
Performance Evaluation of A New Algorithm for the
Detection of Remote Homologs With Sequence Comparison
Maricel G. Kann1 and Richard A. Goldstein2*
1Department of Chemistry, University of Michigan, Ann Arbor, Michigan
2Biophysics Research Division, University of Michigan, Ann Arbor, Michigan

ABSTRACT A detailed analysis of the perfor-
mance of hybrid, a new sequence alignment algo-
rithm developed by Yu and coworkers that com-
bines Smith Waterman local dynamic programming
with a local version of the maximum-likelihood
approach, was made to access the applicability of
this algorithm to the detection of distant homologs
by sequence comparison. We analyzed the statistics
of hybrid with a set of nonhomologous protein
sequences from the SCOP database and found that
the statistics of the scores from hybrid algorithm
follows an Extreme Value Distribution with lambda
�1, as previously shown by Yu et al. for the case of
artificially generated sequences. Local dynamic pro-
gramming was compared to the hybrid algorithm by
using two different test data sets of distant ho-
mologs from the PFAM and COGs protein sequence
databases. The studies were made with several score
functions in current use including OPTIMA, a new
score function originally developed to detect re-
mote homologs with the Smith Waterman algo-
rithm. We found OPTIMA to be the best score func-
tion for both both dynamic programming and the
hybrid algorithms. The ability of dynamic program-
ming to discriminate between homologs and nonho-
mologs in the two sets of distantly related sequences
is slightly better than that of hybrid algorithm. The
advantage of producing accurate score statistics
with only a few simulations may overcome the small
differences in performance and make this new algo-
rithm suitable for detection of homologs in conjunc-
tion with a wide range of score functions and gap
penalties. Proteins 2002;48:367–376.
© 2002 Wiley-Liss, Inc.
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INTRODUCTION

Over the past few years scientist have gathered an
enormous number of protein sequences from the various
genome projects. However, we are generally interested in
knowing more than the sequence; we want to know the
structure, function, and metabolic role of those newly
sequenced proteins. Experimental, and more recently,

computational techniques can provide us with information
that can help us to solve this one aspect of the puzzle of life.

One of the most popular first steps in such a process is
called sequence comparison. Its popularity is due to the
fact that it can provide a fair amount of information in a
few seconds at low cost to the user. In this technique, the
sequence of the target protein is aligned and compared
with those of all the other sequences in various protein
databases. An alignment score S is generally computed by
using an expression such as

S � �
i,j

ni, j sim�i, j� � ngap�I d � ngap�E e (1)

where ni,j refers to the number of times that amino acid
type i is aligned with amino acid type j, ngap�I is the total
number of gaps in the alignment, ngap�E is the total
number of residues in each gap beyond one, and sim(i, j), d,
and e represent the contribution to the score for any amino
acid match or mismatch, initialization of a gap, and
extension of a gap, respectively; sim(i, j) is known as the
score function, substitution matrix, or exchange residue
matrix, whereas d and e represent the gap penalties. This
linear representation of the gap penalties is referred to as
an affine gap penalty. sim(i, j) can be interpreted as
proportional to the log of the probability for such a pair of
amino acids to be found in a set of homologs compared with
what would be expected at random.1,2 Considering the
various aligned positions as statistically independent, the
resulting total score then can be seen as representing the
log of the probability of the entire set of aligned amino
acids for a pair of homologous proteins, again relative to
what would be expected at random.

Proteins in the database with strong sequence similari-
ties to the target protein likely represent homologous
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proteins, that is, related by common ancestry to the target
protein. The identification of homologous proteins can
provide a wealth of information about the target protein.
To identify homologies, it is necessary to identify matches
yielding high scores or better yet, scores with a low
probability to arise by chance alone. To make this discrimi-
nation, we require an accurate statistical model of the
distribution of scores from alignments of nonhomologous
protein pairs.

