A STOPPING RULE FOR FORECAST
HORIZONS IN NONHOMOGENEOUS
MARKOV DECISION PROCESSES

James C. Bean, Wallace J. Hopp,
and lzak Duenyas

Technical Report 89-21

Department of Industrial and Operations Engineering
University of Michigan, Ann Arbor, Michigan 48109-2117

June 1989
Revised June 1991

This work was supported in part by the National Science
Foundation under Grants ECS-8700836, DDM-9018515 and ECS-8619732



A Stopping Rule for Forecast Horizons in
Nonhomogeneous Markov Decision
Processes *

James C. Bean
Department of Industrial and Operations Engineering
The University of Michigan
Ann Arbor, MI 48109-2117

Wallace J. Hopp
Department of Industrial Engineering and Management Sciences

Northwestern University
Evanston, IL 60208

Izak Duenyas
Department of Industrial and Operations Engineering
The University of Michigan
Ann Arbor, MI 48109-2117

Abstract

We formulate a mixed integer program to determine whether a finite
time horizon is a forecast horizon in a nonhomogeneous Markov deci-
sion process. We give a Bender’s decomposition approach to solving
this problem that evaluates the stopping rule, eliminates some subopti-
mal combinations of actions and yields bounds on the maximum error
that could result from the selection of a candidate action in the initial
stage. The integer program arising from the decomposition has special
properties allowing efficient solution. We illustrate the approach with
numerical examples.

*This work was supported in part by the National Science Foundation under Grants ECS-
8700836 and DDM-9018515 to the University of Michigan and ECS-8619732 to Northwestern
University.



1. Introduction

Many important problems can be modelled as nonhomogeneous Markov
decision processes including production/inventory, equipment replacement, ca-
pacity expansion and R&D planning (see Hopp, Bean and Smith (1987)). It
is well known that any finite state nonhomogeneous Markov decision process
can be transformed into a countable state homogeneous Markov decision pro-
cess. However, since the resulting formulation has countably infinite states,
traditional solution techniques, such as value or policy iteration, may not be
effective.

Over a finite time horizon, a first period decision rule is optimal if it gives
the decision, contingent on state, that maximizes expected value over the
horizon. Over the infinite horizon, in the undiscounted case, all solutions
may have infinite expected cost. The literature discusses several alternate
optimality criteria for this case including average optimality, weak optimality
and algorithmic optimality (see Flynn (1980)). In this paper we use algorithmic
optimality as our criterion. See Hopp, Bean and Smith (where this concept is
called periodic forecast horizon optimal) for a discussion of this criterion. An
infinite horizon strategy is algorithmically optimal if there exists a subsequence
of times such that the finite horizon optima to those times converges to this
strategy in the metric of Hopp, Bean and Smith. For example, a first period
policy is algorithmically optimal if it is optimal to an infinite number of finite
horizon problems. In the discounted case algorithmic optimality agrees with
standard discounted optimality (maximum expected present value).

The basis for this line of research is early work on the relationship between
ergodicity and infinite horizon value such as Hinderer and Hiibner [1974] and
Morton and Wecker [1977]. More recent research has examined the relationship
between ergodicity and solutions to propose algorithms for the finite state
nonhomogeneous Markov decision process (see Bes and Lasserre (1986), Bes
and Sethi (1988), Hopp (1989) and Bean, Smith and Lasserre (1990)). All
attempt to identify a finite time, called a forecast horizon, sufficiently long that
the initial decision rule for the finite horizon problem is known to be optimal in
the infinite horizon problem, regardless of the data beyond the horizon. Each
of these approaches solves finite horizon problems of increasing horizon until
a stopping rule determines that a forecast horizon has been discovered. None
of these approaches has been shown to identify short forecast horizons and
be computationally tractable. Under special conditions, Tseng (1990) finds
horizons a priori by use of contraction mappings.

In this paper we propose a stopping rule based on integer programming that
has promise for solving realistically sized problems. It evaluates the stopping
rule more effectively than the nonlinear programming and piecewise linearity



approaches in Hopp, and finds a shorter stopping time than the tail value
approaches in Bes and Lasserre; Bes and Sethi; and Bean, Smith and Lasserre.

Our target problem is the nonhomogeneous Markov decision process
(NMDP) with finite state space S = {1,...,n} and finite action spaces, Ax(i),
in each state, 1 € S, of stage k =0,1,.... We denote the one period reward in
state 1 of stage k under action a € A,(t) by r(¢,a) and the one step transition
probabilities from state ¢ in stage k to state j in stage k 4+ 1 under action a
as p;;j(a). Future values are discounted with factor 0 < o < 1. Assume that
Ire(i,a)| < R € R for all (k,i,a). Note that, since adding a constant to all
one period rewards does not alter the optimal solution, the assumption that
R < oo allows us also to assume WLOG that r4(i,a) > 0 for all k,7,a. This
assumption simplifies later exposition.

The remainder of the paper is organized as follows. Section 2 details the
integer programming stopping rule. Section 3 describes a modified Bender’s
decomposition to separate the mixed integer programs into pure linear pro-
grams and pure integer programs. Section 4 establishes action elimination re-
sults that reduce computation. Section 5 presents a tree search algorithm for
solving the pure integer programs. Performance of the approach is discussed
in Section 6. Finally, Section 7 contains conclusions and further research.

2. IP Stopping Rule
If we look at an N period truncation of the NMDP with salvage vector L,

and let v (i, L) represent the optimal value function in state i of stage k, the
dynamic programming recursion can be written as

vl (i,L) = max r(i,a) +ay pi(a)vpy,(j, L), i € S;k=0,...,N
a€Ak(1) j€s

WD) = L(i) i€S.

