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This paper presents a mathematical model for a model-scale unmanned helicopter robot,
with emphasis on the dynamics of the flybar. The interaction between the flybar and the
main rotor blade is explained in detail; it is shown how the flapping of the flybar increases
the stability of the helicopter robot as well as assists in its actuation. The model helicopter
has a fast time-domain response due to its small size, and is inherently unstable. There-
fore, most commercially available model helicopters use the flybar to augment stability
and make it easier for a pilot to fly. Working from first principles and basic aerodynamics,
the equations of motion for full six degree-of-freedom with flybar-degree of freedom are
derived. System identification experiments and results are presented to verify the math-
ematical model structure and to identify model parameters such as inertias and aerody-
namic constants. © 2004 Wiley Periodicals, Inc.
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1. INTRODUCTION

There has been a great deal of interest in the dynamics
of unmanned helicopter robots since the last decade,
as such unmanned aerial vehicles (UAVs) are being
rediscovered. They are an excellent cost-effective and
safe way to replace human operators/pilots in mili-

*To whom all correspondence should be addressed.
Contract sponsor: Michigan Space Grant Consortium
Contract sponsor: Rackham Graduate School
Contract grant sponsor: Natural Science Foundation
Contract grant numbers: IRI 95-28115 and CMS 98-76039
Journal of Robotic Systems 21(3), 95–116 (2004) © 2004 Wiley P
Published online in Wiley InterScience (www.interscience.wiley.co
tary, civilian, and commercial areas when there exist
significant threats to human lives, or when the envi-
ronment is not suitable for large human-carrying ve-
hicles. However, helicopter robots are well known to
be inherently unstable due to their small size. Over
the years, improvements in the design led to the use
of an aerodynamically damped gyroscopic device
called the flybar, which has become an almost man-
datory stability augmentation device for most mod-
ern model-scale helicopter robots.

The main contribution of this paper is the de-
tailed modeling of the flybar with the main rotor
eriodicals, Inc.
m). • DOI: 10.1002/rob.20002
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blade and the fuselage movement. This paper also de-
scribes the mathematical model that we have derived
specifically for a helicopter robot, as well as the sys-
tem identification experiments we have conducted.
The model is based on a rigid-body description of the
helicopter, with four actuation inputs representing
the four stick positions available to the remote-
control pilot. Once the mathematical model has been
developed, system identification experiments are
performed both to verify the structure of the model
and to identify some of the unknown model param-
eters, such as inertias and aerodynamic coefficients.

The outline of the paper is as follows. First, we
briefly review some previous work on helicopter
modeling. In Section 3, we describe the flybar math-
ematical model that we have derived, working from
first principles and basic aerodynamics. Section 4 de-
scribes the system identification technique for iden-
tifying the uncertain parameters and presents our re-
sults. The paper concludes with a comparison
between our nonlinear model and the linear model
from ref. 1 and a short summary.

2. RELATED WORK

Although there is an extensive literature dealing with
the model-scale and full-scale helicopter modeling,
direct mathematical modeling of the flybar has been
sketchy at best. Researchers have devised linear1,2

and nonlinear3,4 mathematical models of model he-
licopters based on the full-scale helicopter models,
but with little emphasis on the flybar. System
identification1,5–7 has also been applied frequently to
a linear, parametrized model to avoid the complexity
involved with detailed modeling, although all of
these ID results are only valid near the nominal hover
condition. With most identification works, it is diffi-
cult to correlate the identified numerical parameters
with the physical parameters, so the understanding
of the flybar dynamics still remains incomplete.

Extensive linear8,9 and nonlinear10–16 modeling
and identification17,18 works for full-scale helicopters
are also available, but most papers are primarily con-
cerned with the aero-elastic flapping rotor mecha-
nism with the rotor hinges modeled as a spring. This
is not the primary stabilization method employed by
the model-scale helicopter robots; the rotor hub is
hingeless and the main blades are too stiff to flap. The
flybar dynamics are the dominant stabilization force.

Although some researchers do mention the exis-
tence of the flybar used for full-scale19 and model-
scale helicopters,1,20 the authors have been unable to
find any recent papers which explain the exact nature
of the flybar and its effect on the stability of a model
helicopter in a concrete mathematical way. This
mechanism is typically discussed by intuition, expe-
rience, or a linear numerical identification is used
without any explanation of the fundamental dynam-
ics. The main result of this paper is to present this
first-principles modeling which has been lacking in
the existing literature. At best, Mettler et al.1 provide
a simple decoupled flybar dynamic model, though
based on an incorrect assumption that the flybar’s re-
storing forces are entirely centrifugal. Bramwell21

shows a simple uni-directional flybar dynamic
expression for full-scale helicopters without any
derivation.

3. MATHEMATICAL MODEL

Many full scale helicopters have a hinge, either free-
flapping or spring-mounted, on the rotor blades, so
that the plane of the rotor can be tilted with respect
to the helicopter. Such a hinge system allows the rotor
blades to flap, increasing the stability. Even helicop-
ters with hingeless rotors still have a significant
amount of rotor flapping action, giving a similar kind
of stability. However, this flapping behavior increases
the time needed for the helicopter to respond to con-
trol inputs, and this is the main reason why the flap-
ping mechanism is not used as a stability augmenta-
tion device for most small model-scale helicopters.

Most helicopter robots with a rotor span under
1.5 m have a hingeless, stiff rotor hub design, which
forces the position of the fuselage to remain almost
fixed with respect to the rotor disc. This results in
faster response times, and gives the remote pilot a
better sense of motion of the helicopter. However,
since the time-domain response of a model helicopter
is much faster due to its small size, without any extra
stability augmentation devices, a human pilot would
have difficulty controlling it. In almost all model he-
licopters, a large control gyro with an airfoil, referred
to as a flybar, is used to improve the stability charac-
teristic around the pitch and roll axes and to mini-
mize the actuator force required. In addition, an elec-
tronic gyro is used on the tail rotor to further stabilize
the yaw axes.

In this section, we derive the dynamic equations
of motion for the model helicopter including its ac-
tuator dynamics, with detailed emphasis on the fly-
bar dynamics. A Full 6-DOF helicopter model is also
included for completeness. The equations are based
on rigid body dynamics,22 as well as basic
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aerodynamics and helicopter theory.23,24 Once the
structure of the model has been determined, system
identification techniques will be used to validate the
model and determine the unknown model
parameters.

As shown in Figure 1, our modeling is based on
a commercially available model helicopter called
Ikarus;25 most other brands of model helicopters have
a similar structure. The rotor hub is hingeless with a
pair of small o-rings supporting the two main blades.
It has a 1.02 m rotor span and weighs 1.36 kg without
the onboard battery. A sensor is attached to the tail fin
to measure the position and orientation of the heli-
copter with respect to an inertial frame. Figure 2
shows some of the onboard components, including a
radio receiver which receives command inputs from
the remote control box, a motor with a motor control-
ler, four different servos (pitch and roll cyclic, collec-
tive pitch, and yaw servo), and a gyro sensor. The
single electric motor drives the main and tail rotors
simultaneously via gear trains and a timing belt.