One of the standard methods for sequence comparison is
the local dynamic programming (LDP) algorithm devel-
oped by Smith and Waterman.3 This algorithm finds the
highest scoring alignment for the pair of sequences given
the score function and returns this maximum score. For
this method, the statistics of random scores for the case of
alignments without gaps has been studied4–6 and the
probability p(Sr � x) of a score Sr generated by a nonhomolo-
gous pair of proteins being larger than any particular score
x can be well represented by a Gumbel or Extreme Value
Distribution (EVD)

p�Sr � x� � 1 ��
� �

Sr

��x�dx � 1 � exp� � KMNe � �x� (2)

where M and N are the lengths of the two sequences, �
represents the scale characterization parameter, and K is
related to the EVD’s localization parameter.7 For those
alignments where gaps are allowed, of particular rel-
evance when homology is distant, there is no such theory.
It has been shown, however, that the distribution of
random scores for alignments with gaps can still be
approximated as an EVD.8 To describe the EVD distribu-
tion, it is necessary to estimate the parameters � and K for
each choice of score function and gap penalty. Estimation
of � is particularly difficult and requires the simulation of
thousands of alignments, a computationally intensive
task.9 Generally, these parameters are precalculated for
certain choices of the scoring system, allowing commonly
used search engines such as BLAST6,10 to estimate the
statistical significance of alignment scores rapidly. How-
ever, precalculation limits these methods, to a predeter-
mined set of score functions and gap penalties. This is
especially problematic for programs such as PSI-
BLAST11,12 where the score matrix adjusts during the
procedure, as well as for any attempt to use a wider range
of gap penalties.

In the LDP algorithm, information about suboptimal
alignments is lost regardless of how close to the optimal
they are. To overcome this problem and potentially im-
prove our ability to discriminate between homologs and
nonhomologs, it is possible to calculate the score for each
alignment and sum, rather than optimize, over all possible
alignments. This procedure corresponds to calculating the
probability of the set of aligned amino acids occurring in a
pair of homologous proteins integrated over all possible
alignments. This probabilistic approach has been used for
comparison of protein sequences13–16 and structures.17

The major disadvantage of the probabilistic approach is
that the null distribution of random scores has not yet

been characterized, making the significance of the scores
difficult to estimate.

Yu and coworkers18,19 recently developed a hybrid be-
tween the probabilistic approach and dynamic program-
ming. The new algorithm, which we refer to as hybrid, first
sums over all alignments ending in any given pair of amino
acids and then assigns the final score to that of the
maximum sum. In this way, the score represents the
integral over the set of alignments ending in one particular
pair of aligned amino acids, with this pair chosen to
maximize the resulting score. Their theory predicts that
the scores obtained with the hybrid method will satisfy the
EVD distribution with parameter � asymptotically ap-
proaching one for longer sequences. This prediction was
verified numerically for certain score functions for an
artificially created set of random sequences with fixed
length and composition. Real sequences have different
compositions as well as correlations between the amino
acids found in various locations. To provide a useful
algorithm, the hybrid algorithm’s well-characterized score
statistics must extend to pairs of nonhomologous protein
sequences from the databases. In this article, we repro-
duce the results for an artificial data set and extend the
study to searches on real biological sequences. We show
that the statistics for nonhomologous biological sequences
still obeys EVD statistics with asymptote � � 1 as pre-
dicted.

The hybrid alignment’s well-characterized statistics and
its ability to reproduce the null score statistics for different
score systems with only a few simulations make the hybrid
method attractive for searching large protein sequence
databases. These findings prompt the question of whether
the performance for the detection of distant homologs of
hybrid algorithm is comparable to that of local dynamic
programming with affine gap penalties. To answer this
question, we compared the two algorithms by using vari-
ous score schemes, finding only slightly lower performance
in the task of detecting distant homologs for the hybrid
algorithm.

The choice of score function and gap penalties is crucial
in protein sequence comparison regardless of the algo-
rithm in use. Because both the alignments and the final
scores depend on the score system used, the performance
of both algorithms was tested for two different databases
with a wide range of score matrices and gap penalties. We
found OPTIMA,20 a score function originally developed to
detect distant homologies with local dynamic program-
ming, to be the best score function for both algorithms in
both data sets.