Let 7V (i, L),k =0,...,N;i € S, represent the actions that achieve the above
maximizations. Note that the assumption that ri(i,a) > 0 for all &, ¢, a ensures
that v (s, L) > 0 provided that all L(:) > 0. Hopp shows that an optimal
solution to the infinite horizon problem will be returned if we let L equal the
period N +1 relative value function (also referred to as coherent value function
in Bean, Smith and Lasserre). That is, let L(¢) = tn41(2), where

o(i) = Jim o' (i)

and

oY (1) = vl (i,0) — vl (0,0)

for an arbitrary reference state 0 and salvage vector of all zeroes, O. These
limits are shown to exist in Hopp.



We cannot compute this salvage function because we cannot finitely solve
the infinite horizon problem. As shown in Hopp, under certain ergodic condi-
tions, we can bound the range of potential values of the relative value function.
If the first decision is the same for all salvage vectors within this range, we are
sure to have hit upon the correct vector. This is the idea behind the following
stopping rule.

Definition 1 (Stopping Rule (Hopp)) Stop at the current horizon, N, if
(i, L) = a for all L € A, where

A= {zeR":22>0,|z| <Mz, =0}
T

M = (1 — aao)

ap = supmax max 9 <1
0 & 5065 mear(Dme( sezslpk a1) = 7 (a2)/

lzll = max{z; - ;]

r = supmaX max Ti(t,a1) — (g, a
kp 4,J€ES a1€Ak(i),02€ Ak (s )[ k( l) k(] 2)]

Note that the stopping rule is well defined only if aao < 1.

Theorem 1 (Hopp) If aag < 1 and there ezists a unique decision, @, such
that

za+a2p j) > ro(i,a) +aZp )o1(7)
JES JES

for i € S, then the stopping rule will eventually be satisfied at some finite N.
Further, such an N is a forecast horizon. If the stopping rule is satisfied at
some N, then N is a forecast horizon regardless of optimal action uniqueness.

Note that the hypothesis of Theorem 1 requires knowledge of data over the
infinite horizon. However, the implementation will require only data up to
some finite horizon, N.

To test whether a time horizon, N, satisfies this stopping rule, we must
determine whether a single action is optimal for the N period dynamic program
for each salvage vector in the convex set A. Since A includes the origin, we can
find a candidate action by solving the finite horizon dynamic program with
zero salvage values. The challenge is to see whether it is optimal for all other
salvage vectors in A.

To develop an algorithmic test of the above stopping rule, first observe that
the N period dynamic program, with salvage vector L, can be formulated as
the linear program



n
mn Y vy(i,L
i=1

subject to
v (i, L) > ri(i,a) -+—a£:p,c a)vr1(G, L), 1 €S;k=0,...,N —1;a € A,()
JjES
N¢; : ij N o :
vn(i, L) > ra(i,a)+a) pu(a)L(j), i € S;a € An(2).
Jj€S

Note that for each (k,7) pair, at least one of the constraints for a € Ag(2)
must be tight in order for the v} (i, L) values to be a solution to the dynamic
program. This is forced in the linear program by the objective.

For a given initial state, 7, suppose we have solved the N period problem to
determine a candidate optimal action @ = 7)Y (7, 0). Let vy (¢, L; @) represent
the value function (assuming salvage vector L) when the initial action in state
1 is forced to be a. To formulate a stopping rule, we would like to vary the L(7)
values and search for an L € A that makes 7 (¢, L) = a # &. If no such a can
be found then the stopping rule is satisfied. Altering the objective and freeing
L gives the following linear program. Note that v} (¢,A) is a value function
with L varying over A.

min oY@, A a) — v (7, A)
subject to
oG AE) = ni(i,a) +a Y P (@)l (5, A
i€s
(i, A) > (i, +aZp a)oN(j,A), a € Aq()
JES
o) (3,A) > rk(i,a)+aZp;;j(a)vﬁl(j,A), ieSik=1,...,N—1;a € A2)
j€S
oN(i,A) > rn(i,a) + e pr(a)L(j), i € S;a € AN(i)
j€S
L € A

By the definition of A, the condition L € A can be expressed as a set of linear
inequalities.

This linear program may not return a valid solution to the dynamic pro-
gram. It is possible for the optimal solution to this linear program to be slack
for all constraints associated with a specific stage and state. In this case no
decision is chosen for that dynamic programming state. To ensure that one
constraint from each Ax(z) set be tight, we introduce 0 — 1 integer variables.



Let @ be the candidate decision found by solving the dynamic program with
zero salvage values at stage 0 and known state z. To see if @ is optimal for all
L € A, we can solve the following mixed integer program:

min v} (5,A;@) —v) (3, A) (MIP)
subject to
o (,A58) = ro3,a) +a Y p¥ (@) (5, A
j€S
véV(Z,A) > ri(i,a +aZp vl (7,A), a € A7)
j€S
ol (i,A) > ri(i,a) +a Y pf(a)ul,(j,A
j€S
ieSaeAA}k—l LN =1
o (i, A) > ra(i,a +aZp L(y), 1€ S;a € An(2)
JES
o (i,A) < miisa) +a2p§,f<a)viv(j,A) +(1 -y 0)H, a€A()
j€S
v (5,A) < ri(iya +a2p ka 5, A)+ (1 = y(e,a))H,
JES
iES'aEAk(')'k—l LN =1
WNGA) < ralina) +a X pi@LG) + (1 -yl ),
j€S

1 € Sya € An(2)
Y w(ie) = 1, ieS;k=1,...,N

a€Ax (i)
y(i,a) = 0
L € A
vk(t,a) € {0,1}, i € S;a € Ak(¢);k=0,...,N

where H is a large number. Note that H forces the selection of one solution for
each state much in the way we transform disjunctive constraints to conjunctive
constraints. Any H > Y o R will lead to an optimal solution since this is
an upper bound on any value function in this problem. For any H > Y& o*R,
if yk(t,a) = 0, H is large enough to ensure that the constraint is satisfied for
any solution. In effect, the constraint is imposed only when y(i,a) = 1.

