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ABSTRACT

Scheduling algorithms are often of limited benefit in practical situations because of disruptions
that change the problem during operation. One approach to this changing environment is to
reschedule so that the schedule returns to the pre-planned schedule. This paper presents an analytic
iustification for this heuristic. We show that an optimal recovery from a single disruption does
indeed return to the pre-schedule under certain conditions. We also give bounds on the error that
may result from using the heuristic with a predetermined time to match-up to the pre-schedule.
These becunds are extended to an infinite horizon stochastic scheduling problem with multiple

disruptions following some distributional assumptions.

1. Introduction

A vast majority of the literature dealing with production scheduling involves determining a
good schedule over a substantial time frame assuming that all problem characteristics are known.
Such schedules have two uses. As a planning tool, they can be used to order material, set work
schedules and other functions preliminary to the actual production. As an operational- device, they

can be used to direct step-by-step production operations.

In this second capacity such deterministic scheduling procedures typically run into difficulty.
Once the production process begins, random disruptions can force the system out of the prescribed

states rendering the preformulated schedule invalid. Such disruptions can include delays in the

* This material is based upon work supported by the National Science Foundation under Grants Nos. ECS-8304065 and
ECS-8409682.



arrival of materials or components, quality rejection of material or components, machine breakdown

or operator absences.

We would like to anticipate such disruptions during the pre-scheduling of the systerm and build
a schedule with recourse for each contingency. Research such as Pinedo and Ross [1980], Glazebrook
[1981], and Pinedo [1983] is currently improving capabilities in these directions. At this time, the
available techniques are not able to solve problems of the size and complexity needed tc make

operational contributions to actual production systems.

In the absence of a tractable optimal technique most scheduling practitioners use control type
real-time heuristics. Most common are priority list scheduling rules. In such techniques available
jobs are ordered by some simple rule. When a machine becomes available, the job heading the list

is started. These techniques are myopic and can lead to substantial error.

This paper develops the framework for an alternative approach to the disruption problem that
yields operational heuristic scheduling systems. In this approach we seek to use the information
captured in the deterministic pre-schedule, while altering its details to compensate for disruptions.
Such alterations must be done in real time as the disruptions occur. In order to react in real time
while retaining the “goodness” of the schedule, we do not completely reschedule tasks, but rather,
adapt the old schedule to smooth out the difficulties created by the disruption and match-up with
the pre-schedule. This approach has intuitive appeal since material flows have been set according
to this pre-schedule. We show that the optimal schedule, given the disruption, attempts to match
up to the pre-schedule. Hence, by attempting to match-up in our heuristic we are moving in the
appropriate direction.

In this paper we propose a dynamic optimization formulation of a general scheduling problem
based on problems faced at a large auto manufacturer. This allows the use of economic turnpike
theory (see McKenzie [1976]) as a foundation for adaptive approaches to real-time scheduling.
Turnpike results are asymptotic. In other words, adaptive approaches are justified in the limit as
the horizon of the problem is increased. Implementation of match-up procedures requires choosing
a finite time where the schedule is expected to match up with the predetermined schedule. The
imposition of this finite match-up time may cause error. However, bounds may be developed for

these errors.

Section 2 includes a formal model of the problem class being addressed and the procedure
proposed here. Section 3 contains a theoretical justification of the procedure based on turnpike
theory. Sections 4 and 5 include a discussion of the implementation of adaptive scheduling and a

derivation of error bounds. Finally, Section 6 contains a summary and conclusions.

2. Problem Statement



Though most formulations of scheduling problems deal with a finite set of jobs, implying a
finite problem horizon, actual scheduling problems have indefinite horizons. Though a finite set
of jobs is known at any point in time, as those Jobs are completed new jobs are defined so that
the process continues indefinitely. The assumption that we may truncate the problem to currently

known jobs may not be valid due to the introduction of end-of-study effects (see Baker [1977]).

