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PREFACE

This publication contains four papers dealing with the
fldw of water in deformable porous media. In carrying out
the research reported in these papers, we had a practical
objective in mind, namely to deal with the land subsidence
and the consolidation that takes place in an aquifer as a
result of pumping. Examples of significant land subsidence
in many places in the world can be cited. As is common in
dealing with regional problems of flow in aquifers, our
objective was to develop models of consolidation based on
the hydraulic approach, in which the flow is assumed to be
‘everywhere essentially horizontal. In such models, all
dependent variables, e.g., piezometric head, horizontal dis-
placement and vertical subsidence, are functions of the
horizontal planar coordinates and of time. The justification
for employing the (simplified and approximate) hydraulic
approach for regional studies stems from the observation that
horizontal lengths of interest are much larger than the thick-
ness of the considered aquifer. When this is not so, the
problem on hand is a local one and three-dimensional models
have to be employed.

The procedure for developing the aquifer models is made
up of two steps. In the first step, we start with a descrip-
tion of the considered behavior (e.g. motion of mass, transfer

of heat, distribution of stresses and strains) within the



continuum of each individual phase (and that includes the
solid phase) present in the porous medium system. Then, we
average the behavior over a representative elementary volume
within the considered porous medium domain. The result is a
model made up of a set of equations describing the considered
phenomena in the porous medium domain, regarded as a continuum
in three-dimensional space. We have demonstrated this step

in the case of heat transfer (paper no. 4). 1In the other
cases, this step is omitted and we have started from equations
that are already written at the porous medium level.

In the second step, the equations obtained in the first
one are integrated over the vertical thickness of the con-
sidered aquifer, taking into account, in a rigorous manner,
the conditions on the top and bottom surfaces bounding the
aquifer.

In this way, regional models are obtained which have to
be solved as boundary value problems in the horizontal flow
domain only. The various phenomena (flow of the water, sub-
sidence, energy flux) are usually coupled so that the set of
equations has to be solved simultaneously. This usually
means that numerical solution techniques have to be employed.
As the construction of the mathematical model was the main
objective in this series of papers, no attempt has been made
to develop these numerical solutions. For some simple cases
of a single well, pumping from an unbounded aquifer, an analy-

tical solution of practical interest could be obtained.



The first paper, deals with the problem of saturated
and unsaturated filtration through a samplé of soil placed
in a centrifuge. The objective of this paper is to demon-
strate the treatment of flow in a deformable porous medium
using the water balance (or conservation) equation together
with the basic (equilibrium) equations of elasticity, as
the mathematical model. We have also shown how consolidation
affects the hydraulic conductivity., The second paper employs
the basic assumption of vertical consolidation only, intro-
duced by C. E. Jacob in the early 40's. A mathematical model
in terms of subsidence as the dependent variable is developed
for regional subsidence in an aquifer due to pumping. The
model is obtained by first developing the equations for a
three-dimensional space and then integrating them over the
vertical thickness of the aquifer. In the third paper,
both vertical and’horizontal consolidation is taken into
account. The result is a mathematical model in terms of
vertical land subsidence and averaged horizontal displace-
ment components. The same approach is extended in the fourth
paper to the case of pumping water in a geothermal reservoir
(or injecting water into an aquifer for energy storage
purposes). In this case, water temperature becomes an addi-
tional dependent variable.

Because they deal with a sequence of related topics,

and at the same time, demonstrate a methodology of treating



a certain class of problems, we have gathered these papers
under a single cover, hoping that in this form it will better
serve both those interested in the subject of consolidation
in aquifers and those interested in the methodology of con-
structing mathematical models for transport phenomena in
deformable aquifers.
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out in the Department of Civil Engineering of The University
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of the Department of Civil Engineering of the Technion,
Israel Institute'of Technology, Haifa, Israel, who spent
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SECTION I
CENTRIFUGAL FILTRATION IN DEFORMABLE
POROUS MEDIA
J. BearZ and M. Y. Corapcioglu2
ABSTRACT

Following a literature survey of studies in which a
centrifuge was employed in order to drain a porous sample under
enhanced drainage conditions, either for determining a medium's
properties, or for a dewatering process, the complete mathe-
matical statement of the centrifugal filtration problem, tak-
ing into account porous matrix deformability, is presented.