If yx(i,a) = 1 then the corresponding constraint in (M IP) forces the value
for that state to equal the value from choosing that action. The constraints
corresponding to all other a € Ay(¢) are reduced to the traditional inequalities.
In any feasible solution, exactly one y,(z,a) will equal 1 for each (z,k) pair
leading to a valid solution to the dynamic program. The constraint yo(z,a) = 0

6



forces (M IP) to look for some solution other than a and speeds computation.
Recall that WLOG we can add the constraints v)Y(¢,L) > 0, i € S, k =
0,...,N.

This formulation yields the following results.

Theorem 2 Under the hypotheses of Theorem 1, if the optimal objective in
(MIP) is nonnegative, then (a) no a € Ao(t) is superior to @ for any L € A
and (b) the current horizon, N, is a forecast horizon so that @ is optimal over
the infinite horizon for any data beyond N.

Proof: From Hopp, we know that the relative value function covering time
N +1 to infinity is some vector in A. From the formulation, a nonnegative
objective means that @ is optimal for all L € A.

Theorem 3 Under the hypotheses of Theorem 1, if the objective value in
(MIP) is strictly negative, then (a) the decision, a, for which yo(i,a) = 1
is better than @ for some L € A and (b) the negative of the objective value
represents the mazimum loss, over the infinite horizon, from choosing a.

Proof: If @ is not optimal, the loss from choosing it, over the infinite horizon,
can be expressed

lim [vg (7, 0) — vj' (i, 0;a)].
N—oo
Hopp, Bean and Smith show that this limit exists. Hopp went on to show that
this is the same as
N/ - N/~ - .=
vp (1, ON+1) = vp (4, UN41; )
which is bounded above by

max [o0'( L) - v0 (5, ;)

since ty4; € A. This last expression is the negative of that returned by
(MIP), and bounds the absolute loss. u

If the optimal objective value is negative, but small in absolute value,
the decision maker may choose to stop and select action a as approximately
optimal in state 7. If not, we must increase N, recompute the optimal policy
for the N period problem with zero salvage values, and reevaluate the stopping
rule.

3. Evaluating the Stopping Rule

For ease of exposition, restate the problem (M1P) as:



min dv (MIP)

subject to
Dv > b-Ay
0 = e—FEy
v > 0
y > 0, integer,

where e is a vector of ones, v includes the v’s and L’s from the previous
representation of (MIP), 0 = e — Ey are the constraints 3-,¢ 4, (i) ¥(1, @) = 1,
and Dv > b — Ay are all other constraints (note that Fy = e implies that
y < e). We make use of the nonnegativity constraints on v that were included
WLOG to make following derivations more standard.

A standard Bender’s treatment fixes the integer variables, y, resulting in
a linear program, (LP), and constructs its dual, (DL). The feasible region of
(DL) is independent of the choice of y. Hence, for any choice of y, the optimal
solution to (DL) is determined by one of the finite, constant set of extreme
points and rays of this feasible region. If the y chosen dictates an extreme
ray, that is, an unbounded solution, then (LP) is infeasible. Since we seek
a y leading to a feasible solution, we will not choose such values of y. For
a feasible y, the optimal solution is the best extreme point evaluated at this
y. The problem of choosing the best extreme point while constraining y from
choosing an extreme ray can be formulated as a pure integer program, ([).
For further details on the process, see Salkin (1975).

In any reasonably sized problem, the number of extreme points and rays
is large, making this direct approach impractical. The power of Bender’s
approach is that we need only generate a few extreme points and rays, those
near the optimal solution.

Beginning with no extreme points or rays, a candidate y is substituted into
(DL), which is solved. It determines an extreme point or ray which is appended
to (I). Then (I) generates a new y. The process repeats until (DL) and (I)
converge in value. The computational efficiency of the procedure depends on
the ease with which (I) can be solved.

The special structure of the multiple choice constraints, Ey = e, allows a
more efficient version of the decomposition. Since they are equality constraints
and do not include v variables, we can determine their effect on the Bender’s
process analytically. If any y computed by (I) does not satisfy Ey = e, we
can drive the objective of (DL) to infinity by driving the multiplier for the
violated constraint to plus or minus infinity and setting all other multipliers
to 0. Thus, (DL) would pass an extreme ray to (I) equivalent to appending

8



the violated constraint in Ey = e to (I). We can preempt this process by
appending the constraints Ey = e to (I) initially.

This technique accomplishes three desirable effects. First, it avoids the
iterations of the algorithm that would ordinarily generate the multiple choice
constraints in (/). Second, it provides structure to the integer program allow-
ing simpler computation. The resulting problem becomes a multiple choice
integer program (see Bean (1984)). Third, we are now certain that all y vec-
tors passed from () satisfy these equality constraints.

After applying this simplification, we formulate (DL) as

max u(b — Ay) (DL)
subject to
uD <d
v = { u >0

Letting z = max, u?(b — Ay), we can reformulate (I) as

min z (I)
subject to
w(b-Ay) < 2z, p=12,...,P
wi(b—Ay) < 0, ¢=1,2,...,Q

Ey = e

y > 0, integer.

where u? and w? are the extreme points and rays of U, respectively.

To solve a particular instance of (M IP) requires solution of a sequence
of instances of (DL) and (I). The sequence of linear programs generated
are closely related to each other, resulting in efficient use of optimal basic
feasible solutions as starting points for subsequent runs. The key to efficient
computation is the number, and ease of solution, of the sequence of integer
programs. Below we show that the special structure of (I) allows efficient
solution.