In this section we view the scheduling problem as & deterministic infinite horizon optirnization
problem. Over the infinite horizon an infinite number of jobs will be defined and completed, but
we assume that at any finite time there are only a finite number of jobs to consider. Let n; be the

maximum number of jobs at any finite time k.

The scheduling system is modeled as a sequence of decisions detailing task processing during
the next time period. The system can be viewed as being in one of many states, each of which
details the accumulated processing of known jobs. Resource assignments may also be included in
state definition without difficulty but are omitted here to simplify notation. Constraints on the
system such as task precedence, preemptability, and resource capacities can be seen as restrictions

on the transition of the system from one state to another.

2.1 Notation

For completeness a list of all notation used in the paper is included here. The need for some
of the following will become clear later in the paper.
n, € Z: The number of jobs in the system at time k.
N € Z: A finite horizon time.
z; € R{": The state of the system at the end of processing in period k. The " element of z;. z.,
is the accumulated processing of job .
z,: The state passed through at time k by an undisrupted weakly optimal schedule.

X;: The set of states corresponding to any undisrupted weakly optimal schedule.

7,(7): The state passed through at time k by a weakly optimal schedule that begins at state z at

time 0.

mx € [0,1]™: A decision vector indicating the fraction of time each job is-processed during period
k.

™ € Xg,[0,1]™: Decision vectors describing a schedule covering the infinite horizon.

7" A weakly optimal schedule.

n”(z): A weakly optimal schedule given that the system is in state Z at time 0.

IT: The set of all feasible schedules, =.

¢k(r) € R: The incremental cost from schedule 7 during period k.
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®(r; N) € R: The cumulative cost of schedule = over the first N periods, = :Qz] ox(7).
®(r) € R: The cumulative infinite horizon cost = limy—o O(m; N).

®'(a, ) € R: The minimal cost of moving from state ¢ to state b, where the periods for the states

are not specified.

®*(N) € R: The optimal cost over the first N periods, where any disruption restrictions are in-
cluded.

®* € R : The optimal infinite horizon cost after a single disruption.
®" € R : The optimal infinite horizon cost from k = 0 including disruptions.
@ € R: The optimal expected infinite horizon cost from k = 0 including disruptions.

D € R(™-1) x R("); The set of feasible transitions at time k. That is, given the current state,
Zx—1, and a potential next state, zi, then (z—1,2¢) € D; if and only if (zx-,,2) represents a
feasible transition. The set of feasible 7, given the current state, can be inferred from Dj.

p;: The processing time required for job .

w;: The weight assigned job 7 (to be used for weighted tardiness or weighted flowtime schedules).

ki: The time for matching up after the ¢h disruption.

|7~

-

. The time of the sth disruption.

o~

The time between a disruption and a match-up.

&: The cost of following the match-up heuristic from a single disruption until return to the pre-

schedule.
6;: The cost of following the match-up heuristic from k; to k.
d: The minimum cost from a single disruption state to any potentially optimal state at 1.
Pyi: The set of potentially optimal states at period k.
d}: The minimum cost from any state in Py, to any state n P'-‘i'

d?: The minimum cost from any state in P to any state in Py, 1
: k

2.2 Assumptions
A1) Total costs are the sum of incremental costs in each period.
A2) The incremental costs in each period are convex in the processing decisions.
A3) The objective is to minimize total costs.
A4) In weighted flowtime and tardiness problems there is a positive lower bound on w;.
A5) There is sufficient slack time in the infinite horizon schedule that for any feasible initial state,
z, and schedule, 7, there exists a feasible schedule, #(Z), and time /, uniform over z, such that
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for k > 1, m; = mi(z). Further, the absolute cost to achieve this matching up, &, is bounded
above by U, uniform in z. That is, any feasible schedule is reachable frcm any feasible initial

state at reasonable cost.

AB) Several technical regularity conditions which are discussed in the appendix.

2.3 Infinite Horizon Objective

In infinite horizon optimization problems there are many ways to define the infinite horizon
objective. If the infinite horizon costs converge, the optimal schedule is that with least cost. How-
ever, such convergence can usually be assumed only under sufficient discounting. Since scheduling
problems are rarely discounted, all schedules will possibly have infinite cost.