3.1. Coordinates and Frames

As shown in Figure 3, there are two frames that we
consider: the reference inertial frame and the body
frame attached to the helicopter. The transformation
between the two frames is given by the homogeneous
transformation matrix

gIB�� xI

RIB yI

zI

0 0 0 1
� ,

Figure 1. A photograph of the Ikarus ECO electric heli-
copter used in our experiments (ref. 25). The sensor re-
ceiver is attached to the tail to minimize the electromag-
netic interference from the motor. The sensor transmitter is
fixed to the ground, although different locations were cho-
sen to minimize the distance between the transmitter and
receiver depending on the nature of experiment. Because
the sensor arrangement already requires the helicopter to
be tethered, we power the helicopter motor using a 12 V
car battery.
where the rotation matrix RIB represents the relative
orientation between the two frames. The rotation ma-
trix can be expressed in coordinates using yaw-pitch-
roll (ZYX) Euler angles as

RIB�e � ẑ� ��e � ŷ� ��e � x̂� ��

�� cos � �sin � 0

sin � cos � 0

0 0 1
� •� cos � 0 sin �

0 1 0

�sin � 0 cos �
�

•� 1 0 0

0 cos � �sin �

0 sin � cos �
� .

Although this representation is singular at �=��/2,
we do not expect to operate the helicopter in that ori-
entation (pointing straight up or down). Thus, we
will do most of our derivation in coordinates, where
(xI ,yI ,zI) are the coordinates of the position of the
helicopter with respect to the inertial frame and
�, �, � are the Euler angles of the helicopter with re-
spect to the inertial frame.

There are several different velocities that will be
used to write the dynamic equations. The linear ve-
locity of the helicopter with respect to the inertial
frame is vI�� ẋ I ẏ I ż I	

T. This velocity can also be ex-
pressed in the body frame,

vB�RIB
T vI .

Figure 2. Some of the mechanical and electrical compo-
nents on the helicopter. A minor reduction in sensor noise
was obtained using a brushless motor (ref. 26). All other
components are generic model helicopter components.
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The angular velocity of the helicopter will also be
needed. The angular velocity of the helicopter with
respect to the inertial frame, expressed in the body
frame, is denoted 
B and can be computed as


B��RIB
T ṘIB,

(1)


B�� �̇��̇ sin �

�̇ cos ���̇ cos � sin �

� �̇ sin ���̇ cos � cos �
�

�� 1 0 �sin �

0 cos � cos � sin �

0 �sin � cos � cos �
� � �̇

�̇

�̇
� .

3.2. Rigid Body Equations

We will model the helicopter as a rigid body moving
in space, ignoring the effects of the spinning rotor. Al-
though this is not physically true, this assumption
helps us to collect all the various inertia effects such
as main and tail rotor dynamics into a simple con-
stant mass-inertia matrix. This assumption will be
justified through the system identification in Section
4. The mass of the helicopter is given by m, and the
fuselage inertias are Ixx , Iyy , Izz . The inertia matrix
I, in body coordinates, is

I�� Ixx 0 �Ixz

0 Iyy 0

�Ixz 0 Izz

� .

Figure 3. The coordinates defined. The inertial frame is
fixed to the ground, and the body frame is fixed to the
helicopter. The relative rotation between the two frames is
given by the rotation matrix RIB , or equivalently by the
ZYX Euler angles (�,�,�), and the relative displacement is
given by the vector �xI yI zI	

T. The rotor disc is an imagi-
nary plane drawn by the tip of main rotor blades.
Terms such as Ixy and Iyz are zero due to the symme-
try of the helicopter with respect to the xB-zB plane.
Although Ixz is nonzero, because the helicopter is not
symmetric with respect to the xB-yB plane, it is typi-
cally much smaller than the other terms. We will ig-
nore it in our model.

The dynamic equations of the helicopter’s mo-
tion are significantly simplified by expressing them in
body coordinates. In these coordinates, Euler’s equa-
tions for the rigid body motion of the helicopter
become22

�mI3�3 0

0 I� � v̇B


̇B
���
B�mvB


B�I
B
��� fB

�B
� . (2)

The external forces and torques expressed in the body
frame are fB and �B . The body force fB includes aero-
dynamic drag terms DF , the main and tail rotor
thrusts T and TT , and the gravitational force mg :

fB�� �DFx

�DFy
�TT

�DFz
�T

��RIB
T � 0

0
mg

� . (3)

Torques include the three main directional torques
M� , M� , M� as well as a torque due to the offset of
the rotor hinge T�r , and the motor torque �m :

�B�� M�

M��T�r

M���m

� . (4)

The longitudinal offset between the rotor axis and the
helicopter’s center of gravity is �r . Usually this offset
is expected to be small for better handling quality.
Nevertheless, we will assume this quantity is nonzero
for generality. The gravitational acceleration constant
is g. It is assumed that the helicopter’s center of grav-
ity is in-line with the rotor axis laterally, because most
components such as motor and gear trains are located
along the xB-zB plane, with yB near zero.

The four independent inputs to this model are T,
the net thrust generated by the rotor, and
M� ,M� ,M� , the net moments acting on the helicop-
ter. These four inputs are physically controlled by two
joysticks on the radio transmitter, each with two de-
grees of freedom. The left joystick commands throttle
with collective pitch (up/down) and yaw (left/right),
and the right joystick commands pitch cyclic (up/
down) and roll cyclic (left/right). This is the most
popular configuration used in the U.S. (type
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II1). The four values representing the positions of the
sticks are encoded in a pulse-width modulated
(PWM) signal, and sent via radio link to the
helicopter.

To match with our experimental measurements,
we will also consider the transformation of the
Newton–Euler equation (2) into a new set of coordi-
nates, q, which includes the inertial position and ve-
locity of the helicopter, the Euler angles, and the body
angular velocity:27

q��xI yI zI ẋ I ẏ I ż I � � � 
B1 
B2 
B3	T.

The transformed equations become

q̇�� vI

1
m

RIBfB

�
B

I�1��B�
B�I
B
�

� , (5)

where � is the inverse of the matrix shown in (1):

��� 1 0 �sin �

0 cos � cos � sin �

0 �sin � cos � cos �
��1

�� 1 sin � tan � cos � tan �

0 cos � �sin �

0 sin � sec � cos � sec �
� .

Note that this expression highlights the singularity of
the representation at � =��/2.

3.3. Aerodynamic Modeling

Before developing the actuation equations, we intro-
duce some basic aerodynamic terms that will be re-
quired. We will assume the rotor system is completely
rigid (there is no aeroelasticity effect), and that the air-
foil is symmetric and nontwisted. The aerodynamic
interaction between the rotor and the fuselage is ne-
glected. The aerodynamic expressions are based on
2-D analysis. This type of modeling is often called
level-1 modeling and is appropriate for low band-
width control and to observe the parametric trends
for flying qualities and performance studies.24

1In some countries, people prefer the yaw and the roll controls
switched (type I).
The rotor span, R, is assumed to be the distance
between the rotor axis and the rotor tip. We neglect
the effect due to ‘‘root cutout,’’ where there is no rotor
blade at the hub area.23 The model helicopter’s rotor
blade remains nearly rigid due to its short length (0.4
to 0.8 m), high rotor speed (1200 to 1900 rpm), and
hingeless hub design; we assume the rotor is perfectly
rigid with no twist.