4. Solving the Integer Program

In general, integer programs are easier to solve if the formulation has a
small duality gap, that is, the optimal values of the integer program and
its linear relaxation are close. Preprocessing integer programs seeks such a
formulation (see Martin and Schrage (1985)). We can substantially tighten
the formulation of (I) by exploiting the interpretation of the constraints in

9



the Markov decision process context. Each multiplier in w is associated with
a decision, yi(z,a). For each decision, there are two associated multipliers,
one for the constraint from the original dynamic program, and one from the
linear programming relaxation of the mixed integer constraint. Denote these
multipliers wj(z,a) and wi(i,a), respectively.

Given an integer solution, g, for which (DL) is unbounded with ray w,

define

Yi = {(k,i,a): wi(i,a) > 0}
Y, = {(k,i,a): wi(i,a) > 0}.

That is, Y; is the set of (k,7,a) in the dynamic program that are chosen
in (MIP) and have corresponding tight constraints of the traditional type.
Analogously, Y, are those chosen (k,i,a) with tight constraints of the type
added to force a valid solution. Each extreme ray of U will generate its own
sets Y; and Y;. For ease of exposition we suppress this dependence in notation.

Lemma 1 Any extreme ray constraint generated during the Bender’s process,
w(b — Ay) <0, allows precisely the same feasible y vectors as

;yk(i,a) < || -1 (1)

Proof: Let § be a solution generated by (/) that results in (DL) having
unbounded value along extreme ray w which, in turn, induces index sets Y;
and Y,. Traditional Bender’s decomposition would append the constraint w(b—
Ay) <0 to (I). Rephrasing and collecting terms, this is

Y wi(, a)re(i, a) Zwk i,a)[~rx(i,a) — H+ Hyk(i,a)] <0 (2)
£}

By hypothesis, w(b—Ag) > 0. If gx(¢,a) = 0 then the constraint corresponding
to multiplier w}(i,a) (in the dual of (DL)) is necessarily slack implying that
w?(i,a) = 0. Hence, wi(¢,a) > 0 implies that §x(i,a) = 1. Referring back to
(2), this implies that wb > 0. Rearranging from (2) gives

Zwi(iaa) [""H + Hyk(i’a)} <
Y2

=Y wi(s,a)ri(i,a) + Y wi(i, a)ri(i,a) < 0. (3)
Y Y,

The last inequality is a restatement of wb > 0. Divide each term in (3) by H.
By choosing H sufficiently large, we get

Z wZ(i, a)yk(t,a) < Z wi(i,a). (4)
Y2 Y

10



Note that this is valid since U and its extreme points and rays are independent
of H (see definition of (DL) where all instances of H are contained in the
matrix A). Since there are a finite number of extreme rays we can take the
maximum such H as our value of H in (MIP). Then (4) holds for each
extreme ray constraint. If y is infeasible in (1) all variables indexed in Y, are
one. Then, since wb > 0, y is also infeasible in (2). If y is feasible in (1) then
since all wi(i,a) > 0 for (k,7,a) € Y3, and yk(i,a) = 0 for some (k,7,a) € Y5,
y is feasible in (2). m

The parallel analysis for the extreme point constraints, u?(b — Ay) < z, is
more complicated. As with the extreme ray constraints, we can rearrange a
particular extreme point constraint to

;ui(i,a)rk(i,a) + ; ud(i,a)[-ri(i,a) — H + Hyi(i,a)] < 2. (5)

Lemma 2 If any yx(i,a) =0 for (k,i,a) € Y; then (5) is satisfied trivially.
Proof: H can be made arbitrarily large, driving the left hand side to —oco. ®

From this Lemma, an extreme point constraint can only affect z, the ob-
jective of (I), if all variables in Y; are one, that is, Yy, y(i,a) = |Y2|. In this
case (5) reduces to

Zukzarkza Zukzarkza <z

If there are a number of extreme point constraints, index their corresponding
values as KP. Given a possible solution, y, its objective value is determined
as the largest K such that Typ yk(i,a) = Y7

We can construct a linear formulation of this observation by creating binary
variables, z,, such that z, = 1 if and only if extreme point constraint p defines
the objective value at the current y solution. That is, the constraint K? < 2
is tight. Assume, WLOG, that the extreme point constraints are indexed by
increasing K?. For a given y, =5 should equal one if Zyp yk(1,a) = |Y7| and
Syr yx(t,a) < |¥7| for all p > p. In this case the ob]ectlve of (I)is K.

It Ly yk(i,a) < |Y7| for all p, then none of the extreme point constraints
are bmdmg and the objective is unbounded below. In this case let zg = 1.

Using these observations we reformulate (/) as

11



P
min Z KPzr, — zoH

p=1

subject to: Fy = e

(e <Y -1, ¢=1,2,...,Q (12)
yq
P
pr =1
p=0
Zyk(i,a) < |Y2”|—1+ij, p=12,...,P
Yp i2p

zp, Yk € {0,1},for all p, k,

where H is a large positive number.
We have proved

Theorem 4 The integer program (12) returns the same solution as (I).

Corollary 1 A Bender’s Decomposition using (12) in place of (I) will make
ezactly the same Bender’s iterations as the original formulation.

By the simple substitution z;, = 1 — z,, (I2) can be formulated as a set
packing problem. Such problems have small duality gaps and can be solved
very efficiently (Chan (1987)). Below we present a tree search algorithm that
exploits additional structure in (/2) to solve the problem even more efficiently.

5. A Tree Search Algorithm

Consider the constraint matrix of (I2). It has three major sections: the
columns involving z variables, the y columns with multiple choice rows, and y
columns with general set packing rows. Our approach will reduce the problem
to searching for a feasible solution to the last of these segments.

If we fix zo = 1 and find a feasible y, we know that the optimal objective
value is —oco and the corresponding y an optimal solution. If no feasible y
exists, free zo and fix z; = 1. This imposes one constraint in (12) by relaxing
the corresponding extreme point constraint. If a search turns up a feasible
y, then the optimal value is K! and the corresponding y an optimal solution.
Continue in this manner until a feasible y is found. It is not possible that
(I2) is infeasible for all z, as this would imply that the value of the original

12



dynamic program were +0o. This is known not to be the case since we are
using coherent salvage functions.