Several definitions of optimality hiave been suggested for this case, including: average optimality
(see Derman [1966]), 1-optimality (see Blackwell [1962]), overtaking cptimality (see McKenzie),
catching-up optimality (see McKenzie), forecast horizon optimality, and periodic forecast horizon
optimality (see Hopp, Bean and Smith [1984]). To cenform with the concepts of McKenzie, we use
the concept of a weakly optimal schedule in the first part of the paper. As will be proven, weakly

optimal implies average optimal.

We say that a schedule, 7, overtakes another schedule, 7, if

AY
liminf g{mm — Gu(7)] > ¢

for some € > 0. A schedule is weakly optimal if no other schedule overtakes it. We assume here
that such a schedule exists. Given such a schedule, redefine ¢;(x) by subtracting the incremental
cost of the weakly optimal schedule. Then, without loss of generality, the optimal cost is zero. We

make the additional assumption:

AT) A weakly optimal schedule exists and its incremental costs have been used to normalize the cost

function such that the infinite horizon optimal undisrupted cost is zero over all time intervals.

A schedule, 7, is said to be average optimal if
liAr,ninf{(P(fr, N)/N - ®(x,N)/N} >0, Vrell
— 00 .

Lemma 1: If 7" s weakly optimal then it is average optimal.
Proof: In the definition of weakly optimal divide both sides by N. The result follows.n

The term cost used here represents any of several of the common scheduling objectives, as well
as any more general objective that satisfies the stated assumptions. The objective primarily used

for examples in this paper is weighted tardiness. Assumption A2 requires that the incremental costs
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be convex. This assumption is satisfied for most common scheduling objectives including weighted

flow time and weighted tardiness.

Lemma 2: If w; > 0 for all 1, then incremental weighted tardiness in period k is convex in processing

time.

Proof: As the processing for a particular job is increased, the tardiness of the job (if any) decreases
linearly with slope —w; until there is no further tardiness. At that time it remains at zero

regardless of further processing. The resulting curve is convex in processing of job z.m

It is equally simple to show that weighted flowtime is convex in processing for non-negative
weights. Note that since the sum of convex functions is convex, the accumulated cost through time

N is also convex for either of these criteria.

2.4 Feasibility

All feasibility conditions are assumed described by the sets of conditionally feasible decisions,
Dy. Common constraints include non-preemptability, precedence, resource capacities, and maxi-
mum allowable tardiness. Each of these can be represented by restrictions which retain the necessary
characteristics of Di. For example, if a job is non-preemptable and its current processing is strictly
between zero and its total processing time, the only feasible choice is to process until processing is
completed. For precedence, processing a subsequent job would require that total processing on its

predecessor equals its necessary processing.

3. Turnpike Results

The model developed in Section 2 can be viewed as an investment model similar to that
described in Ramsey [1928]. McKenzie shows that under certain assumptions such models behave
in a manner analogous to the matching-up described here. In the literature of economics and infinite
horizon optinﬁiation these results are called turnpike theorems. The analogy is from shortest path

problems on a surface road and turnpike network.

Clearly, the shortest path from one point on a turnpike to another on the same turnpike is that
turnpike. Even if you live off the turnpike, if the destination is distant enough, the shortest path
is to take surface streets to the turnpike and to take the turnpike from there. In our model the
turnpike is analogous to the predetermined schedule (see Figure 1). The distance from the current
state to the turnpike exists because some disruption has transferred the problem to an alternate

state.

If these results can be shown to apply to a general form of the scheduling problem they have
significant implications for appropriate heuristic approaches. After a disruption, the optimal new

schedule would then converge to the optimal schedule derived before processing began. This pre-
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schedule is then a surrogate for the complex objectives involved in scheduling. If our heuristic is
designed to return to the original schedule, we know that this is in fact the direction followed by

the optimal schedule to the disrupted problem.