The medium is considered as a combination of an elastically
deformable solid material and an incompressible viscous fluid.
The flow of air is neglected. The solid matrix forms the skele-
ton of the porous cake, while the viscous fluid (water) partially
fills the pore space. Coupled transient flow (continuity) and
quasi-steady deformation (equilibrium) equations are presented.
In the mathematical description ofthe two-phase medium consider-
ed here, expressions are used for the material variables rele-

vant to the situation. Possible boundary conditions during

ZProfessor in the Dept. of Civil Engr., Technion-Israel
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sabbatical leave at the Dept. of Civil Engr., University
Michigan, Ann Arbor, MI 48109

2Visiting Scholar, Dept. of Civil Engr., The Uniygrsity of
Michigan, Ann Arbor, MI 48109. On leave from Middle East
Technical University, Ankara, Turkey.
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centrifuging are stated and discussed. The problem is solved
for a simple case in order to show flow and deformation of an
unsaturated soil column placed in a centrifuge. Some numerical
results are presented; they show the changes in pore-water
pressure, saturation, permeability, and sample deformation that

take place.



INTRODUCTION

Centrifugal filtration, through porous materials, both
under conditions of saturated as well as unsaturated flow,
plays an important role in various diversified fields, such
as soil physics, sludge dewatering and sugar and paper pulp
drying. To meet these varied needs, a number of studies have
been conducted, most of them of an experimental nature. We
shall start by reviewing some of the investigations as report-
ed in the literature, first in soil physics and then in con-
nection with the chemical industry.

A literature review of the studies associated with soil
physics shows that an early use of a centrifuge to determine
the specific retention of soils is reported by Briggs and McLane
(1907). 1In certain soil physics and groundwater problems,
information is required not only on specific yield, but also
on the areal and temporal distribution of water content in
the soil following the initiation of drainage. Centrifuging
of natural moist soil samples has been proposed as a promising
method of estimating moisture distribution. Following the
early works of Briggs and others (1907, 1910, 1912), many
investigations have been made, and this experimental procedure
has been accepted as standard by most investigators (Hassler
and Brunner, 1945; Slobod et al., 1951; Miller and Miller, 1955;
Marx, 1956). Prill (1961) and Prill and Johnson (1963) made

a comparison of the water content of samples after centrifuging



and after drainage by gravity for various artificial (glass
beads) and natural (Fresno sand) porous materials. They con-
cluded that the values of moisture content obtained by the two
methods show a striking similarity, thus indicating the
applicability of the centrifuge technique for predicting
gravity-drainage relations for sandy materials. In 1963,
Johnson et al. reported a detailed study of the centrifuge-
moisture-equivalent method. In addition to their investigations
on various factors affecting the centrifuge moisture content,
the data at different heights within samples of 0.120 and 0.036
mm glass beads and loess (Trenton, Nebr.) were given. For
most of the materials tested, the measured centrifuge moisture
content decreased with increased distance from the bottom of
the sample.

The centrifuge moisture equivalent is defined as the
moisture content of a soil after it has been saturated with
water and then subjected for one hour to a force equal to a
thousand times that of gravity (Am. Soc. Testing materials,
1961) . The centrifuge moisture equivalent may be adjusted
by a correction factor proposed by Piper (1933). The adjusted
value, considered to be specific retention, is then subtracted
from the porosity to obtain specific yield.

In Johnson et al's (1963) experimental procedure, a short
column of soil is placed horizontally, with its long axis
along a radius, in a centrifuge with a porous plug at the outer

end. A similar procedure was previously used by Slobod et al.



(1951) in a different study. Corey (1977) reports the use of
a centrifuge without the porous plug at the outer boundary
and the measurement of saturation using gamma radiation attenua-
tion. 1In all the above-mentioned studies, only laboratory /
techniques were déveloped; no attempt has been made to derive
any mathematical expression even empirically. Therefore,
the results of experiments cannot be extended to unmeasured
physical properties, such as hydraulic conductivity, diffusivity,
etc.

