the ‘truth’ for the corresponding modality. For the
DBM method, the average rater AZ values were 0.717 and 0.698 for �lm and video display,
respectively. The di�erence in values was 0.019. For BHM, the ideal rater’s AZ values were
0.801 and 0.807 for �lm and video display, respectively. The di�erence in AZ values was
−0:006. In neither case were the di�erences in AZ values signi�cantly di�erent from zero.
Note that the ideal rater AZ values under the BHM model were about 0:1 larger than the AZ

values obtained by the DBM method. This di�erence is due to the variability in reader ratings
which is not included in the ideal rater AZ values.
The contaminated data set was then repeatedly resampled with replacement. In each data

set simulated in this way, 150 samples from the ‘healthy population’ were sampled and 50
samples from the ‘diseased population’ were sampled. A total of 1000 ROC data sets were
generated in this way.
A summary of AZ coverage rates, interval lengths and MSE values obtained from these

1000 simulated data sets appear in Table I. Coverage rates for individual modality AZ values
are slightly low for BHM. For this simulation study, the bias incurred by the BHM was,
on average, −1:3 per cent for both �lm and video modalities, and this bias caused lower
than nominal coverage rates. Conversely, individual modality coverage rates for the DBM
method were high. For di�erences in AZ values, the DBM model provides higher than nominal
coverage; coverage for the di�erence in AZ values is also higher than its nominal value for
the BHM. Although the individual modality AZ values are biased downward, these biases
approximately cancelled when di�erences in AZ values were estimated.
In this example=simulation study an important advantage is gained by explicitly modelling

the correlation between ratings. By modelling this correlation in the BHM, posterior probability
interval lengths (and variances) are smaller for the BHM than for the DBM. In fact, the BHM
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Table I. AZ 95 per cent Coverage rates, interval lengths and MSE under resampling
from the contaminated data set.

Coverage rates Interval lengths MSE

Film Video Di�. Film Video Di�. Film Video Di�.

Bayes 93.2 93.9 ¿99:9 0.176 0.178 0.035 0.002 0.002 0.00002
DBM 96.7 97.5 97.6 0.266 0.321 0.290 0.004 0.006 0.00390

Table II. Results from the sensitivity analysis to the prior speci�cations for modality and rater
variances as well as the prior speci�cation to the rater thresholds.

Coverage rates Interval lengths MSE

Film Video Di�. Film Video Di�. Film Video Di�.

Orig. priors 93.2 93.9 ¿ 99:9 0.176 0.178 0.035 0.002 0.002 0.00002
Scenario 1 93.8 93.8 ¿ 99:9 0.175 0.176 0.036 0.002 0.002 0.00003
Scenario 2 93.9 93.7 ¿ 99:9 0.176 0.178 0.036 0.002 0.002 0.00002

produces probability intervals that attain the correct nominal coverage but are, on average,
about 8 times shorter than the corresponding intervals generated by DBM. Similar comments
apply also to the MSE of estimated di�erences of AZ values.
The average coverage of 95 per cent posterior probability intervals for ratios of rater vari-

ances was 91.3 per cent in repeated sampling in this simulation study.

Sensitivity analysis

To assess the sensitivity of our model to the choice of prior speci�cations for the rater
and modality variances, we also re-ran the simulations above using two di�erent hyperprior
speci�cations. In the �rst scenario, we changed the prior densities on the rater and modality
variances from IG(2; 1) densities to IG(2; 0:5) densities. This shifted the prior means of these
parameters from 1.0 to 0.5, and reduced the variances by a factor of 4. In the second sensitivity
analysis, we changed the priors on the rater and modality variances to IG(2; 2) densities; this
e�ectively doubled the prior mean from 1 to 2 and increased the variance by a factor of 4.
Furthermore, because the prior speci�cation on the �rst and last category thresholds depend
on the expectations of these priors, the prior speci�cations for these threshold values were
also changed to re�ect these di�erences. In particular, for the �rst scenario, the joint prior
distribution on (�j1; �jC−1) has the joint distribution of the minimum and maximum values from
a random sample of size C − 1 from a normal distribution with mean 0:5 and variance 5:5
while those for the �rst scenario from a normal distribution with mean 0:5 and variance 8:5.
Posterior estimates obtained using these alternative prior speci�cations did not di�er sub-

stantively from the simulation results stated previously. Results appear in Table II along with
the results from our BHM model for ease of comparison. The average coverage of 95 per cent
posterior probability intervals for ratios of rater variances were also similar: 91.3 and 91.5
per cent, respectively. We conclude that the posterior distributions de�ned in these studies
was not sensitive to the choice of prior speci�cation within this range of values.
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DISCUSSION

The Bayesian hierarchical model described in this article provides a new approach towards
analysing multirater correlated ROC data. The primary advantage of this model over existing
methods is the dramatic decrease in the length of uncertainty intervals associated with di�er-
ences in AZ values, and corresponding decreases in the MSE of estimates of these di�erences.
In our simulation studies, interval lengths and MSEs for di�erences in AZ values were reduced
by a factor of more than 5. Such gains in e�ciency have important implications for study
design and the power of ROC analyses for detecting di�erences in AZ values.
Apart from increased e�ciency, our model framework also provides reliable estimates of

ratios of rater variances, and so o�ers the potential for providing feedback to readers regarding
their precision in rating subjects relative to their peers. A similar potential also exists for
improving the calibration of category thresholds across readers.
User friendly computer programs to implement the models described in this paper are

available from the authors’ website.
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