The strongest turnpike results require uniform convexity of the incremental costs. Though
most measures used in scheduling problems do not satisfy this assumption, the stronger results are

valuable for perspective and potential application to other objectives.

3.1 The Uniform Convexity Case

If the incremental cost functions are uniformly convex, as the system proceeds in time from the
boundary condition (disruption), the sequence of states passed through by the system, and hence
the decisions made. grow increasingly close to the states defined by the pre-schedule. The effect of

the disruption diminishes.

The hypothesis of this theorem requires the concept of a uniformly convex function. Essentially,
to be uniformly convex a function must be strictly convex and must not asympiotically approach

a line. For a rigorous definition of this notion see McKenzie.

Theorem 3: Given the assumptions of this paper, if ¢x(r) s uniformly conver for all k and =
corresponding to Dy, then () — z; ac k— oo.

Proof: This problem seeks to minimize the sum of uniformly convex functions. This is equivalent
to maximizing the negatives of these functions. The negatives of uniformly convex functions
are uniformly concave. The sum retains this characteristic. Hence, the conditions of Theorem

3 of McKenzie are satisfied. The conclusion of this theorem follows immediately.s

The proof in McKenzie follows this line. The cost of passing through states z; is zero by
Assumption A7. There exists a feasible path from z vs;hich matches up with this schedule. By
Assumption A5 this may be done by time I at a cost of no more than U. Hence, the cost of passing
through {z;(Z)} given an initial state of Z must be better that U. By uniform convexity, if Z; is
bounded away from z;, then a uniform penalty will be charged each period. This leads to infinite

cost and a contradiction. For further details see McKenzie.

Corollary 4: Under the conditions of Theorem 8, m;(z) — m; as k— oo.

Proof: In general, my = z; — z4—;. The result follows immediately from Theorem 3.

3.2 The Case of Multiple Optima

When the incremental cost functions are not uniformly convex, the problem may have multiple
optima. This is the case in most scheduling objectives, including weighted flowtime and tardiness.

If there are multiple optima, different initial states could lead to weakly optimal schedules which
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converge to different turnpikes, each being optimal. The claim can still be made that as k — oc,

the state of the disrupted system will approach the set of weakly optimal schedules.
Definition: p(z, X;) = innyX; llzx — yi|.

Theorem 5: Under the assumptions of this paper, limy_, o p(2, X;) = 0.

Proof: Follows directly from Section 7 of McKenzic.

3.3 Example

Consider the following single machine total tardiness problem. At the beginning of each seven
day cycle four jebs become ready. Their total processing is six days. Their due dates are such that
they can be complet-ed without tardiness—provided there are no disruptions in the system. The
optimal schedule over the infinite horizon is to sequence the jobs 1-2-3-4 each week. This schedule

1s weakly optimal as discussed above.

Assume that the machine is now down for the first four days of the upcoming week. This
disruption will not only affect the schedule for this week, but for upcoming weeks as well. The
consequence of the theorem above is that we know that the effects of this disruption will fade out

and that the weekly schedule will approach the original weakly optimal schedule.

Data for the example appear in Table 1. Figure 2 displays the undisrupted, weakly optimal
schedule and the optimal schedule given the disruptions. Note that after four weeks the two

schedules are identical for all future periods.

4. Iinplementation

Theorems 3 and 5 cannot be used directly to control a scheduling system in real time. They
do, however, suggest that the following heuristic may be efficient. Assume that a schedule has been
determined and used to set material flows. When a disruption occurs, the pre-schedule becomes
obsolete. Rather than rescheduling in real time using the original objective, substitute as the
objective a desire to return at minimal cost to the pre-schedule at some future date. The pre-
schedule is assumed to incorporate all important goodness characteristics. It should contain more
of these characteristics than could be incorporated explicitly in real time. From Theorems 3 and
5 we know that this heuristic schedule is tracking in the same direction as the optimal schedule,

given the initial state.
The implemented process contains the following steps.
Match-Up Heuristic

Step 0: Construct a pre-schedule.