The descent ratio, 
, represents the air speed com-
ponent perpendicular to the rotor disc.28 To define it,
we first need to find the velocity of the hub point with
respect to the inertial coordinate frame represented in
body coordinates; we denote this velocity by vq

b . The
coordinate of the rotor hub point in the body frame is
qb���r 0 �hr	

T. The constants �hr and �r are the
offsets of the rotor from the helicopter’s center of
gravity in the xB and zB directions, respectively; the
rotor hub is in-line with the center of gravity in the yB
direction:

vq
b�
B�qb�vB . (6)

The descent ratio, 
, which is the airspeed component
perpendicular to the rotor disc, can be found as the
magnitude of the third element of vq

b , nondimension-
alized by R� :


�
1

R�
vq3

b . (7)

When the helicopter is hovering, this ratio will be
very small and may be ignored. The inflow ratio, �, is
the net value of the descent ratio 
 and the induced
air velocity. The velocity of the air through the rotor
blade vi is defined to be positive when the flow is
along the zB-axis and is nondimensionalized by R� .
We choose not to model � in any more detail in this
paper due to its inherent complexity:23

���
�
vi

R�
. (8)

The most important parameter in determining
the lift force is the angle of attack of a blade, which is
the angle between the centerline of the blade and the
blade velocity vector with respect to the inertial
frame. The angle of incidence, which is the angle be-
tween the centerline of the blade and the reference
frame (such as the rotor axis), is not related to the
aerodynamic effects. The lift curve slope, a, is the
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slope of the function of the lift force versus angle of
attack of the main rotor blade;29 we assume here that
a is a constant.

3.4. Flybar Dynamics

The dynamics of the rotor and the flybar are the most
significant elements in the creation of the forces and
moments on the helicopter. The actuator dynamics
include as states the flapping angle and velocity
(� ,�̇) of the flybar and the position and angular ve-
locity (�,�) of the main rotor blade. As mentioned be-
fore, the flybar plays a major role in augmenting the
stability of a model helicopter. The flybar mechanism
is sketched in Figure 4. The original concept of this
design came from full-scale helicopter stabilization
devices first used in the 1950s. The Bell stabilizing
system had a bar with weights at each end, and the
flapping motion of the bar was governed by a sepa-
rate damper. The Hiller system replaced the damper
and the weights with an airfoil. During the early
1970s, the design was simplified and improved for
model-scale helicopters.30 This system is often called
a Bell–Hiller mixer, because it incorporates some of
design aspects of both Bell and Hiller designs. The
fundamental concept for the model helicopter’s rotor
hub design is identical to the Hiller system, although
the mechanical detail resembles the Bell system. Since
the early 1970s, the design of the model helicopter’s
rotor hub has gone through many changes and im-
provements; it reached its current state in the early
1990s. The rotor hub design presented in Figure 4,
hingeless with Bell–Hiller mixer, represents currently
the most popular and widely accepted design as the
best compromise between performance and stability.
However, it is suited more toward aerobatic maneu-
vers than smooth near-hover maneuvers that do not
require large and fast pitch or roll movements. Sta-
bility can be increased if the Bell input is removed
and/or the main blade is allowed to flap, but the he-
licopter would then respond more slowly.30

Figure 4 shows the two arms coming from the
swashplate. One arm, marked Bell input, allows the
blade pitch to be changed directly from the cyclic
servo actuator. The response with respect to this arm
alone is fast, but lacks stability. Meanwhile, the other
arm, marked Hiller input, allows the pitch of the fly-
bar to be changed. The flybar then flaps, and this flap-
ping motion causes the pitch of the main blade to
change. The pilot’s cyclic control input �� and �� are
the displacements of the lower swashplate as per Fig-
ure 4. There is a direct relationship between the cyclic
input applied to the main blades �cyc (which is a func-
tion of �� and ��) and the cyclic angle of the rotor
blades �cyc . A similar relationship exists between the
cyclic input applied to the flybar �fly and the flapping
angle of the flybar �. The orientation of the main
blade with respect to the helicopter is given by �. The
factor L8 /L9 reflects the different diameters of the
upper and lower swashplates. Note the 90° phase dif-
ference between �cyc and � fly , due to the geometry of
the rotor/flybar assembly shown in Figure 4:

Figure 4. The basic structure of the model helicopter’s
cyclic/collective control system. Only one side of the as-
sembly is shown for clarity; the other is simply a mirror
image. The flapping angle of the flybar, �, is the angle of
the flybar with respect to the body coordinate frame at-
tached to the rotor hub. It is zero when the flybar is per-
pendicular to the rotor axis. Ball joints are shown as ‘‘�,’’
and fixed joints are shown as ‘‘�.’’ The cyclic pitch input
to the main rotor blade is controlled by the combination of
the Bell input from the swashplate and the Hiller input
from the flybar. The collective pitch input to the main rotor
blade is controlled by raising or lowering the swashplate.
The ‘‘wash-out’’ arm with the slider prevents the collective
input from affecting the flybar. The flybar angle of inci-
dence and the flapping angle are thus separated from the
collective input. The slider slides only when the collective
input is applied. The slider remains stationary when only
a cyclic input is applied.



Kim and Tilbury: Unmanned Helicopter Robot • 101
�cyc�����
L8

L9
��� sin ���� cos ��, (9)

�fly�����
L8

L9
��� cos ���� sin ��. (10)

An important assumption at this point is that the
rotor system does not apply reaction forces back to
the actuators, including the flybar (the flybar is con-
sidered to be another actuator to the main blades).
This is equivalent to assuming the actuators are able
to apply infinite amount of forces to the airfoils. This
assumption is reasonable because the airfoil of the
main blades is symmetric and the blades are hinged
along the center of lift. Ideally, the moment required
to rotate the blade at this point should be very small.29

When a cyclic input is applied by the pilot, the
flybar creates lift which tilts the flybar disc. The flybar
acts not only as a main blade angle actuator but also
as a stabilizer. If the cyclic input were applied to the
main blades only, large control forces on the cyclic
servo actuators would be required.31 By applying the
cyclic control to the flybar and allowing the flybar to
apply a secondary cyclic input to the main blade, the
servo load is significantly reduced.

The flybar is hinged on the main axis to flap
freely and rotate around the main axis while remain-
ing 90° out of phase with respect to main blades.
Therefore, its yaw angle with respect to the body
frame is ��=�+�/2. Its flapping (pitching) angle, �, is
measured with respect to the plane perpendicular to
the main rotor axis. The roll motion of the flybar
changes the angle of attack of the flybar, �fly . How-
ever, one can safely neglect the contribution of this
motion in deriving an expression governing �, be-
cause of the flybar’s small inertia. The roll motion of
the flybar only affects the lift created by changing the
angle of incidence of the main rotor blades. The ro-
tation matrix which relates the flybar position to the
body coordinates of the helicopter is denoted RBF ;
that is,

RBF�e � ẑ� �����e � ŷ� ��e � x̂� �0.

As before, the rotation matrix between the heli-
copter body frame and the inertial frame is RIB . The
rotation matrix relating the flybar frame to the inertial
frame is thus the product of the two: RIF�RIBRBF .

The rotational inertia of the flybar Î is unified as
I f ; this is a reasonable assumption because most of
the flybar mass is concentrated at the tip region.
There are n rotor blades (in our helicopter, n�2):

I f�n�
R1

R2
r2mF dr ,

Î�diag�0 I f I f	 .