Alemi et al. (1974) proposed two centrifugal techniques
for determining the hydraulic conductivity of cores of natural
moist soil. Experimental results are presented for one technique
in which the change in weight of one end of the sample,
previously centrifuged, is measured with a balance. The mathe-
matical equations describing this redistribution process were
developed and fitted to the data to ascertain the soil water
diffusivity. The value of the hydraulic conductivity was ob-
tained indirectly. The second technique for which a theory
is presented,but no experimental values are given, depends upon
the measurement of the outflow from the sample when the speed
of centrifugation is suddenly increased. Their theoretical
study contains certain assumptions and boundary conditions which
are questionable. For example, pore pressure head distribution
at the end of centrifugation was assumed to be the same as in
the uniform rotation of a fluid without considering the porous
soil structure. Water content equation during redistribution

was solved by making use of this boundary condition.



Important applications of centrifugal filtration take
place in the chemical industry (e.g., Purchas, 1971). Studies
in chemical engineering have aimed mainly at the estimation
of the rate of filtration.

An analysis of the centrifugal filtration given by
Grace (1953) is representative of several studies in this
category. In Grace's study and in other ones (Storrow, 1957;
Bingeman and Coates, 1960), experimental data on centrifugal
filtration are correlated by a simplified flow rate equation.
Grace (1953) concludes that, a general expression givihg the
compressive stress in a porous medium as a function of radial
distance is needed for a rigorous analysis. Storrow (1957)
derived his similar formula for a rigid saturated porous
medium. Later, Bingeman and Coates (1960) reached the same
expression by using a much simpler approach. In these studies,
the filtration rate equations were obtained from simple balance
equations rather than by coupling flow and deformation equations.
In fact, no account was taken of the medium's deformability.
Even the basic principle of mass conservation for the fluid
was not utilized. Hence the expressions obtained were over-
simplified.

Since the material is deformed also by the forces associated
with the flow, the flow and deformation proéesses are coupled;
any analysis of such a problem requires the simultaneous

solution of the flow and the deformation equations. Joo and



Lederer's (1974) formulation appears to be the only one con-
sidering the fundamental equation of flow in a compressible
porous medium. However, a flow term due to the centrifugal
force was not included in the formulation, nor do they con-
sider the balance of stresses acting on the medium during
rotation, coupled with the flow equation.

An important pért of centrifugal filtration is also the
final dewatering or drying phase, following the cessation of
liquid feed.’ 0f particular interest is the level of un-
drainable (residual) moisture which can be achieved, and how
it is affected by various factors such as the angular velocity
and the thickness of the porous layer. Batel (1961) presented
some studies on this subject, with particular reference to
the removal of water from coal.

From the review presented above, one may conclude (a)
that most of the work has been experimental, (b) that porous
medium deformability has not been properly included in the
analysis and (c) that no serious attempt has been made to couple
correctly the flow and the deformation of the porous matrix in
the analysis.

The main objective of this work, which is primarily a
theoretical one, is to attempt to present a complete mathemati-
cal statement of the centrifugal filtration problem, taking into

account porous matrix deformability.



Three cases will be studied: (A) Unsaturated flow in
radial coordinates, (B) Saturated flow in radial coordinates,
and (C) Unsaturated, one-dimensional (along a radius) flow.
For the last case, a numerical solution is also presented.
Its purpose is to obtain some numerical results that show an

example of what happens along a column placed in a centrifuge.

EQUILIBRIUM EQUATIONS FOR THE SOLID MATRIX
Figure 1 shows a cylindrical sample of soil (or, in general,
a porous medium) placed in a centrifuge. Its width is R, - Ry,
where R, and R, are the outer and inner radii;respectively. The height

2 1

of the sample is H. The outer boundary, at Ry, is a perforated
basket, or a porous plate, such that water can flow through it
with practically no resistance. At a later stage we shall also
consider a boundary condition with a specified resistivity
of this porous plate. 1Initially, the soil sample may be
either fully or partly saturated with water. 1In the unsaturat-
ed case, the initial moisture distribution is usually uniform
(neglecting the effect of gravity, as H is relatively small).
When initially saturated, we may continue to maintain saturated
flow conditions by a constant feed of water, maintaining a
layer of liquid (inner radius Ro' outer radius Rl) as shown in
Figure 1.