When a disruption occurs
Step 1: Determine some future time, /, where the pre-schedule is reachable from the current state.

Step £: Reschedule from current time 0 to [ beginning in the current state and ending in state 5

at time . Stop.

This heuristic does not guarantee an optimal solution in all situations. However, by Theorems
3 and 5 we know that [ can be chosen large enough to get arbitrarily close to an optimal schedule.
It is not, however, generally known how large | must be or when disruptions will occur. A large [
may also lead to computational difficulties. making the method impractical. Given these potential
problems, the algorithm must be implemented as a heuristic and [ must be determined to balance

error and effort. Methods for bounding the error are given in the following section.

5. Error Bounds

The problem formulation presented here represents too general a class of scheduling problems
to derive tight bounds on the error caused by this class of heuristics. For a specific problem, bounds
should be derived to help set I. In the following sections we present a rough bound for the general

problem and apply it to an example.

5.1 Single Disruption

We obtain bounds on the optimal schedule cost by comparing our heuristic with a myopic solu-
tion strategy. Sharper bounds exploiting problem structure may be obtained using the aggregation
procedure in Bean, Birge, and Smith [1984].

For a single disruption, we assume that the match-up heuristic for some disruption state returns

to state z7. The cost of returning to z is assumed to be 6.

Definition: The set of potentially optimal states at some time k, Py, is defined as the subset of states,
feasible after the disruption, which may be on an optimal path. In the absence of information,
this can be taken to be the set of states feasible after the disruption. Note that this involves
two reductions: elimination of states no longer feasible, and elimination of states that can be

proven not to be on any optimal path.

Let the optimal cost of continuation after disruption be &*. A myopic solution strategy is to

find a path with minimum cost d from the disruption state to any state in P.

Lemma 5: Given the assumptions of this paper, the single disruption optimal schedule cost ® is
bounded by
d<d <6
Proof: An optimal path must pass from the disruption state to some potentially optimal state at 1.
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The value d is the minimum among these disiances, giving the lower bound. The upper bound

follows from Assumption A7.m

5.2 Multiple Disruptions

In general, the system will encounter more than one disruption. For this possibility, we again
use a myopic approach and the match--up heuristic to obtain bounds on the optimal solution cost.
We let I be the time between the 7th disruption at k; and the ith match-up time k; (ie., k = k+1)
for all . We assume here :

A8) If consecutive disruptions occur at times k; and k;,;, then all potentially optimal states at k;_,

are reachable from all potentially optimal states at k;.

A9) k., > K for all &. That is, disruptions are sufficiently infrequent that we can match-up before
the next disruption.

These assumptions ensure the feasibility of the match-up heuristic.
Let M be the number of disruptions for some finite horizon problem. The mycpic approach is

to find the minimum cost schedule path from Py, to P and from P;i to Py ,- F ollowing this idea
k : k

leads to a local minimization for lower bounds. Let

d; = min{®(¢,0) : 0 € Py, bE P}, i=1,..., M,
d3 = min{®'(z;,b) : b€ Py},

and

d? = min{®'(q,b) : a = P,—c’,,bé P&.ﬂ},z': 1,...,M-1,

where ®'(a, b) is the minimum cost over all paths connecting states a and b. These values are lower
bounds on the values that the myopic approach could obtain. They also bound the cost of any

other path over their defined ranges.

The match-up heuristic finds the minimurn cost from the state following the disruption to z
]
(within the disruption restricted set of feasible paths). Let this cost be §;. All other costs are zero
for the match-up heuristic by Assumption A7. These observations are contained in the following

theorem.