The angular velocity of the flybar 
F involves the
velocity of the flybar and the helicopter simulta-
neously; it can be found by computing RIF

T ṘIF :22

�
F� ��RIF
T ṘIF�RBF

T �
B� �RBF�RBF
T ṘBF, (11)


F���
B3 sin ��cos ��
B1 cos ���
B2 sin ���


B2 cos ���
B1 sin ��

B3 cos ��sin ��
B1 cos ���
B2 sin ���

�
�� � �̇� sin �

�̇

�̇� cos �
� . (12)

Note that the flybar velocity can be expressed as the
contribution of the helicopter motion expressed in the
flybar frame and the contribution of the flapping of
the flybar. We will assume that the rotor angular ve-
locity is constant; thus, �̇�� �̇�� .

The external moment applied to the flybar
around the pitch axis is �F2 ; it is mainly created by
aerodynamic lift. To find the total torque, we inte-
grate along the length of the flybar. Since we will only
be interested in the second of these three equations,
we will not consider the first and the third elements
in any detail:

�F���F1
n�

R1

BR2
r dL �F3�T

. (13)

The constant tip loss factor B takes into account the
fact that a finite length airfoil would lose some of the
lift generated due to the wing tip vortex effect.23 This
effect is applied by ‘‘reducing’’ the length of the blade
by the factor of B. Tip loss is often set to B�0.97.23

The lift element dL depends on the angular ve-
locity of the flybar and its angle of attack �fly . The
angle of attack of the flybar will be influenced by the
pilot input �fly and the ratio between the second el-
ement of the angular velocity vector of the flybar 
F2
and �.24 Correction factors �1 and �2 have been
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included to compensate for the simplified aerody-
namics; they will be identified experimentally in
Section 4:

dL� 1
2���r �2a�rmc2dr , (14)

�fly�
�1L7

L5L6
�fly�

�2
F2

�
. (15)

Once the external force, angular velocity, and in-
ertia have been defined, the motion of the flybar can
be described using the Euler equation.

�F�
F� Î
F� Î
̇F , (16)

� �F1

n�
R1

BR2
r dL

�F3

��� 0
�I f
F1
F3

I f
F1
F2

��� 0
I f
̇F2

I f
̇F3

� . (17)

The second of these three equations describes the
flapping motion of the flybar. The small angle ap-
proximation is used for � since it should not exceed
about �25°. For example, if roll motion only is con-
sidered, the second equation of (17) becomes the fol-
lowing:

�̈�cos ��̈�2� sin ��̇�sin2 ���̇2��2�

�
n�2

8
�ac2�B4R2

4�R1
4�

I f
� �1L7L8

L5L6L9
�� sin �

�
�2� �̇��̇ cos ��

�
� . (18)

The above expression is similar to the Bell stabi-
lizing bar equation from a full-scale helicopter.21 In
the absence of aerodynamic forces and external mo-
ments, the flybar behaves as a gyroscope, maintain-
ing its orientation relative to inertial space,23 as
shown in Figure 5. An external disturbance would
upset the helicopter angles � and �, effectively chang-
ing �. This nonzero � acts to apply an appropriate
compensation input to the main blade cyclic control
system to stabilize the helicopter. Figure 6 compares
the behavior of the model with and without the
flybar.
3.5. Creation of Forces and Moments

Once the flybar dynamics have been found, the rest of
the actuator dynamics can be derived. The four inde-
pendent inputs to the rigid body dynamics are the
thrust generated by the main rotor blade T, the mo-
ments created by the main rotor blade around the roll
and the pitch axes (M� and M�), and the yaw
moment M� .

3.5.1. Main Rotor Thrust

The throttle/collective command �o controls the
thrust to the main motor (T) as well as the collective

Figure 5. The stabilizing effect of the flybar. In a hovering
situation, the flybar angle � is zero. If a wind gust or other
disturbance knocks the helicopter out of its equilibrium,
the flybar, which is hinged freely, will continue to rotate in
the same inertial plane. Its angle with respect to the main
blade becomes nonzero, and it will help bring the helicop-
ter back to equilibrium through its action on the cyclic
angle of the main blade.

Figure 6. The roll response of the helicopter with respect
to the roll moment disturbance is compared by simulation
using the analytic model presented in Section 3.6. With the
flybar, the response tends to settle within about 0.3 s.
Simulating the no-flybar condition by setting �=0, the he-
licopter reacts more strongly to the disturbance and takes
longer to settle.
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pitch (�o) of the rotor blades. As the blade pitch in-
creases, more lift is created, and the rotational motion
of the main rotor blade is converted into vertical
thrust. We define �o as the collective pitch angle mea-
sured when the helicopter is at rest. The mechanical
linkages in the collective control system of Figure 4
introduce significant compliance; thus, a second-
order mass-spring-damper model is used to model
the actual collective pitch angle �o while flying:

�̈o�K5�̇o�K6�o�K4•�o . (19)

An adequate torque �m linked to �o is applied to keep
� constant. Sometimes, an electronic throttle gover-
nor is used for this purpose, but mostly an empirical
curve determining the necessary functional relation-
ship between �m and �o is programmed into the radio
transmitter.

The expression for the rotor thrust T near hover
in terms of the collective pitch is obtained from28

T�
n
2

ac��R3�2� B3

3
�o�

B2

2
� � . (20)

This is an expression of the average thrust contribu-
tion about one revolution of the rotor blades; the av-
erage contribution of the cyclic pitch is zero.

3.5.2. Pitch and Roll Moments

The pitch and roll commands vary the cyclic pitch
(�cyc) of the rotor blades around each cycle of rota-
tion, creating different amounts of lift in different re-
gions (as shown in Figure 7). These differing amounts
of thrust create a moment around the rotor hub, and
can thus create pitch and roll moments on the
helicopter.

The moment created by a roll cyclic input is de-
rived by summing the forces around a revolution and
along a rotor blade. As per Figure 7, a positive pitch
input �� produces a roll moment M� , but acts as a
pitch moment M� due to the precession effect.23 For
clockwise rotating blades, this effect is taken into ac-
count by adding �/2 to the sine and cosine functions
in the argument of the integral:

�M�

M�
�� n

2� �
0

2��
0

BR
r� �sin� ��

�

2 �
cos� ��

�

2 � � dLm d� .

(21)
Note that the above expression represents the aver-
age moment created by the rotor blades around a
revolution. We assume that the rotor angular velocity
is constant; thus ���t .

The lift element equation is similar to the flybar
lift used in Eq. (14):

dLm� 1
2���r �2a�cycc dr . (22)

Geometrically, the cyclic pitch angle �cyc is af-
fected by two different kinds of inputs as shown in
Figure 4: a direct input by the pilot and an indirect
input from the flybar. The geometry of the hub link-
ages indicate that �cyc will be the weighted sum of
these two inputs. Aerodynamically, similar to the fly-
bar, the angle of attack of the main blade will also be
influenced by the ratio between the second element of
the angular velocity vector of the main blade 
M2
and �.24

To find the angular velocity of the main rotor
blade 
M2 , we use a similar derivation method to
that of the flybar case. The rotation matrix which re-
lates the main blade position to the body coordinates
of the helicopter is denoted RBM . Since the main
blades do not flap, the pitch angle is zero. Also the roll
angle is neglected:

Figure 7. The top view of the helicopter. The lift distribu-
tion on the rotor disc when a forward cyclic (pitch for-
ward) input is applied. Viewed from above, when the
blade rotation is clockwise and a forward cyclic input is
applied, there will be less lift on the left side and more lift
on the right side due to the cyclic pitch change. The result-
ing moment is applied to the main axis 90° later due to the
precession effect. Since the blade spins clockwise, the
smaller lift on the left side applies a pitch down moment
as a result. The helicopter will then pitch forward.
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RBM�e � ẑ� ����e � ŷ� �0e � x̂� �0.