MATERIALS AND METHODS
Database Preparation

The hybrid algorithm’s null statistic has been studied
analytically and numerically by Yu and coworkers18,19 by
using a set of artificial randomly generated sequences. The
question of whether the null models will still be applicable
when using real sequences is still untested. To reproduce
the results of Yu et al., we prepared 100,000 random
synthetic sequences of length 300 each, with average
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compositions based on the observed distribution of amino
acids tabulated by Robinson and Robinson.21 To describe
the statistics of alignments scores generated with random
nonhomologous pairs of biological proteins, we chose a test
set of 122 sequences pairs from SCOP database release
1.5322 with lengths between 200 and 600 residues in which
each member of the pairs belong to a different fold.
Therefore, each pair of protein sequences can be assumed
to be nonhomologous.

When comparing the performance of the hybrid algo-
rithm with LDP, we focused on those sequence pairs that
are difficult to detect with current methods. For that
purpose, we developed test sets from two databases in
which each pair of homologous sequences share 	25%
sequence identity. A set of 321 pairs of proteins sequences
from the Cluster of Orthologs Groups (COGs) database
developed by Tatusov and coworkers23 was chosen so each
pair of homologs belongs to the same cluster and shares
	25% sequence identity. Proteins from the COGs set had
lengths between 200 and 1000 residues. A second test was
prepared by using the PFAM database release 5.2 (PFAM
5.2)24; 103 pairs of protein sequence between 200 and 600
residues long were selected where each pair belonged to
the same PFAM family. For both test sets, only one target
pair of sequences was taken from each cluster or family;
thus, the other sequences in the test set (belonging to a
different family or cluster) could be used to represent
decoy sequences nonhomologous to the target pairs. To
provide a fair comparison between OPTIMA and the other
score functions, we eliminated all proteins from the COGs
and PFAM test sets that had significant similarities
(E-values 	 10) or were members of the same COG set as
any of the proteins used to adjust the parameters of the
OPTIMA model.20 Listings of the proteins in the various
training and test sets are available from the authors.

Comparisons

The implementation of the local dynamic programing
and hybrid algorithms are described in the Appendix.

The key element in any practical alignment procedure is
a characterization of the null statistics, that is, the statis-
tics of scores for nonhomologous pairs of sequences. As the
first part of this work, we evaluated how closely the null
distribution matched an EVD distribution, and estimated
the parameters � and K that allow us to calculate p(Sr � x)
in conjunction with Eq. 2. To test the statistics of the
hybrid algorithm scores with a set of artificially created
sequences, we aligned each of the queries from the COGs
and PFAM test sets to 100,000 randomly created sequences
by using the BLOSUM62 score function with (d, e) 
 (�11,
�1)25, which we will notate by BLOSUM62�11,�1. To evalu-
ate the null statistics with nonhomologous biological pro-
teins, we used an assortment of score functions, including
BLOSUM62�11,�1 and BLOSUM50�13,�2,25 PAM250�14,�2,1

and OPTIMA�20,�4,20 to align each of the queries of SCOP
with the proteins sequences belonging to other fold catego-
ries. For OPTIMA, a score function corresponding to one
fifth of the score matrix published by Kann et al20 was
used, with correspondingly adjusted gap penalties.

The next part of the work involved comparing the
performance of the LDP and hybrid algorithms for a choice
of score functions and gap penalties, evaluating how well
the different approaches could discriminate between ho-
mologous and nonhomologous proteins. We characterized
the performance of the different algorithms and score
functions for each of the pairs of homologous proteins in
the two test sets. In all cases, other target proteins in the
test sets were used as decoys. We used the default gap
parameters as included in BLAST. Because sensitivity is
significantly affected by the choice of gap penalty, we also
performed an exhaustive search for the optimal gap pen-
alty for the hybrid algorithm for each of the score matrices
(results not shown). For both algorithms, we computed the
E-value, that is, the expected number of scores between
the target protein and random pairs that is greater than
the score for the correct homolog. For a search of a
database of size D, the E-value is estimated as E 
 D p(Sr

� x), where x is the score of the homolog. In this study, we
used a value of D 
 100,000. We also calculated the
probability P of observing at least one alignment of ran-
dom protein sequences with score � x; assuming Poisson
statistics this value is given by

P � 1 � exp��E� (3)