Theorem 6: Given the assumptions of this paper, the multiple disruption optimal cost ®* 1s bounded

by

-
|
—
.
1]
—

where there are M disruptions.
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5.3 Random Disruptions

All of the results above refer to a deterministic environment where all disruptions are known
in advance. Instead, we would like to allow for a distribution on the disruptions and then find
the optimal expected cost solution. For this stochastic environment, we define a probability space
(9, 5,2). Each sample point w corresponds to a scenario of occurrence times and durations of
disruptions. All deterministic quantities defined above are interpreted as random variables when
they are indexed by w. This allows us to consider the stochastic case without defining extensive ad-
diticnal notation. The quantity @(7,w«) then denotes the infinite horizon cost of following schedule

strategy 7 under the conditions corresponding to w. We wish to find

®" = min, E(®(r,w)), (1)

where E(+) denotes mathematical expectation. We again assume that the disruptions are distributed

so that Assumptions A8 and A9 hold almost surely.

Lemma 7: Given the assumptions of this paper, the optimal expected cost ®~ is bounded by

M(w)

& > E(@°(w)) 2 E()_ (di(w) + &, ().
=1
Proof: Let 7~ solve (1), then & (w) < & (7", w). Integration yields the first inequality. The second

inequality follows from Theorem 6. n

Lemma 7 leads to the following result.

Theorem 8: Given the assumptions of this paper, the optimal expected cost @ is bounded by

M(w) ) M(w)
E()_ 6iw) 2 & > B()_ (d(w) + d&,(w)). 2)
=1 =1

Proof: The left-hand side of the expression is the expected value of following the match-up strategy.
Since it is a feasible strategy, its expected value is an upper bound on the optimal expected

cost. The second inequality follows from Lemma 7.m

The use of these bounds is best demonstrated in an example. In this example, we make
assumptions that actually reduce the interval in (2) to a point. For the infinite horizon objective
we use expected average cost. In this case, if "(N) is the optimal expected cumulative disruption

cost for an N period horizon, then

=11

()

‘I’;c = limN...oo—N—
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Assuming each disruption causes some loss that is finitely positive, an infinite number of disruptions
cause an infinite amount of loss. For this section the weakly optimal definition of optimality is not
sufficient. Hence, we use average optimality. This gives us the average loss per period due to
disruptions. The single disruption results of Theorems 3 and 5 still apply for this objective since
all weakly optimal solutions also minimize average cost (Lemma 1). Matching up with the pre-
schedule at some point must, therefore, lead to a minimum average cost solution. The bound in
(2) can be applied for any finite horizon N as well as in the limit so that (2) can be used to bound
o:..

The example includes two jobs which are cyclically available and due. Each job has a weight
of one. Let Job 1 be ready at times 5¢, have a processing time of three, and be due at times 5t + 3,
for t =0,1,2.... Let Job 2 be ready at 5t, have a processing time of one, and be due at 5t + 5.
Then the optimal pre-schedule processes Job 1 at 5t and Job 2 at 5¢+ 3 leaving one unit of slack in
each production interval. We assume that disruptions occur with equal probability at 15, 16, 17,
18 or 19 time units since the last disruption and that disruptions last one or two time units with

independent equal probabilities.

We choose a match-up time /= 10 and assume that jobs are resumed after disruption with no
loss of processing time. Note that the potentially optimal states at k are {z;} for k(mod 5) = 0, 1,
2 or 3 and 7 = 1; or 7, = (3,0) for k(mod 5) = 4. In all cases, min {®'(q¢,b) : a € Py be PII~_.,1} =

(=, z ). Note also that all costs are non-negative. These two observations imply that, for this
=t M4

problem,
§i{w) = dj (),

and

di(w) =0
From this we obtain

Mp(w)
dy=E( Y &w)),
=1

and

é:.;c = E(‘Si(w)/NC(w))l

where My is the number of disruptions in the first N periods and N¢ is the length of a cycle between

disruptions.

For this example the match-up solution produces an optimal average cost infinite horizon
solution. The minimum expected average cost can then be calculated by weighting the costs over
all cycles. The cycles are found by observing that disruptions occur at 0, 1, 2, 3 or 4 units into a

production interval with equal probabilities. Tardiness to the match-up point is then found and
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weighted by the inverse of the expected time to the next disruption. The resulting values appear

in Table 2.