The rotation matrix relating the main blade frame
to the inertial frame is RIM�RIBRBM . Similar to the
flybar case, correction factors �3 and �4 were added
to compensate for the simplified aerodynamics; they
will also be determined in Section 4.

Therefore,

�
M� ��RIM
T ṘIM�RBM

T �
B� �RBM�RBM
T ṘBM ,


M2��
B2 sin ��
B1 cos � ,

�cyc��3� L3

L1�L2�L3�
�rm�

L2L4

L1�L2�L3�
� ���4


M2

�
.

The cyclic angle �cyc , and hence the pitch and roll mo-
ments, depend on the pitch and roll inputs through
�rm as well as on the flybar flapping angle �.

3.5.3. Yaw Moment

The tail rotor on a helicopter is used to counteract the
yaw moment created by the main rotor blades and to
give a yaw directional control; thus, altering the
amount of pitch on the tail rotor blades can create
more or less total yaw moment for the helicopter. The
motor yaw torque applied to the helicopter body by
the motor is denoted �m and is modeled as propor-
tional to the throttle/collective input �o :

�m��Km•�o . (23)

The yaw command �� is the collective pitch of the tail
rotor blades. There is no cyclic input for the tail rotor
blades, only a collective pitch angle. The angular ve-
locity of the tail rotor blades is related to the angular
velocity of the main rotor blades through a constant
K� . This is realized by a simple gear connection or a
pulley:

�T�K�•� .

The thrust generated by the tail rotor is found in a
similar manner to the thrust of the main rotor (20),
replacing with the values from the tail rotor where
appropriate:

TT�
n
2

aTcT��RT
3 �T

2 � B3

3
���

B2

2
�T� . (24)
The subscripts T indicate that the values pertain to
the tail rotor. The thrust of the tail rotor times the dis-
tance LT between the main and tail rotor axes creates
the yaw moment on the helicopter to counteract the
spin of the blades.

In addition, there is a damping term in the equa-
tion for M� due to the presence of an electronic gyro
on the model helicopter. A simple linear model Kg
B3
is used, although more sophisticated (PI controlled)
gyros are now available:32

M��TTLT�Kg
B3 . (25)

3.6. Complete Model

A block diagram of the complete mathematical model
of the helicopter is shown in Figure 8. The inputs � are
the four stick positions of the model helicopter, and
the outputs q are the rigid body positions, orienta-
tions, and velocities. Internal variables include the ro-
tor orientation �, the flybar flapping angle �, and the
collective pitch angle �o . The following set of differ-
ential and integral equations relate the input to
output:

�̈o�K5�̇o�K6�o�K4•�o , (19)

�m��Km•�o , (23)

T�
n
2

ac��R3�2 � B3

3
�o�

B2

2
� � , (20)

TT�
n
2

aTcT��RT
3 �T

2 � B3

3
���

B2

2
�T� , (24)

q��xI yI zI ẋ I ẏ I ż I � � � 
B1 
B2 
B3	T,

q̇�� vI

1
m

RIBfB

�
B

I�1��B�
B�I
B�

� , (5)

fB�� �DFx

�DFy
�TT

�DFz
�T

��RIB
T � 0

0
mg

� , (3)
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Figure 8. Block diagram of the helicopter model. The pilot inputs are � t ,�� ,�� ,�� and the outputs are the position,
orientation, and velocity of the helicopter. Internal variables include the rotor orientation �, the flybar flapping angle �,
and the collective pitch angle �o .
M� �
B3 sin ��cos ��
B1 cos ���
B2 sin ���
�B��M��T�r

M���m

� , (4)

�M�
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�
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nac��2

4� �
0

2��
0
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�

2 �
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�

2 � � r3�rm dr d� ,

(21,22)

M��TTLT�Kg
B3 , (25)

�cyc�����
L8
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��� sin ���� cos ��, (9)

�fly�����
L8
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��� cos ���� sin ��, (10)
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�
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���r �2a� �1L7

L5L6
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�
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� � c2 dr , (14,15,17)

���
�
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,

(8)

�T��
T�
viT

RT�T
.

This set of system equations cannot be easily
simulated because the flybar flapping angle � is a
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Figure 9. A typical pitch response simulation based on the nonlinear flybar model. Note that the flybar-disk tilt angle,
�max sin �max , tends to ‘‘subtract’’ the pilot input by lagging motion. It is magnified by 10� for clarity.
function of the rotor angle �, but the roll moment Eq.
(21) cannot be solved directly unless � is expressed
explicitly in terms of �. For simulation purposes, we
approximate the flapping angle � as a sinusoidal
function around each revolution:

���max cos����max�, (26)

where

�max� max
0���2�

����,

�max�arg max
0���2�

����.

Using this approximation, the integrals in Eq. (21) can
be computed analytically:

M��
n��2acR4B4

16L1�L2�L3� � �3� L3L8

L9
���L2L4�max cos �max�

��4L1�L2�L3�

B1

� � ,
M��
n��2acR4B4

16L1�L2�L3� � �3� L3L8

L9
���L2L4�max sin �max�

��4L1�L2�L3�

B2

� � .

The system model can thus be reduced to a set of
purely differential equations. A Simulink block dia-
gram of the model has been built, and is used to com-
pare the model with data taken as described in Sec-
tion 4. In the simulation, the parameters �max and
�max are determined for each rotor blade revolution.
The � and 
B terms in the M� and M� pitch and roll
moments serve as damping terms in the rigid body
equations, increasing the stability of the system from
the double-integrator model. Figure 9 shows typi-
cally how �max reacts to a pilot input.

In Section 4, we will use this mathematical
model, together with experimental data, to estimate
the physical parameters of the helicopter model along
with the correction factors used in the model.
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4. SYSTEM IDENTIFICATION

The main purpose of the system identification is to
find physical parameters used in the previous math-
ematical modeling section. Because of the complexity
of the nonlinear model, the system identification is
performed on a SISO basis, using specially-built
stands to restrict the motion of the helicopter to one
degree of freedom. Four different stands were built to
isolate the fuselage motion into a set of simple SISO
systems. For example, for pitch motion, only the pitch
cyclic input was excited. All other inputs including
collective, roll cyclic, and tail rotor control were fixed
at a near trim input condition. The stand only al-
lowed pitch motion, and therefore only the pitch
angle was measured, and the transfer function from
the roll cyclic to the pitch motion was identified using
standard system identification techniques. Math-
ematically, the stand makes the roll and yaw inertia
nearly infinite as the large inertia of the stand is
added to the inertia of the helicopter, effectively pre-
venting the motion in roll and yaw axis.