We also calculated another statistical parameter, C, that
represents the confidence in identification of a true ho-
molog and is calculated as the total number of correct
matches divided by number of matches, both correct and
incorrect, with the same score or higher.20 One advantage
of the C score is that it concentrates on protein pairs at the
limit of detectability. Assuming there is one true homolog
in the data set, C can be calculated from the scores of the
alignments as

C �
1

1 � E � �1 � D�1 � exp��KMNe � �s�� � 1 (4)

The values of �p(Sr � x)�, �P�, and �C� for hybrid and local
dynamic programming algorithms were obtained by using
Eq. 2, 3, and 4, respectively, by averaging over all the
sequence pairs in the test set.

The detection of homologous proteins using any of the
algorithms in consideration can be seen as the discrimina-
tion between two alternatives. A certain threshold S0 can
be defined so that pairs of protein sequences with pairwise
alignment scores greater than the threshold will be classi-
fied as homologs and below as nonhomologs. (Any other
monotonic function of the scores can be used in a similar
manner, i.e., lower p or E values than a certain threshold
will indicate homology.). The data can be then classified as
either positive or negative corresponding to homolog or
nonhomolog, respectively. This decision, based on the
threshold, can be true or false. Therefore, there are two
possible outcomes, true-positives and true-negatives, in
which the decision was correct. And there are two where
the method fails: false-positives and false-negatives. To
evaluate the performance of dynamic programming, we
plotted the fraction of true positives, FTP 
 (number of
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pairs of true positives with score � S0)/(total number of
true-positives) also known as sensitivity, versus the frac-
tion of false positives, FFP 
 (number of true-negatives

with score � S0)/(total number of true-negatives), known
as specificity. This kind of plot, called a “Relative Operat-
ing Characterization” [ROC] plot, has been used since the

Fig. 1. Linear fit of the double logarithmic plot of the probability density function (pdf) of the scores obtained
from the alignment of 100,000 synthetic random sequences to test set proteins. BLOSUM62�11,�1

25 was used
as a scoring system.

Fig. 2. Linear fit of the double logarithmic plot of the probability density function (pdf) of the scores obtained
from the alignment of 14,762 pairs of nonhomologous sequences belonging to different SCOP fold
classifications. BLOSUM62�11,�1

25 was used as a scoring system.
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early 1950s, especially for diagnostic medical systems.26

The ROC plot is related to Brenner and coworkers27

coverage versus error per queries curves.

RESULTS
Statistics of the Scores of Random Alignments With
Hybrid and Local Dynamic Programing

Figure 1 shows the double logarithmic plot of the
probability density function (pdf) of the scores obtained
from the alignment of 100,000 synthetic random se-
quences to the queries from the COGs and PFAM test sets
using the hybrid algorithm. An EVD distribution on such a
plot yields a straight line. The closeness of the fit to an
EVD distribution is clear. The parameter � can be esti-
mated as the slope of the line and is �1, confirming Yu and
Hwa’s18 results.

To simulate the “real” conditions of a sequence search
where the comparisons are made against biological se-
quences, we calculated � for structurally dissimilar pairs

Fig. 3. Distribution of the values of � for various score functions and gap penalties for scores obtained from
the alignment of nonhomologous sequences from the SCOP test dataset.

TABLE I. Distribution of � Values for Hybrid Algorithm

Score matrix Gap penalties �

OPTIMA20 �20.0/�4.0 0.87 
 0.15
BLOSUM6225 �11/�1.0 0.89 
 0.14
PAM2501 �14/�2.0 1.00 
 0.19
BLOSUM5025 �13/�2.0 0.88 
 0.15

Hybrid algorithm was used in conjunction with four different scoring
systems and the COGs and PFAM test databases for the estimation of
�. The parameter � was calculated as the slope of the linear fit to the
double logarithmic plot of the score probability distribution function
(pdf).
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of sequences from the SCOP database. Similar to the
synthetic sequences, the double log of the pdf of the scores
obtained with the hybrid algorithms is well fitted to an
EVD as shown in Figure 2. We calculated the appropriate
value of � for each of the target proteins individually. The
distribution of � values for each of the various score
functions is shown in Table I and Figure 3. In all the cases,
the theory prediction of � 
 1 is followed within the error.