The centrifuge rotates at a constant angular velocity w

around a vertical axis. The driving force, which varies with

the radius, due to rotation, produces filtration through the



soil sample. The compressive stress acting on the solid matrix
(effective stress, ihtegranular stress; Terzaghi; 1923) at any
point in the sample is affected both by changes in the pore-water
pressure (as in the general case of flow through a deformable
porous medium) and, in the particular case studied here, also
by the centrifugal force acting on both the solid and the water.
In Appendix A, following Bear and Pinder (1978), the total
stress ¢ at a (macroscopic) point in the porous medium domain is
shown to be the sum of the intergranular (or effective) stress
g' and the pressure, p, in the water that in saturated flow, fills
the entire pore space (porosity, n) and only part of it (at satura-

tion Sw) under unsaturated conditions
g=g¢g'-5_pI [1]

In [1], I is the unit tensor, and each stress component is per
unit area of soil sample. A change in effective stress produces

a deformation of the solid matrix, resulting in a change in n.

In unsaturated flow, water is released from storage in any unit
volume of porous medium as a result of three processes that occur
simultaneously: the decompression of water, the reduction of
porosity due to an increase in effective stress and a reduction in
saturation. Often the water is assumed to be incompressible. In
saturated flow, water is usually taken as compressible, and the
saturation remains constant (Sw = 1). Because we assume no shear
stress in the water, the total shear stress is carried by the solid

matrix only.
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The total stress acting at a point in a porous medium domain
satisfies thé conditions of equilibrium. The latter is the
(macroscopic) momentum balance. When the inertial terms are
assumed to be negligible, in view of [A-4] and [1l], the equilibrium

conditions may be written in the form

Ve(g' - S..p

QHH

)+g=o [2]

where F is the sum of all body forces. For the special problem
of the centrifuge, we rewrite [2], using cylindrical coordinates,
in the form (Biot, 1941; Verruijt, 1969, except for the introduc-

tion of Swp instead of p)

! - 1 ' ' ' - '
a(orr Swp)+ _ aOre + aorz + Oyr %0 - F =0 [3]
or r 06 0z r ‘r
or r 96 0z r
90’ 1 30’ d(o'! - S _p) o!
zZr - z0 ZZz w 2L _
5t " r 88 3z t= =0 [5]

where we have neglected the body force due to gravity with
respect to the centrifugal force due to the rotation. The
latter is 1,000-3,000 times larger than the former. Hence, no

body forces exist here in the 06 and z directions.

Due to the conditions of axial symmetry that we have in

the rotating centrifuge (o're = o'ze = 0), [3] through [5]

reduce to the single equation

' [
30rr + rr Oeé -F = ) (Swp)
or r r or (6]

In writing [6] we have also assumed that stresses and

deformations are independent not only of 6 but also of z, which

leads to o' = 0.
z2r
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The body force Fr per unit volume of porous medium, result-

ing from rotation, can be expressed as

" F,. = [ns p. + (1 - n)oslwzr [71

(compare with [A-9] where only gravity is considered). 1In [7]
e and e denote the densities of the water and of the solid,
respectively; n denotes the porosity of the porous medium, and
w is the angular velocity. Under the above stated conditions,
the strain components are related only to the displacement Ur

in the r direction
€ =_£.;€ =._r_ [8]

This follows from the general relationship ¢ = V-B.
We now assume that the solid matrix is elastic, homogeneous
and isotropic, and use Hooke's law in order to relate the components

of the effective stress, to the components of strain

] - ] 1
Orr = 2u Err + A€ [9]
cée = 2u' €99 + Mg [10]
Oéz = A e [11]

where X' and u' are the (macroscopic) Lame’ constants of the porous
medium as a whole, i.e., not merely of the solid phase (see any
text on the theory of elasticity). With these stress-strain rela-

tions, the volume strain € is given by

U U
3 _ r r
?r (rUr) =3 vt T

™
[
™
+
™
I
=

rr 06 [12]
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By substituting the strain relations [8] into [9] through

[11], the following alternative form of Hooke's law is obtained

, aUr ) Ur
1 — 1 ]
O'rr,— ()\ + ZU ) '5?— + A -E— [13]
Ur ' 8Ur
| . ' —_ ——
Py (A + 2y ) = + A ST [14]
oU U
o =2 —=+ 2 £ [15]
zZZ or r