Going back to the full nonlinear model derived in
Section 3, the nonlinear equations were restricted to
the SISO case (for example, pitch) and linearized
around the hover condition to determine the continu-
ous transfer functions for each degree of freedom.
The coefficients of this transfer function are then com-
pared to the identified SISO linear to determine the
unknown parameters. Although other researchers
have used MIMO identification techniques1,6 to find
stability derivatives, SISO identification is better
suited for our purpose as we are interested in iden-
tifying actual physical parameters.

Similar to the approach presented in ref. 33, the
system identification is performed in the discrete-
time domain using input–output data taken by flying
the helicopter on the stands. The coefficients of a
discrete-time transfer function of the same order as
the continuous-time transfer function are identified
using the direct least squares method. The transfer
function is then converted into state space form,
where the matrix logarithm method with zero-order
hold is used to directly convert into the correspond-
ing continuous-time transfer function. By keeping all
the parameters numerical, we can avoid dealing with
the nonlinear coefficients which arise when the
continuous-time transfer function is converted into
the equivalent discrete-time transfer function
analytically.

A Polhemus sensor34 is used to measure the po-
sition and orientation of the helicopter: full six
degree-of-freedom information (xI ,yI ,zI ,� ,� ,�) is
output data are taken at 50 Hz for a total of approx-
iavailable at 50 Hz. As shown in Figure 10, the sensor
consists of a board connected to the PC’s ISA slot, a
transmitter, and a receiver. The transmitter is fixed to
the earth and sends out a magnetic field via three or-
thogonal inductors. The receiver, fixed to the helicop-
ter, senses the strength and the orientation of the
magnetic field and sends this information back to the
PC. The sensor has a static accuracy of 0.5 in. rms for
the xI , yI , and zI position and 2 degrees rms for the
�, �, and � orientation. To obtain a reliable SISO ID
result, we found that it is important to carefully de-
sign a stand which allows the helicopter to move in
one direction for each ID session. Four different
stands were used separately for each degree of free-
dom; they are shown in Figure 11. Each stand was
constructed to be sturdy yet light-weight to minimize
the influence of the stand dynamics. The input and
output data are taken at 50 Hz for a total of

Figure 10. A sketch of the experimental setup for the sys-
tem identification of the helicopter’s physical parameters.
The helicopter is controlled through the radio transmitter
by a human pilot. The computer is used to record the in-
put data from the transmitter and the output data from the
sensor simultaneously.

Figure 11. Separate identification was done for each de-
gree of freedom. From top left, clockwise, they are pitch,
roll, yaw, and heave identification.
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approximately 40 s duration for each degree of free-
dom. Due to the difficulty of maintaining an exact
trim at the beginning of data collection, the helicopter
is simply disturbed around an upright trim position.
However, applying the system identification algo-
rithm at this point could lead to an incorrect result
due to the possibility that the collected data is dis-
turbed around a nonzero trim. A linear identification
model should be based on an assumption that the col-
lected data is disturbed exactly from trim. To solve
this problem, we first define the collected input and
output values as Xc, trim values as X̄ , and disturbed
data as X̂ . We can then write

Xc�X̄�X̂ . (27)

Although finding the exact value of X̄ can be difficult,
since the helicopter is disturbed around a trim with
upright position, the average of Xc should be nearly
equal to X̂ :35

X̄�
1
N �

k�1

N

Xc�k �. (28)

The above should be even more true when the data is
collected for a sufficiently long time. We can therefore
obtain X̂ from (27) and (28) for our identification:

X̂�Xc�
1
N �

k�1

N

Xc�k �. (29)

Once the input–output data have been taken and
stored for the isolated single DOF motion, the data is
preprocessed using Eq. (29). The system identifica-
tion algorithm is then run to estimate the discrete-
time transfer function coefficients. The initial condi-
tion of the system is also estimated using a least-
squares method. The input data and the estimated
transfer function are used to simulate the output
data, and the simulated and actual output are com-
pared. Ten independent identification sessions were
run with similar results; the numerical results in Sec-
tions 4.1–4.3 are the results of one of these sessions.

4.1. Pitch and Roll Identification

The main purpose of the pitch and roll identification
is to find the inertia terms Ixx and Iyy used in Eq.
(2),although the coefficients �1 and �2 must also be
determined. The derivation will be done here for the
roll equation; the pitch equations are similar. First, we
substitute the approximation ���max cos(���max)
from Eq. (26) into the roll-restricted equation for the
flybar flapping angle � given by (18), resulting in the
following expression:

�cos ��̈�2� sin ��̇�sin2 ��max cos����max��̇
2

�P1P2�1�� sin ���2P1�max sin����max�

�
�2P1

�
�̇ cos � ,

where, to simplify the notation somewhat, the terms
P1 and P2 are defined as follows:

P1�
n�2

8
�ac2�B4R2

4�R1
4�

I f
,

P2�
L7L8

L5L6L9
.

Note that P1 and P2 can be determined by direct mea-
surements of helicopter parameters. The lift curve
slope a is taken to be 6 (ref. 23) and the flybar inertia
I f is computed using basic physics and the mass of the
flybar.

Now, we collect terms in sine and cosine from the
roll equation, resulting in

C1 cos����max��C2 sin����max�

�C3 cos ��C4 sin � , (30)

where, again, new notation has been introduced to
simplify the expression:

C1���max sin2 ��̇2,

C2���2P1�max ,

C3��̈�
�2P1

�
�̇ ,

C4��2��̇��1P1P2�� .

Applying the trigonometric identity,

A1 cos ��A2 sin ���A1
2�A2

2 sin�����,

��arctan
A1

A2
,
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Eq. (30) can be rewritten as

�C1
2�C2

2 sin� ���max�arctan
C1

C2
�

��C3
2�C4

2 sin� ��arctan
C3

C4
� ,

which implies that the magnitude and phase terms on
both sides of the equation should match:

C1
2�C2

2�C3
2�C4

2,

��max�arctan
C1

C2
�arctan

C3

C4
.

Our system ID experiment suggests terms in-
volving �̈2,�̈�̇ , �̇4 and their coefficients are small in
general. Based on this fact, solving for �max

2 yields the
following expression:

�max
2 �� �1P2

�2
��� 2

�4
�1P2�

�2
2P1

���̇�� 1

�2
�

4�2

�2
2P1

2� �̇2.

Neglecting 1/�2, which is also small, we get a perfect
square, and use the approximation

�max�
�1P2

�2
���

2�

�2P1
�̇ .

Next, we need to solve for �max . Inspecting the
magnitudes and signs of C1–C4 , we can determine
that, for roll motion,
arctan
C1

C2
�� ,

arctan
C3

C4
�0,

and, therefore,

�max�� .

We now substitute �max and �max into the expres-
sion for M� from (21),

M��� �3P3L3L8

L9
�

�1�3

�2
P2P3L2L4� ��

�� 2�3P3L2L4�

�2P1
�

�4P3L1�L2�L3�

� � �̇ ,

(31)

where

P3�
n�ac�2R4B4

16L1�L2�L3�

can be measured directly.
We now have an analytic coefficient for a simpli-

fied linear transfer function describing SISO roll dy-
namics:
��s �

���s �
�

��3P3L3L8 /L9���1�3 /�2�P2P3L2L4�1/Ixx

s�s��2�3P3L2L4�/�2P1��4P3L1�L2�L3�/��1/Ixx�
. (32)
We now have a transfer function with parameters
to be identified by comparing with a numerical iden-
tification. However, the expression contains not only
Ixx , but also �. We therefore need to determine ap-
propriate � before finding Ixx . This task is not
straightforward because �, Ixx , Iyy and the 6-DOF
simulation all depend on each other. One can never-
theless find a suitable set of parameters to obtain a
reasonable solution.