Performance Evaluation of Hybrid Versus LDP

We then evaluated the performance of the hybrid algo-
rithm on the correct detection of distantly related protein
sequences and compared it with local dynamic program-
ming. The values of �C�, �p(Sr � x)�, and �P� for hybrid and
local dynamic programming algorithms for the two differ-
ent test sets are shown in Tables II and III. To explore the
sensitivity of these results to changes in the gap penalty,

Fig. 4. Sensitivity-sensibility curves (equivalent to an inverse ROC
plots). Hybrid method (solid lines) is compared with the Smith Waterman
algorithm (dashed lines) by using the following scoring systems:
BLOSUM62�11,�1

25 (green), BLOSUM50�13,�2
25 (blue), PAM250�14,�2

1

(red), and OPTIMA�20,�4
20 (black). The tests were performed in a

database of distant homologs from the COGs database.

Fig. 5. Sensitivity-sensibility curves (equivalent to an inverse ROC
plots). Hybrid method is compared with the Smith Waterman algorithm, for
a variety of scoring systems (symbols as in Fig. 4). The tests were
performed in a database of distant homologs from PFAM database
release 5.2.

TABLE II. Comparison of the Performance of Various Scoring Systems With the
Hybrid and Smith-Waterman (LDP) Algorithms

Score matrix Gap penalties

Hybrid LDP

�C� �p(Sr � x)� �P� �C� �p(Sr � x)� �P�

OPTIMA20 �20.0/�4.0 0.884 0.004 0.125 0.915 0.003 0.091
OPTIMA20 �20.0/�3.0‡ 0.901 0.002 0.107
BLOSUM6225 �11.0/�1.0 0.840 0.005 0.172 0.857 0.005 0.157
BLOSUM6225 �9.0/�2.0‡ 0.854 0.005 0.159
PAM2501 �14.0/�2.0 0.613 0.024 0.414 0.835 0.004 0.181
PAM2501 �20.0/�2.0‡ 0.750 0.010 0.268
BLOSUM5025 �13.0/�2.0 0.830 0.009 0.185 0.888 0.004 0.120
BLOSUM5025 �15.0/�2.0‡ 0.866 0.006 0.147

Results are based on a set of distant homologous sequences from COGs test database. Gap penalties correspond to BLAST
defaults as well as those penalties found to maximize �C� for the hybrid algorithm (‡).

TABLE III. Comparison of the Performance of Various Scoring Systems With the
Hybrid and Smith-Waterman (LDP) Algorithms

Score Matrix Gap penalties

Hybrid LDP

�C� �p(Sr � x)� �P� �C� �p(Sr � x)� �P�

OPTIMA20 �20.0/�4.0 0.865 0.0004 0.151 0.886 0.003 0.125
BLOSUM6225 �11.0/�1.0 0.793 0.0016 0.230 0.816 0.007 0.199
PAM2501 �14.0/�2.0 0.687 0.0164 0.329 0.851 0.003 0.164
BLOSUM5025 �13.0/�2.0 0.820 0.0020 0.194 0.862 0.007 0.148

Results are based on a set of distant homologous sequences from PFAM test database.
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we took advantage of our ability to determine the null
statistics quickly for the hybrid algorithm and performed
an exhaustive search over a wide range of gap penalties.
The gap penalties that maximized performance for the
COGs dataset are also included in Table II.

The sensitivity-sensibility curves or inverse ROC plots
for hybrid and LDP algorithms for four different score
systems are shown in Figures 4 and 5 for the PFAM and
COGs data sets, respectively.

The LDP algorithm seems to perform slightly better
than the hybrid algorithm. We also found the ranking of
the score systems to be similar for both algorithms, that is,
a scoring matrix that performs well with the LDP will
perform comparably well with the hybrid algorithm. In
particular, we found OPTIMA to outperform other scores
systems for both the LDP and hybrid algorithms.