The effectiveness of this approach depends on the ease of finding feasible
solutions. This is accomplished using the multiple choice tree structure of
Bean (1984). The multiple choice constraints are embedded in the search tree
so that all solutions considered satisfy them. This reduces the number of
solutions to be considered and eliminates the need to consider the multiple
choice constraints explicitly.

The algorithm for solving a single case of (12) is as follows:

Tree Search Algorithm

Step 0: Set p =0. Go to Step 1.

Step 1: Search for a feasible y for (12) with z, = 1. If none exists, go to Step
2. Else, go to Step 3.

Step 2: Increment p and go to Step 1.

Step 3: The feasible y is the optimal solution. The optimal value is K”. Stop.

Noting that these integer programs arise from a Bender’s decomposition,
we will be solving a sequence of related problems. Between two successive
integer problems in the Bender’s process, the only change will be the addition
of a single constraint. Hence, all values of p found to be infeasible are known
to remain infeasible. In each iteration of the Bender’s decomposition, begin
the algorithm above with the p which ended the previous run. The new con-
straint will, by construction, eliminate the y returned in the last run. The new
problem will have either a new optimal solution at the same p, or will force an
increase in p. If the latter occurs then the lower bound will increase.

One final observation allows permanent elimination of some actions. Since
the Bender’s decomposition for the N period problem identifies y values that
are infeasible for all choices of L € A in period N + 1, and o5 ,,(L) € A,
these actions cannot become optimal in any K period problem with K > N.
Further, increasing N simply adds constraints to (MIP). Adding constraints
to a minimization problem can only increase the objective. The extreme point
constraints in (/2) give a lower bound on the optimal value of (12), which
itself is a lower bound on (MIP). As N increases these lower bounds remain
valid and aid in computation. Hence, we have proved

Lemma 4 Constraints in (12) identified in the N period problem are valid in
the K period problem for K > N.

13



This lemma implies that if we solve the (MIP) for a given horizon N,
get a negative objective, and decide to increase N and repeat the procedure,
then all constraints can (and should) remain in the integer program. Leaving
these constraints in place reduces the complexity of the (M IP) for longer time
horizons.

We can now specify an algorithm for solving the (M IP).

Step 1: (Initialization) Set upper bound z* = oo, set lower bound z' = —cc.
Choose an initial § (one candidate is the solution to the finite horizon
problem with zero salvage values). Go to Step 2.

Step 2: (LP Phase) Solve (DL) with the given y. If unbounded, append the
constraint Tys yx(t,a) < |¥7'[—1 to (12). If (DL) yields a finite solution,
append the constraint Yypyk(i,a) < Y| =1+ )5, ; to (12), add
K?z, to the objective function of (12) and let 2* = K7 if better than
the current z*. Reindex z, so that the K? remain nondecreasing in p.
Go to Step 3.

Step 3: (IP Phase) Solve (I2) by the Tree Search Algorithm. Let z' equal
the optimal value and §j equal the new optimal solution. Go to Step 4.

Step 4: (Termination Test) If z' < 2* then go to Step 2. Otherwise, 7 is
optimal. Solve L with this § to get an optimal v. Stop.

Note that at any intermediate point if z' > 0 we know that the current N is
a forecast horizon. Similarly, if 2* < 0, we know that this stopping rule cannot
identify it as a forecast horizon. In either case, the analysis for this N may be
stopped. However, in the latter case, we may wish to continue even though
we have answered the question in order to generate additional constraints to
aid in computation with a larger N.

6. Performance of the Stopping Rule

The effectiveness of the above stopping rule depends on (a) the speed with
which the Bender’s decomposition solves (MIP), and (b) the length of the
forecast horizon identified by the stopping rule. To give a comparison of the
length of the forecast horizons, we will contrast the horizons identified by our
integer programming approach with those identified by a generalization of a
method proposed by Bes and Lasserre. We can state this alternative stopping
rule as follows.

14



Theorem 4 (Bés and Lasserre Stopping Rule) Assuming aaq < 1, 78(3,L) =
NG, L) foral K> N>k, LeA if

vl (1,0) — Wl (i,0) > 2aM(aag)N =+
where

N/~ X ] N .
,0) = , X 0
0= oy ™Y +azj:p" (@) 0)

Proof: Letting
of (i, L @) = m4(3,0) + 3 pi (a)opy G, )
i
we can write
W (1,0;@) —v) (3,0;a) = ri(i,a) +a2p 7,0

—ri(1,0) +GZP1¢ a le(],O)
j

= o(i,L;8) - oG, L; a)
+a Z(p}f(ﬁ) - P;j(a))(vlﬁl(j, 0) - vlj:{H(ja L))

for all a € A(¢). By standard contraction mapping arguments, it is straight-
forward to show that

[oRh1(7,0) = vl (5, L)| < M(aae)V =+
for all L € A and j € S and hence
v,]cv(f,L;d) - v,’:’(Z, L;a) > v, (2 ( k;a) — v ( O;a) — 2aM(aao)N"k+1

for all a € Ax(7). Thus, if v) (3,0;a) — v} (1,0;a) > 2aM(aae)¥~**! for all
a € A(7) — {a}, then it follows by Theorem 1 in Hopp that #f (7, L) = a for
al K >N.»

This stopping rule is precisely that of Bés and Lasserre for our discrete time
Markov decision process, except that it has been modified to include the ao
coefficient and thereby exploit the ergodic properties of the process. Simply
put, the Bes and Lasserre rule identifies an action @ to be algorithmically
optimal in state ¢ when it “beats” all other feasible initial actions by some
threshold amount in the N-period problem. Since this threshold goes to zero

15



as N goes to oo, their rule, like ours, will eventually be satisfied provided that
the infinite horizon optimal initial action is unique.