Inserting this form of Hooke's law into the equilibrium

equation [6], gives

azur 18U, U, a(swp) ,
(ZU + A )T 2+-r—8—r——-——2—]—T——[nSwpf+(l-n)pS]wr=O
or r
[16]
or in terms of volume strain ¢
2
ve _ 1 B(Swp) . W r[nSwpf + (1 - n)pS] (171
or (2u" + ") or (2u" + A'")

Equation [17] contains four variables: €, p, n, and Sw' We need

additional equations to obtain solutions for these variables.

CONTINUITY EQUATION FOR THE FLUID

Although in unsaturated flow we have the simultaneous flow of
both air and water, we shall assume here that the air is stationary
and at a constant pressure equal to the atmospheric pressure (= 0);
only the water flows. Thisconstraint may easily be relaxed if so
desired.

We shall also assume that under the pressure conditions in

the centrifuge, the water is practically incompressible, = constant,

Pg
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and the solid is incompressible, i.e., Py = constant. However,

the solid matrix as a whole is deformable, with n = n(r,t).

~

One can easilv introduce water compressibilitv (Appendix B).
Under these assumptions, the continuity equation for the water

is given by

9(ns_ )
Veg + kil

q 5t = 0 [18]

where q is the specific discharge of water with respect to the
fixed coordinates. It can be determined from Darcy's law, which
expresses the relation between fluid pressure and specific flux

of the fluid with respect to the solid. In the case of a deformable

porous medium, the solid grains also move at a velocity VS. It

is the specific discharge of the water relative to the solid, Ay s

Areg =9 = (RSV [19]

that is expressed by Darcy's law. Inserting this relative flux

expression in [18], we obtain

dsn dsSw
V-grez + Sw_af tn— + nSw V-Ys =0 [20]
d )
where == = 2— + V_+V denotes the total derivative with respect to

dt ot ~S

moving solid. The fourth term on the LHS can be obtained from
the equation of mass conservation of solid, assuming the density
of the solid to be constant

. 3(l - n) _
\Y) [(l—n)YS] +———T———0 [21]
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Equation [21] can be written in the form

1 dsn
VVs = T—7 a [22]

Therefore, [20] becomes

Sw dsn d s
V'Qiepg *T-7n a *™ a3 ~ 0 [23]

Another expression for V-Vs is

VeV ot

Vs = *5-E [24]

where the right hand side expresses the rate of change of the volume
strain €. By combining [22] and [24], and, as an approximation,

replacing .the total derivative of S_ and by a partial ones, i.e.,
9S
J€

assuming YS-VSW<O<5EE, and YS-Vs << §E,=[23] reduces to

9S

J€ wo_
Vegq + S +n§t——-o [25]

irel w ot

One should remember that the capillary pressure P. = Pair ~ Pyater

Since we assume p_. = 0, we have p_ = - Z - p. The capillary

Pyater
pressure itself is a function of the saturation, p, = pc(Sw). The
graphic expression of this relationship is the retention curve,
which varies from one soil to the next. This relationship exhibits
hysteresis, a fact which for the sake of simplicity, we neglect here,
assuming only drainage everywhere. The relative specific discharge

is expressed by Darcy's law. Three driving forces (per unit volume)

are acting on the water in the centrifuge: a pressure gradient
w?r?
f 2

we neglect; lr is a unit vector in the direction of the radius.

- Vp, a centrifugal force - Vp and a gravity - pngz, which

Hence

- _ kokreSL(V + Vo wr ) [26]
Ares — P £ 2
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where k is the medium's permeability at complete saturation and

k = k__ (S ) is the relative permeability (0 < kr

ref rel"w <1, HoLs

el
the dynamic viscosity of water. We note that in a deforming porous
medium ko varies with the variation in porosity. By inserting [26]
in [25], we obtain

kokreEL

u

2.2
Vip + Og L ; )1 + S e _ n (e— P = 9 [27]

vel- w ot 3p

The terms BSw/apc can be obtained from the retention curve of the
soil. We have here three dependent variables: p, Sw and €, and
two variable parameters: n and krez' In order to solve them we
have equations [17] and [27], and a relationship between p and S,
in the form of a retention curve for the considered soil. 1In a
deforming porous medium, we also need, (a) a relationship n = n(p)
(actually of effective stress which, in turn, is related to

pressure and saturation, (b) a relationship k =k (s.), and
r refl w

el
(c) a relationship ko = k_(n).