Cyclic availabilities and requirements for jobs are reasonable in many circumstances, but the
distribution assumption of this example is restrictive and would not be met in general. The as-
sumptions are however made to show the utility of the bounds. In specific applications, problem

structure could be used to generate bounds.

In practice, schedulers can use the bounds in (2) to determine the time to match-up I They
can consider the possible disruption patterns and calculate recovery costs under different scenarios
to find the interval in (2). They can then vary Iso that this interval and the computational burden

for matching up are properly balanced.

6. Summary and Conclusions

Extensive deterministic pre-schedules are often inadequate to operate large systems due to un-
foreseen system disruptions such as machine failure. A common solution is real-time list processing
control type algorithms. We present an alternative here that exploits the global attributes of the

pre-schedule. It then adapts by matching up with the pre-schedule after disruption.

We have implemented this match-up heuristic in a computer program developed for a large auto
manufacturer. The program considers a system of parallel nonidentical machines. Jobs have ready
times and due dates. Each job requires a tool from some finite set of tools and may be completed
(with possibly different processing times) on any of its set of compatibie machines. A pre-schedule
obtained by a global scheduling code is followed until a disruption occurs. The match-up heuristic
chooses a subset of the machires to reschedule so that the pre-schedule can again be foilowed in
I time units. The objective over this horizon includes weighted tardiness and an incentive to keep

jobs on their pre-scheduled machines.

The match-up heuristic code has been applied to a variety of situations using actual data from
plants. In ten of eleven actual problems, the heuristic was able to obtain significant improvements
over the previously used solution of pushing back the pre-schedule (the eleventh problem tied). The
average reduction in tardiness was 36%. Due to the proprietary nature of the results, no further
details of testing can be reported at this time. Further testing is planned to assess the heuristic’s

performance in other situations.

In summary, we have presented a method that adapts for a changing production environment
by seeking to match up with a pre-schedule. The method becomes optimal as the rescheduling
horizon is lengthened and the interval between disruptions increases. This is shown using results
from economic turnpike theory. The error involved in using the method is also bounded by the

difference between the match-up cost and a lower bound found by local minimization. Comparisons
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of the error bounds for different match-up problem sizes can be used to determine the value of

additional computational effort in specific situations.
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APPENDIX

The following technical essumptions are necessary for the theory in McKenzie. While important
to some applications, these are technicalities in the scheduling problems discussed in this paper.

They are included for completeness.

Finite Transitions: For any given a < oo, there exists 8 < oo such that |[z—;|| < a implies
that @] < 8 and ||z|| < B for all feasible . For weighted tardiness this is clear since no more

than one unit of processing can be done in any pericd and tardiness is bounded by the weights.

Weil-Defined States: As noted, costs over the infinite horizon may diverge. Assume that a
weakly optimal schedule is at hand. Alter the cost in each period by subtracting the cost of the
weakly optimal schedule in that period. Then, the infinite horizon cost of the weakly optimal
schedule is zero. A state at some time k is well-defined if the infinite horizon cost beginning at
that state and time is finite using this altered cost structure. Any state not well-defined cannot be
continued from in finite cost. Given the assumption of sufficient slack to reach the weakly optimal

schedule, the set of well-defined states at time k is R{").

Uniform Lower Bound on Convexity of Vor Neumann Facets: It is sufficient to assume that
there is a uniform positive lower bound on the weights used in weighted tardiness or flowtime. (See

McKenzie for further details.)

Uniformly Bounded Von Neumann Facets: This is trivial since no more than one unit of pro-

cessing can be done in any period. (See McKenzie for further details.)
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TABLE 1: Example Problem Data

job # 1
proc. time 1
due time 1

[ 3

(S

TABLE 2: Expected Average Cost Values

Disruption Position

TOTAL

0
0

(V]

Ha W O QO

Down Time

[ SR S R

1o

16

—_

ot

Probability
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10

(UL N

Average Cost
0.059
0.237
0.059
0.237
0.039
0.237
0.000
0.118
0.000
0.059
0.107
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FIGURE 1: Optimal Paths
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