Conclusion

The hybrid method developed by Yu, Bundschuh, and
Hwa18,19 is an alignment algorithm with a well-character-
ized score statistics, well approximated as an EVD. The
fact that �, one of the most crucial parameters to describe
the EVD, can be assumed to be equal to 1 makes it possible
to obtain an accurate representation of the null statistics
with a small number of simulations. This ability of the
hybrid alignment is of special interest for those applica-
tions such as PSI-BLAST program11,12 in which the score
function is adjusted after each iteration, and for searches
with multiple gap penalties. We have proved that for a real
test database, the hybrid alignment statistics are within
the error for different score functions and different compo-
sitions of the database, even when the statistics are
derived from real protein sequences, mimicking the situa-
tion of a real database search.

Four scoring systems were chosen for the comparison of
hybrid and LDP algorithms. The Smith-Waterman LDP
algorithm performs slightly better in the task of distin-
guish distant pairs of homologs from nonrelated se-
quences. It is important to note that OPTIMA, the best
score function for both the LDP and hybrid algorithms,
was optimized for use with LDP. This finding suggests
that a similar optimization process could be used to
improve performance with the hybrid algorithm.
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APPENDIX
Local Dynamic Programming

Here, we briefly review the Smith Waterman local
dynamic programming algorithm, followed by a descrip-
tion of the modifications made by Yu and coworkers.18,19

We use the latter’s notation for the description of both
algorithms.

The Smith and Waterman algorithm3 with affine gap
penalties is the standard when looking for the best align-
ment between two sequences a 
 a1a2 . . . am and b 

b1b2 . . . bn of length M and N. Because of its ability to find
the best local alignment between two substrings, this local
version of dynamic programming algorithm is of special
interest in biology, especially when aligning sequences
with long evolutionary distances that are more likely to
conserve only local regions with high sequence similarity.

To obtain the final score and the alignment, the LDP
algorithm uses a score function (sim(am, bn)) and a set of
penalties d and e for the initialization and extension of the
gaps, respectively. When aligning two sequences, there are
only three possible choices at each step, either amino acid
am is aligned to bn, a gap is created in sequence b or a gap
is placed in sequence a; we refer to those choices as
substitution (S), deletion (D), or insertion (I). At each step
of dynamic programing a matrix H (m, n) is constructed for
each of these cases, and the best choice is stored through
the following recursion

Hm,n
s � max�0, Hm � 1,n � 1

s � sim�am, bn�,

Hm � 1,n
D � sim�am, bn�, Hm,n � 1

I � sim�am, bn��,

Hm,n
D � max�Hm � 1,n

S � d, Hm � 1,n
D � e�,

Hm,n
I � max�Hm,n � 1

S � d, Hm,n � 1
I � e, Hm,n � 1

D � d�, (5)

with the following boundary conditions

H0,n
S � H0,n

D � H0,n
I � Hm,0

S � Hm,0
D � Hm,0

I � 0 (6)

and the final score S(a, b) is given by

S�a, b� � max
1 � i � m
1 � j � n

�H�m, n�� (7)

Hybrid Algorithm

The semiprobabilistic or hybrid algorithm developed by
Yu and coworkers18,19 is an alternative approach that
combines the advantages of integrating over a larger
subset of possible alignments with a well-understood null
statistics. Let us first consider the case without insertions
and deletions. One approach to understanding this hybrid
algorithm is to interpret the substitution score for each
pair of amino acid sim(a, b) as a log-odds ratio1,2

sim�a, b� �
1

�ug
log

q�a, b�

p�a�p�b�
(8)

where q(a, b) is the probability that that pair will be
observed in a pair of homologous proteins, p(a) is the
probability of amino acid a occurring in the target protein,
p(b) the probability of b occurring in the database, and

1/�ug is an unknown scaling parameter; the subscript
reminds us that we are analyzing the statistics for un-
gapped alignments. In this way, H is proportional to the
log of the ratio of the probability that the observed aligned
amino acids would be observed in a given pair of homologs
compared to the probability of observing those pairs at
random. In an analogous way, in the hybrid alignment we
calculate the alignment’s weight Z as the likelihood of the
observed amino acids given the homologous relationship.
We first define all the input parameters and then the
recursion to calculate Z.