Proving the Beés and Lasserre stopping rule in the above manner shows it to
be a sufficient condition for the Hopp stopping rule and therefore immediately
implies the following:

Corollary 2 The Hopp stopping rule will always identify forecast horizons
shorter than or equal to those identified by the Bés and Lasserre stopping rule.

However, while the Hopp stopping rule is guaranteed to find forecast hori-
zons at least as short as the Bes and Lasserre rule, the integer programming
test of this rule requires substantially more computation. The Bes and Lasserre
rule merely requires solving an N-period dynamic program, while the integer
programming approach requires solving an N-period dynamic program (to get
a candidate action) and (MIP). In some cases, the fact that the (M IP) ap-
proach stops sooner may result in less total computation than the Bes and
Lasserre rule. Often, however, this will not be the case. Despite this added
computational burden, the (MIP) stopping rule may be more attractive in
certain situations because it requires less reliance on forecasted data. The pri-
mary advantage of short forecast horizons is reduction of the need to forecast
distant parameters, a procedure that is costly and inaccurate. Any additional
computation required may be a small price for elimination of part of the fore-
casting burden.

To illustrate the performance of our stopping rule and compare it with that
of Bes and Lasserre, we analyze three examples. In Example 1, we consider
a problem with three states per stage and two actions per state and discount
factor 0.9, and rewards and transition probabilities that are defined for stage
0 and stages m and 2m,m = 1,2,.... in Tables 1 and 2.

To apply the algorithm for solving (MIP) for Example 1 with N =1, we
need an initial y vector. We get this by solving the dynamic program for N =1
with zero salvage vectors and get 7}(-;0) = (1 2 2) and 7}(;0) = (21 1).
We use these values to initiate the algorithm for ¢ = 1 using action @ = 1 as
the candidate action. The progress of the algorithm is summarized in Table 3.

In our first run of (DL) we fixyo(1,1) = 1,3:(1,2) = 1,11(2,1) = L,y (3,1) =
1 and all other y values equal to zero. Then (DL) yields a bounded solution
- of 0.638, which becomes the upper bound, and generates a u-vector, which we
append to the constraint set in (12). Solving (/2) yields an optimal objective
value of —44.362, which becomes the lower bound, and yields a new y vector.
When this vector is used in (DL), it yields an unbounded solution, so the
upper bound is unchanged and a y-constraint is added to the feasible region
of (I2). Specifically, the procedure adds the constraint that y;(2,2) <0 (i.e.,

y1(2a 2) = 0)

16



Solving (12) with this constraint added does not change the optimal objec-
tive value, but does yield a new y vector. When this y vector is used in (DL)
it yields a bounded solution of 0.556, which becomes the new upper bound,
and also produces a new u-constraint for (12). Solving (12) yields an objective
of 0.556, which becomes the lower bound. Since the upper and lower bounds
are the same, we can stop and the solution to (MIP) is 0.556. This means
that action 1 in state 1 of stage 0 satisfies the stopping rule and is therefore
optimal in all problems with time horizons longer than N = 1.

Now, as a case where the stopping rule is not satisfied immediately, consider
Example 2, which is identical to Example 1 with the exception that, ro(1,2) =
10 instead of 3 and ry(+,2) = (11 9 13) instead of (5 2 5). With these data,
the dynamic program for N = 1 shows that m}(1) = 2, so we make this our
candidate for the test. As shown in Table 4, the algorithm solves (M 1P) after
adding two y-constraints.

In the very first solution of (DL), the optimal value, and hence the up-
per bound, was negative. From this we know immediately that the optimal
objective value of (MIP) is negative and hence the stopping rule cannot be
satisfied. We could immediately terminate the test, increase N to 2 and start
again. However, the effort in solving (MIP) is not completely wasted, since it
generates y-constraints which were appended to the feasible region of (/) and
used in the procedure for N = 2. Whether or not the savings from finding such
constraints justifies the work involved in solving (M IP) after its objective is
known to be negative is an open research question.

To complete the test of the stopping rule in Example 2, we then increase
N to 2, update (M IP) and repeat the algorithm. Note that since the feasible
region of (MIP) decreases as we increase the time horizon, we can use the
lower bound from the solution for N = 1 as the starting lower bound. After
generating several constraints to prevent unboundedness, the algorithm ter-
minates with an objective of 0.161. Since this is positive, the stopping rule
is satisfied, and action 2 is verified to be optimal for all time horizons longer
than 2. Note that in the iteration labelled IP2A in Table 4 for N = 2 both
the upper and lower bounds are positive. Once again, we did not need to solve
(MIP) to optimality. The fact that the lower bound was positive ensured that
the final solution would be positive and the stopping rule would be satisfied.

Example 3 considers a replacement problem for a system subject to dete-
rioration on state space S = {1,...,10}. In each state, the decision-maker
can choose one of two feasible actions, “replace” (action 1) or “do nothing”
(action 2). We assume that a = 0.8 and the one period rewards and transition
probabilities are as follows.

17



8 k=0, i=1

(i) = 6+05k ,1<k<4, i=1
MO = Y 7-i4+05k ,0<k<4, i>1
9—i c k>4, Vi

re(,2) = 10—i ,Vi

p(l) = 1 , Vk,i

) 0.7 ,j=1Vk i#10

pP(2) = {03 ,j=i+1, Vk, i#10
1.0 ,i=5=10, Vk

To ensure nonnegativity of the one period rewards, we added 10 to each reward
for our computational test.

The linear program, (D L), for Example 3 with N = 1 has 154 variables and
22 constraints. The largest integer program that must be solved to test N =1
has 21 variables and 15 constraints. As shown in Table 5, the algorithm stops
after six iterations and fails to identify N =1 as a forecast horizon. Increasing
N to 2 results in (DL) having 194 variables and 32 constraints and a largest
integer program of size of 41 variables and 30 constraints. The algorithm
identifies N = 2 as a forecast horizon in ten iterations. Because the linear
programs are still not excessively large and the integer programs are of an
extremely simple form, all iterations took less than a few seconds on a 386
PC.