An ID was carried out to obtain a discrete transfer
function H�(z) and H�(z), with two poles and two
zeros. Before ID, the roll output data was filtered us-
ing a first-order low-pass Butterworth filter with the
cutoff frequency at 1.5 Hz:

H��z ��
0.559z2

z2�1.81z�0.816
.

This transfer function is then converted into an
equivalent continuous transfer function H�(s), using
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Figure 12. The comparison between the simulated outputs based on the identified discrete time transfer functions and
the actual outputs from the experiment, given the identical input command history separately. The initial values for the
simulation was also determined with least squares method using the first 50 points from the experiment.
a matrix logarithm method with zero-order hold. Ig-
noring small coefficients for the numerator and as-
suming the pole at s��0.503 to be at the origin,

��s �

���s �
�

0.559s2�45.8s�1540

s2�10.2s�4.85
�

1540
s�s�9.65�

.

We apply the same technique for the pitch mo-
tion; the pitch output data was filtered using a first-
order low-pass Butterworth filter with the cutoff fre-
quency at 1.0 Hz:

H��z ��
0.234z2

z2�1.92z�0.922

��s �

���s �
�

0.234s2�18.2s�610

s2�4.04s�0.946
�

610
s�s�3.80�

.

The inertia terms can now be calculated by ap-
plying the identified numerical values into (32).
However, we now have two equations for one un-
known and they do not necessarily yield a single so-
lution. We therefore use averaged values for each mo-
tion, to determine

Ixx�0.137 kg·m2,

Iyy�0.221 kg·m2.

Meanwhile, a reasonable match is achieved be-
tween the true data and H(z), as shown in Figure 12.
For the roll motion ID, the mean-squared error be-
tween the actual output �a and the simulated output
�s from the estimated transfer function is computed
as follows:

rms error��1
N �

i�1

N

��a� i ���s� i ��2.
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Typical values for this error are on the order of a few
degrees, which is of the same order as the accuracy of
the sensor.

To determine the validity of the single-axis iden-
tification, an experiment was performed in which
both pitch and roll motions were commanded by the
pilot. The input–output data were collected, and the
input data were used with the single-input transfer
functions to simulate both the pitch and roll outputs.
The results from this experiment are given in Figure
13. There is some coupling between the pitch and roll
motions, but it does not overwhelm the dominant
single-input effects. A sampling of the mean-squared
errors is given in Table I.

Figure 13. The system identification result is applied to
the pitch and roll motion simultaneously. The figure
shows some coupled responses through the discrepancy
between the true and the simulated result.

Table I. A sampling of the mean-squared errors between
the actual and simulated outputs using the identified
transfer functions H�(z), H�(z), Hz(z), and H�(z). Al-
though the errors are slightly larger in the coupled experi-
ment, they are still small enough to give some degree of
confidence in the identified transfer function.

Experiment RMS error

pitch SISO 2.9°

roll SISO 3.3°

yaw SISO 13°

heave SISO 0.22 m

pitch coupled 2.9°

roll coupled 5.4°
4.2. Yaw Identification

By comparing H�(z) with a second-order yaw dy-
namic model from Eq. (2), we can obtain parameters
such as Izz and Kg which are uniquely related to the
yaw dynamics. We first rewrite the yaw dynamic
equation for hover by considering the yaw moment
input M� and yaw angle output � only:

Izz
̇B3�M���m�M��
�Kg
B3��m ,

where we have defined M��
as TTLT . For the reaction

moment �m ,

�m��Km•�o ,

the proportional constant Km can be found by directly
measuring �m using a small spring scale with respect
to several different values of �o , and results in

Km�0.178 N·m/deg.

We then linearize about hover, using the refer-
ence value ���0 when there is no yaw moment, to
get

Izz�̈�M��
�Kg�̇ ,

��s �

M��
�s �

�
1/Izz

s�s�Kg /Izz�
.

Before ID, the output data was filtered using a
fifth-order low-pass Butterworth filter with the cutoff
frequency at 5 Hz. After using the identification pro-
cedure similar to the roll and pitch case, and ignoring
the near-infinite zero at s��104 and assuming the
pole at s��0.0245 to be at the origin,

��s �

M��
�s �

�
0.289s�30.1

s2�12.3s�0.301
�

30.1
s�s�12.3�

.

We can then find the parameters,

Izz�0.0332 kg·m2,

Kg�0.408 kg·m.
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Based on the Equation (25), we first need to find
the relationship between �� and M��

to be able to use
the yaw dynamics model given above. We ignore the
effect of �T , then directly measure the yaw moment
per several different values of �� using a simple
spring scale. That is,

M��
�0.0474 �N·m/deg	�� .

Table II. List of parameters identified using the system
identification method for ten independent runs. Average
and standard deviation values are reported.

Parameter Average values with standard deviation

Ixx , Roll Inertia 0.137 � 0.0228 [kg·m2]

Iyy , Pitch Inertia 0.221 � 0.0478 [kg·m2]

Izz , Yaw Inertia 0.0323 � 0.002 34 [kg·m2]

Kg , Gyro Gain 0.400 � 0.0104 [kg·m]

K1 0.886 � 0.0954 [N·s·kg−1·m−1]

K2 1.12 � 0.250 [N·kg−1·m−1]

K3K4 442 000 � 73 200 [N2·kg−2·deg−2]

K5 27.7 � 1.20 [N·s·kg−1·deg−1]

K6 5760 � 302 [N·kg−1·deg−1]
4.3. Heave Identification

We can also simplify the heave motion dynamic
model from Eqs. (2) and (20) for the hovering condi-
tion. Selecting a nominal value of �o at hover gives
the equation

z̈�K1ż�K2z�K3�o , (33)

where,

K1�coefficient for simplified � ,

K2�coefficient for ground effect,

K3�
nac��R3�2B3

6m
.

Since our identification was done near ground
environment, the approximated ground effect, K2z ,
was not negligible. Further investigations indicated
Table III. The following values are used for the simulation.

Parameter Value Parameter Value

a 6 LT 0.635 m

� [0 3 0.3 1] L1 0.0190 m

B 0.97 L2 0.0119 m

c 0.044 m L3 0.0098 m

c2 0.038 m L4 0.0250 m

g 9.8 m/s2 L5 0.0177 m

I f 0.00128 kg·m2 L6 0.0110 m

Ixx 0.137 kg·m2 L7 0.0234 m

Iyy 0.221 kg·m2 L8 0.0175 m

Izz 0.0323 kg·m2 L9 0.0266 m

Kg 0.400 kg·m m 1.36 kg

Km 0.178 N·m/deg R 0.508 m

K1 0.886 N·s·kg−1·m−1 R1 0.15 m

K2 1.12 N·kg−1·m−1 R2 0.21 m

K3K4 442 000 N2·kg−2·deg−2 � 1.2kg/m3

K5 27.7 N·s·kg−1·deg−1 � 1190 RPM

K6 5760 N·kg−1·deg−1
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that there was significant mechanical compliance in
the collective pitch control system, and Eq. (19) was
added to the system model:

�o�s �

�o�s �
�

K4

s2�K5s�K6

.