We convert the log likelihood ratios to simple likelihood
ratios through exponentiation.

wug�a, b� � exp��ugsim�a, b�� � � q�a, b�

p�a�p�b�� (9)

Because we know that for an ungapped alignment ¥a,b q(a,
b) 
 1, we can adjust �ug so it is the unique positive root of
the following equation

�
a,b

e�ugsim�a,b�p�a�p�b� � �
a,b

wug�a, b�p�a�p�b� � �wug�a, b��0 � 1

(10)

where �. . .�0 represents the average over the distribution
of amino acids in the target and database proteins. In fact,
{wug(a, b)} must fulfill stricter conditions. If we consider
q(a, b�a) 
 q(a, b)/p(a), the conditional probability of the
alignment in a pair of homologs of an a and a b given that
the target sequence has an a, it is clear that ¥b q(a, b�a) 

1, or using Eq. 9

�
b

wug�a, b�p�b� � 1 (11)

Note that Eq. 10 follows directly from this condition using
¥a p(a) 
 1.

We need to represent gap penalties in a similar frame-
work, including their effect in the normalization of the
probabilities. Similar to Eq. 9, one can express �, the
weight of gap initialization, and �v, the weight of gap
extension, as

� � exp���ug�d � e�� (12)

� � exp���uge� (13)

where d and e are the affine gap penalties used in LDP
algorithm.

One also needs to define �I1 and �D1 associated with the
penalties to terminate an insertion or deletion, respec-
tively, as well as �I2 and �D2, the costs for creating a
deletion or insertion. In the LDP algorithm we assigned no
penalties in those situations. In the hybrid approach, those
penalties must fulfill the following condition

�D1 � �D2 � � � �I1 � �I2 (14)

where � represents the cost for starting a gap.
In addition, for the probability weights Z to be inter-

preted as a likelihood, the sum of all the possibilities at
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each point in the alignment should be equal on average to
1. wug(a, b) must be replaced by w(a, b) which must satisfy

�w�a, b��0 � �I2 � �D2 � 1, (15)

�I1�w�a, b��0 � �v � 1, (16)

�D1�w�a, b��0 � � � �I2���D1 � 1. (17)

The sum over all the possibilities after a substitution,
which are either to align the next pair of amino acids
�w(a, b)� or create a gap in one of the sequences (�I2 or
�D2), is represented by Eq. 15. Similarly, insertions and
deletions can only be either extended or terminated and
followed by a substitution; the total sum is represented by
Eq. 16 and 17, respectively. A third possibility after a set of
gaps in either sequence is to start a set of gaps in the other
sequence. This is represented by the double gap cost
parameter �� ε {0, 1}, which is set to 1 when double gaps
are allowed and to 0 when they are not.

These constraints, combined with Eq. 14, determine all
the input parameters as following

�I1 � ��1 � � � ��2 � ���� 1��2�/�1 � ��, (18)

�D1 � ��1 � � � ��2 � ���� 1��2�/�1 � ��� � ��, (19)

�I2 � ��1 � ��/��1 � � � ��2 � ���� 1��2�, (20)

�D2 � ��1 � ��� � ��/��1 � � � ��2 � ���� 1��2�, (21)

and

�w�a, b��0 �
�1 � ��2

�1 � � � ��2 � ���� 1��2. (22)

Therefore, to fulfill the conservation condition one needs to
choose w(a, b) so that

w�a, b� �
�1 � ��2

�1 � � � ��2 � ���� 1��2

q�a, b�

p�a�p�b�
. (23)

Finally, substitution weights Z can be interpreted as a
likelihood and calculated as the product of the gap weights
(defined by Eq. 18–21) times the substitutions weight
defined by each pair (w(a, b)) using the following recursion.