To further test the solution procedure for solving (I2), we generated an
equipment replacement problem similar to Example 3 having 20 states per
stage. The largest integer program encountered in this problem had 85 vari-
ables and 46 constraints. The process identified N = 2 as a forecast horizon
in three iterations. While this example is not a large-scale problem, it does
provide evidence that our stopping rule can be feasibly applied to realistically
sized problems. Most importantly, all instances of (12) were solved in less than
a second.

Finally, we turn to the question of how the forecast horizon generated
by the integer programming approach compares with that identified by the
Bés and Lasserre approach. Table 6 shows v} (,0) — w{(7,0) compared with
2a7(aag)N for various values of N for Example 1. We see that the termination
test, showing that action 1 is infinite horizon optimal in state 1, is not satisfied
until N = 4. Recall that the integer programming stopping rule identified this
action as optimal with N = 1. Similarly, Table 7 shows that the Bes and
Lasserre approach applied to Example 2 does not identify action 2 as optimal

in state 1 until N = 9. The integer programming stopping rule identified this

18



action as optimal for N = 2. For Example 3, N = 25 represents the shortest
horizon satisfying the Bes and Lasserre criterion. This compares with a value
of N =2 generated by our (MIP) stopping rule. In this example, a forecaster
would have had to develop 23 additional periods of data to run the faster
algorithm.

As a theoretical comparison, consider the following example. At stage
k = 0, we begin in state 1 and are faced with two possible actions. Action 1
takes us to state 1 with probability 1 and offers one period reward of €. Action
2 takes us to state 2 with probability 1 and offers one period reward of zero.
In stages 1 and beyond, there is only one action, which takes us to state 1 with
probability 1 regardless of the starting state and offers no reward. Action 1 is
optimal and has v)'(1) — 95 (1) = € for all N > 1. The integer programming
stopping rule will terminate for N = 1 and verify that action 1 is optimal.
However, since ag = 1, the Bes and Lasserre rule requires

= N+1
N 2ra

U(I)V(l) -5 (1) 2

l-a

or, equivalently

2ra N1

€> T

The closer a becomes to 1, the larger N must be to satisfy this requirement.
Hence, while the integer programming stopping rule will always terminate for
N =1, the Bes and Lasserre rule can yield arbitrarily long horizons for this
example. Although this is a contrived example, it serves to illustrate that the
difference between the lengths of the forecast horizons identified by the two
stopping rules can be substantial.

The primary reason for the improved performance of the integer program-
ming stopping rule is that it tightly constrains the effect of varying salvage
values in period N + 1 by adjusting decision rules in periods 1 through N
as the salvage values change. The Bes and Lasserre approach does not limit
the effect of the salvage values; it merely requires that the candidate action
“beat” all other actions over the interval [0, N] by an amount that makes it
impossible for another action to “catch up” in subsequent periods. Adjusting
the intermediate decision rules to evaluate the effect of changing the salvage
values accounts for the increased computational complexity of the integer pro-
gramming stopping rule, but appears worth the increased effort in light of the
significantly shorter forecast horizons it produces.

7. Conclusions and Further Work

The integer programming approach to identifying forecast horizons in non-
homogeneous Markov decision processes appears more attractive from a com-

19



putational standpoint that the nonlinear programming and piecewise linearity
approaches suggested in Hopp.

Evaluating the integer programming stopping rule may take longer than
the tail value approaches, but finds shorter forecast horizons. Overly long time
horizons entail more data collection (i.e., forecasting), and more reliance on
uncertain future data.

In some specific applications it is possible to develop stopping rules that
identify forecast horizons that are as short as possible given certain aggregate
descriptors of the future (see e.g., Chand and Morton (1982), Hopp and Nair
(1987)). In the general nonhomogeneous MDP, such perfect efficiency is prob-
ably not possible. Even so, it may be possible to further limit the size of the
set A through more judicious preprocessing of the problem. Further work is
needed to determine what improvements are possible in this arena.

The current solution system involves separate codes to solve the dynamic
program (to find a candidate @), the linear programs and the integer programs.
Future research is needed to develop an integrated system for efficiently com-
puting forecast horizons in nonhomogeneous Markov decision processes.

Acknowledgement
We would like to thank an anonymous referee for many insightful comments
that greatly improved the paper.

20



References

(1] Bean, J.C. 1984. A Lagrangian Algorithm for the Multiple Choice Integer Pro-
gram. Opns. Res. 32, 1185-1193.

[2] Bean, J.C., R.L. Smith and J.B. Lasserre. 1990. Denumerable State Nonhomo-
geneous Markov Decision Processes J. Math. Analysis and Appl. 153, 64-77.

[3] Bes, C., and J. Lasserre. 1986. An On-Line Procedure in Discounted Infinite-
Horizon Stochastic Optimal Control. J. of Optimization Theory and Applica-
tions 50, 61-67.

[4] Bes, C., and S. Sethi. 1988. Concepts of Forecast and Decision Horizons: Appli-
cations to Dynamic Stochastic Optimization Problems. Math. O.R. 13, 295-310.

[5] Chan, T. 1987. A Multiplier Adjustment Based Branch-and-Bound Algorithm
for Solving the Set Partitioning Problem. Unpublished Ph.D. Dissertation. De-

partment of Industrial and Operations Engineering, the University of Michigan,
Ann Arbor, MI 48109-2117.

[6] Chand, S. and T. E. Morton. 1982. A Perfect Planning Horizon for a Deter-
ministic Cash Balance Problem. Man. Sci. 28, 652-669.

[7] Flynn, J. 1980. On optimality Criteria for Dynamic Programs with Long Finite
Horizons. J. Math. Analysis and Appl. 76, 202-208.