Combining the equations (19) and (33), we ar-
rived at a fourth-order continuous-time transfer func-
tion;

Z�s �

�o�s �
�

K3K4

�s2�K1s�K2��s2�K5s�K6�
.

Similar to the yaw case, we identified the discrete
transfer function Hz(z) with four poles and four ze-
ros, then converted this into a continuous transfer
function. Before ID, the input data was filtered using
a third-order low-pass Butterworth filter with the cut-
off frequency at 5 Hz. The output data was filtered
with first order at 10 Hz. Ignoring the small coeffi-
cients in the numerator,

Z�s �

�o�s �
�

�0.887s3�129s2�10131s�326 000

s4�29.6s3�5030s2�4740s�5070

�
326 000

�s2�0.942s�1.01��s2�28.7s�5004�
.

4.4. Identification Summary

Note that one could simply use the identified transfer
functions from the roll, pitch, yaw, and heave iden-
tification directly without going through the simpli-
fication presented in the last sections. However, those
ignored or neglected poles and zeros basically repre-
sent unmodelled dynamics not included in Eq. (2).
Therefore, those terms do not guarantee the useful-
ness for all operating conditions.

Standard deviations for identified parameters
were determined by repeating the identification ses-
sion ten times. Input and output data were collected
for 10 min, then divided into ten sections for ten dif-
ferent ID sessions. Table II summarizes all the param-
eters identified.
5. COMPARISON BETWEEN THE NONLINEAR
AND LINEAR HELICOPTER MODEL

As mentioned in Section 2, there exist a number of lin-
ear helicopter models that can adequately represent
helicopter dynamics near hover condition. In this sec-
tion, we will compare our nonlinear model with the
linear model presented in ref. 1, and demonstrate
how the nonlinear model is able to represent the dy-
namics of the helicopter at angular positions well be-
yond the nominal hover region. The values used in
the simulation are given in Table III. Note the model
in ref. 1 is based on a Yamaha R-50 industrial helicop-
ter with a 10-foot rotor span, which is much larger
than our Ikarus helicopter with a 3-foot rotor span.
However, we can still see the fundamental difference
between the two models in the following.

Both starting from a hover condition, we apply a
pitch input �� for 1 s to increase the pitch angle � to
about 45°, then a yaw input �� is applied for 1 s to
rotate the helicopter 90° clockwise. All other inputs
remain constant. As shown in Figure 14, after those
two inputs are applied, the roll angle � is now near
45° and the pitch angle is now near zero. Therefore,
due to the nonlinearity involved with the rigid body
dynamics, there is an ‘‘angle-reversal’’ between � and
�. When similar inputs are applied to the linear
model by ref. 1, such coupling effect is almost absent.
As shown in Figure 15, the roll and pitch angles
change only little with respect to the changing yaw
angle. In fact, this result is common to all other linear
helicopter models. This comparison implies the ne-
cessity of a nonlinear model when a helicopter is per-
forming aggressive maneuver, which often requires
large control inputs and large deviations from the
hover condition.

6. CONCLUSIONS

In this paper, we have derived a complete mathemati-
cal model for a model-scale helicopter robot, experi-
mentally identified the key parameters of the model,
and verified the model through simulation. The main
contribution of the work is the model of interaction
between the flybar and the main rotor blade. A flybar
is typically used on model-scale helicopters to aug-
ment the stability and aid in actuation. Understand-
ing the dynamics of the rotor hub is an essential part
of modeling a helicopter robot. The nonlinear flybar
modeling presented should provide an insight into
the delicate mechanism which should provide a way
to improve the existing mechanism for better stability
and control characteristics for different helicopter
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robots. Furthermore, when the robot is maneuvered
beyond near hover attitude with large cyclic control
input, significant coupling between each Euler angle
demands a nonlinear modeling to better predict the
motion of the helicopter.

The result of this work will be of interest to re-
searchers and developers working in the increasingly
important area of small, autonomous aerial vehicles.

7. NOMENCLATURE
a main rotor lift slope

aT tail rotor lift slope
B tip loss factor

c,c2 ,cT main/flybar/tail blade chord length
DFx ,y ,z

fuselage profile drag forces along body coordinates
dL ,dLm differential lift elements for flybar and main rotor

blade
dr differential length elements for flybar and main rotor

blade
f B external force applied along body coordinates

Figure 14. The simulated angular response of the Ikarus
helicopter with respect to our nonlinear model when pitch
and yaw input are applied sequentially. Even when there
is no roll input, the helicopter is rolled 45° after the inputs
are applied.
g gravitational acceleration
hr distance between rotor disk and CG, parallel to rotor

axis
Î rotational inertia matrix of flybar

I3�3 3�3 identity matrix
I f flybar moment of inertia in flapping

Ixx ,yy ,zz ,xz fuselage rotational moments of inertia
I rotational inertia matrix of helicopter

Kg gyro gain for tail rotor
Km motor reaction torque gain
K� proportional constant relating � to �T

K1 ,. . . ,K6 proportional constants used for identification
�r distance between rotor axis and CG, perpendicular to

rotor axis
LT distance between tail rotor axis and CG

L1 ,. . . ,L9 linkage lengths in rotor hub assembly
m helicopter total mass

mF Flybar mass per length
M � ,� ,� net moments on helicopter

M �� yaw moment due to pilot input
n number of main/flybar/tail blades
r position along the main rotor blade

Figure 15. The simulated angular response of the
Yamaha R-50 helicopter with respect to the linear model of
ref. 1 when pitch and yaw inputs are applied sequentially.
There are only slight couplings between each angle as per
numerical identification. Required large coupling effects
between the roll and pitch angles are absent.
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R length of main rotor blade
RT length of tail rotor blade
R1 distance between rotor axis and flybar tip
R2 distance between rotor axis and flybar root

RIB ,BF ,IF rotation matrices between inertial, body, and flybar
frames

RIB ,BM ,IM rotation matrices between inertial, body, and main
rotor frames

T net thrust generated by rotor
Tm torque applied by motor
TT tail rotor translational lift force
v i induced air velocity through rotor disk
v I helicopter velocity with respect to inertia coordinates

vB , v̇B linear body velocity and acceleration
xB ,yB,zB helicopter position in body coordinates
xI ,yI ,zI helicopter position in inertia coordinates

Xc collected input and output data
� flybar flapping angle

�max maximum value of flybar flapping angle
�cyc cyclic input displacement
�fly cyclic input to flybar

�� ,�� ,�� roll, pitch, and yaw command input
�o throttle/collective command input

�fly angle of attack of flybar
�o collective pitch angle of main rotor blades

�cyc cyclic pitch angle of a main rotor blade
� inflow ratio for main rotor

�T inflow ratio for tail rotor
� air density

�B external moment applied along body coordinates
�F moment applied to flybar

�,�,� helicopter angular position

B ,
̇B angular velocity and acceleration of helicopter


F angular velocity of flybar
� main rotor angular velocity

�T tail rotor angular velocity
� transformation matrix between 
B and ��̇ , �̇ ,�̇	T

� main blade orientation angle
�max main blade orientation angle where �max is detected
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