Zm,n
S � 1 � �W�am, bn�

� �Zm � 1,n � 1
S � �D1Zm � 1,n � 1

D � �I1Zm � 1,n � 1
I �,

Zm,n
D � �D2Zm � 1,n

S � �Zm � 1,n
D ,

Zm,n
I � �I2Zm,n � 1

S � �Zm,n � 1
I � ���I2�DIZi,j � 1

D (24)

with the following boundary conditions for local align-
ments

Zm � 0,n � 0
D � Zm � 0,n � 0

D � Zm � 0,n � 0
I � Zm � 0,n � 0

I � 0 (25)

Zm≺0,n � 0
S � Zm � 0,n � 0

D � 0,

Zm � 0,n � 0
D � 1,Zm � 0,n � 0

D � 1. (26)

The alignment maximum likelihood score S is computed as

S�a, b� � max
1 � i � m
1 � j � n

�ln Zm,n� (27)

where

Zm,n � Zm,n
S � Zm,n

D � Zm,n
I . (28)

In the probabilistic approach, one simply adds all the
probabilities for each alignment as in Eq. 28 and adds,
instead of optimizing, over all possible alignments. Hence,
replacing Eq. 27 by

eS � �
i,j

Zi,j (29)

will turn the hybrid algorithm into a similar version of the
probabilistic local alignment.

The various score matrices used in this study did not
fulfill the condition represented by Eq. 23. To properly
normalize the score functions, the scores were rescaled by
using the factor �ug calculated by using Eq. 10. We then
adjusted the main diagonal terms so that the modified wug

(a, b) fulfill the condition described by Eq. 11. w(a, b) and
the other various score parameters were then calculated
by using Eq. 12–23. To calculate the scores with hybrid
algorithm, we first calculated the probability of all the
alignments ending with a certain pair of amino acids
(Zm,n) by using Eq. 24 and summed over all the alignment
ending in that pair (Eq. 28). The maximum likelihood score
was then obtained by using Eq. 27 similarly to the last step
in LDP algorithm.

Correction for Sequence Length

When a target sequence is aligned to unrelated se-
quences, the average score will increase with increasing
length of the proteins. We need to adjust our null distribu-
tion to take this correlation into account. The scores can
increase with sequence length either linearly or logarithmi-
cally, with the former applying when the best alignment
behaves like a global alignment.28 For our purposes, we
assume a logarithmic dependence. In general, one wants to
find the parameters that define the length dependence of
the scores and adjust either the values of M and N or the
EVD distribution parameters, or alternatively adjust the
raw scores.

Recent work by Olsen et al.29 introduced the island
method for the estimation of the parameters � and K. A
simple modification in the algorithm in question (either to
LDP or to the hybrid algorithms) can be made to keep
track of all the alignments starting at a certain amino acid
pair with score � 0 (the islands). In particular, one can
keep track of the number of sequences q(Si � x) with a
score � x, which has a Poisson distribution with a mean

�q�Si � x�� � KMNe � �x (30)

from which the values of � and K can be estimated.
Because the average random scores of high scoring islands
has a linear relation with length that can be described as
���(l) � �l � �, one can estimate � and �, the length
dependence parameters, from the slope and intersection of
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the linear fit of ���(l) versus the length (This procedure is
described in more detail by Altschul et al.9).

To calculate the statistical parameter p(Sr � x) when
using the LDP algorithm, we first calculated �, K, �, and �
as described by Altschul et al.9 (software provided by the
authors). We then applied the length correction parame-
ters � and � to the lengths of the sequences, M and N, by
using the following equation to obtain the “effective”
lengths M� and N�

M� � M � �x � � (30a)

N� � N � �x � �. (30b)

We then used the effective lengths in conjunction with
Eq. 2 to obtain the probability p(Sr � x) that the score of a
random alignment is greater than the score x in question.

In an alternative approach, Yu and coworkers describe
how the parameters characterizing the EVD, K, and � can

be adjusted for the values of M and N.18 As in LDP, � and �
were first estimated from the slope and intersection of the
linear fit of the average score of the high scoring islands
���(l) versus the length. �(M, N), the length-adjusted
values of K and �, can then be calculated as

��M, N� � 1 �
1

��M � ��
�

1
��N � ��

. (31)

Given an estimate of (), K(M,N) can then be determined
rapidly via the expression

��� �
�ln K�M, N�MN � ��

��M, N�
(32)

where � � 0.5772 is the Euler’s constant. K� can be then be
obtained by using

K�M, N� � K��1 �
�

�M� �1 �
�

�N�. (33)
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