[8] Hinderer, K. and G. Hiibner. 1974. An Improvement of J.F. Shapiro’s Turnpike
Theorem for the Horizon of Finite Stage Discrete Dynamic Programs. Trans.
Tth Prague Conference on Information Theory, Statistical Decision Functions
and Random Processes Vol. A, Academia, Prague, 245-255.

[9] Hopp, W.J. 1989. Identifying Forecast Horizons in Nonhomogeneous Markov
Decision Processes. Opns. Res. 37, 339-343.

[10] Hopp, W.J.,J.C. Bean, and R.L. Smith. 1987. A New Optimality Criterion For
Nonhomogeneous Markov Decision Processes. Opns. Res. 35, 875-883.

[11] Hopp, W. J. and S. K. Nair. 1991. “Timing Replacement Decisions Under
Discontinuous Technological Change,” Naval Res. Log., 38, 203-220.

[12] Martin, W.K. and L. Schrage. 1985. Subset Coefficient Reduction Sets for 0/1
Mixed Integer Programming. Opns. Res. 33, 505-526.

[13] Morton, T. and W. Wecker. 1977. Discounting, Ergodicity and Convergence for
Markov Decision Processes. Man. Sci. 23, 890-900.

[14] Salkin, H.M. 1975. Integer Programming. Addison-Wesley, Reading, MA.

[15] Tseng, P. 1990. Solving H-Horizon, Stationary Markov Decision Problems in
Time Proportional to log(H). Opns. Res. Let. 9 287-297.

21



Stage | Action ri(t,a)
k a i=1]i=2]1=
0 1 10 5 2
0 2 3 7 12
m 1 2 8 12
m 2 d 2 d
2m 1 6 2 8
2m 2 3 1 10

Table 1: Rewards for Example 1.

Stage | State | Action pi(a)
P « [F=1];=2]7=3
0 1 1 0.3 0.3 0.4
0 2 1 0.4 0.4 0.2
0 3 1 0.4 0.2 0.4
0 1 2 0.2 0.2 0.6
0 2 2 0.3 0.3 04
0 3 2 0.5 0.0 0.5
m 1 1 0.4 0.6 0.0
m 2 1 0.0 0.4 0.6
m 3 1 03 | 03 | 04
m 1 2 0.4 0.2 0.4
m 2 2 0.2 0.2 0.6
m 3 2 0.5 0.3 0.2
2m 1 1 0.3 0.3 0.4
2m 2 1 0.5 0.0 0.5
2m 3 | 0.4 0.5 0.1
2m 1 2 0.2 0.6 0.2
2m 2 2 0.3 0.2 0.5
2m 3 2 0.3 0.4 0.3

Table 2: Transition Probabilities for Example 1.

22



Iteration

Upper Bound

Lower Bound

Comment

DL1
IP1A
DL2A
IP1B
DL2B

IP2

0.638
0.638
0.638
0.638
0.556
0.556

-00
-44.362
-44.362
-44.362
-44.362

0.556

u-vector generated
y-constraint generated

u-vector generated

Table 3: Results for Example 1 with N=1.

[teration I Upper Bound " Lower Bound | Comment

N=1
DL1 -0.027 -00 u-vector generated
IP1A -0.027 -90.030
DL2A -0.027 -90.030 y-constraint generated
IP1B -0.027 -90.030
DL2B -0.027 -90.030 y-constraint generated
IP1C -0.027 -90.030
DL2C -0.027 -45.030 u-vector generated
[P2 -0.027 -0.027
N=2

DL1 0.202 -0.027 u-vector generated
IP1A 0.202 -0.027
DL2A 0.202 -0.027 y-constraint generated
IP1B 0.202 -0.027
DL2B 0.202 -0.027 y-constraint generated
IP1C 0.202 -0.027
DL2C 0.161 -0.027 u-vector generated
IP2A 0.161 0.063

DL3 0.161 0.063 y-constraint generated
IP2B 0.161 0.161

Table 4: Results for Example 2 with N=1,2.

23




Iteration | Upper Bound " Lower Bound l Comment

N=1
DL1 0.149 -00 u-vector generated
IP1 0.149 -148.500
DL2 0.149 -148.500 u-vector generated
IP2 0.149 -28.500
DL3 -0.697 -28.500 u-vector generated
IP3 -0.697 -0.697
N=2
DL1 0.300 -0.697 u-vector generated
IP1A 0.300 -0.697
DL2A 0.300 -0.697 y-constraint generated
[P1B 0.300 -0.697
DL2B 0.300 -0.697 y-constraint generated
IP1C 0.300 -0.697
DL2C 0.300 -0.697 y-constraint generated
IP1D 0.300 -0.697
DL2D 0.300 -0.697 y-constraint generated
IP1E 0.300 0.300
Table 5: Results for Example 3 with N=1,2.
N | oYG) [w)(z,0) | v (3,0) — wd (3,0) | 2aM(aae)”
1 ]17.830 | 11.820 6.010 21.13
2 [23.208 | 17.134 6.074 11.41
3 129373 | 23.304 6.069 6.16
4 |33.734 | 27.664 6.069 3.33

Table 6: Bes and Sethi Approach for Example 1.

24




N[ vy (2) | wy(2,0) | vy (z,0) = wh (z,0) | 2aM(aq)™
1 120.620 | 20.080 0.540 23.24
2 125674 | 25.394 0.280 12.55
3 |31.885 | 31.590 0.295 6.78
4 136.244 | 35.950 0.294 3.66
5 | 41.240 | 40.946 0.294 1.98
6 | 44.772 | 44.478 0.294 1.07
7 |48.819 | 48.525 0.294 0.57
8 | 51.680 | 51.386 0.294 0.31
9 |54.958 | 54.664 0.294 0.17

Table 7: Bes and Sethi Approach for Example 2.

25