o

The system of equations developed above describes the centri-
fugal filtration through a deformable unsaturated porous medium
in any coordinate system. Filtration in a saturated porous medium

is a special case of this process. When we replace SW = 1 in

[17] and [27], these equations reduce to

2
3¢ _ 1 5 p . w r[npf + (1 - n)ps] (28]
] ]
or (2u' + A'") or (2u' + A')
k 2.2
o[- w X gf_—
Vel m Vip + Pe 5 Y] + AT 0 [29]

which describe the filtration process in various industrial opera-

tions under saturated flow conditions. The dependent variables in
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these equations are € and p. 1In a deformable porous medium
n = n(p), ko = ko(n).

In laboratory experiments to determine the specific retention
(e.g., Johnson et al., 1963) and hydraulic conductivity (e.g.,
Alemi et al., 1976) of soil samples, a short column of soil is
placed horizontally along a radius in the centrifuge, and rotated
(see Figure 2). 1In this type experiments, the flow and stresses
are essentially one-dimensional, and [17] and [27] should be
rewritten in one-dimension only, rather than in radial coordinates .
For simplicity, we shall denote the single dimension here by r.
Also it is more convenient to express e in terms of the displace-

ment in one-dimension. We obtain

k k 32U 39S
9 O rel dp 2 _ W, 9p _
5t 1 T (gp * Pg WTT)] 4+ S, me n("apc) 5 = 0 [30]
32U 3(S p) w?r[p_.nS_ + p_ (1 - n)]
r _ 1 " + fw S [31]
dr? (2u' + \') dr (2u' + A

INITIAL AND BOUNDARY CONDITIONS

Initial Conditions

Initially, a porous medium sample may either be saturated or
it may have a certain water content. In the case of saturation,

the initial condition
Sw(r,O) = 1 and p(r,0) = 0 [32]

Unsaturated samples may have initially a uniform water content or

a certain water content profile. Then

Sw(r,O) = Cy and p(r,0) = c, [33]
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or

Sw(r,O) = fl(r) and p(r,0) = fz(r) [34]

where Cl and C2 are known conctants and fl and f2 are known
functions. Also, we have to specify initial distributions of
porosity, permeability and other matrix parameters, including

the displacement Ur’ since it is also a variable

n = ng or n(r,0) = f3(r) and Ur(r,o) =0 [35]

where nJ is the porosity of an initially homogeneous sample and

f3(r) is a known function.

Boundary Conditions for Pressure

Boundary conditions are defined by the particular physical

conditions imposed during an experiment.

In general, at any boundary, we have
[g - eg]i,O'VF =0 _ [36]

where [A], = A!i - AIO denotes a jump from the inner side i,
14

to the outer side, o, of the boundary; g is the specific dis-
charge with respect to a fixed coordinate system, 6 = ns
is the water content, u is the velocity of the boundary, and

F = 0 is the equation of the boundary. In the one-dimensional

case considered here, for the inner boundary we have F, = r-Rl(t)

For the outer boundaryEé = r -R,=0. For saturated flow 6 = n.

2

A similar equation should be written also with respect

to the solids (for a constant ps)

0.



-17-

[(1-n) (Vg - wl; *VF =0 [37]

If we assume that the boundary is a material surface with

respect to the solid, i.e.,

= 0: - - . = [38]
(L - (v, -wl|, -VF=0; (1-n(V -u|y-TF =0

we can combine [36] and [38] to yield an expression in terms

of the flux of the water relative to the solid, Qreg = 9 - 6V,
which is the flux expressed by Darcy's law

([drepli,oVF = 0 [39]
When the outer side is completely impervious, i.e. eloutside =0

and q| = 0, the condition at an impervious boundary

<loutside
(which is also a material surface with respect to the solids) be-

comes

Apag + VF =0 [40]

When an outer side contains no porous material, (V_| = 0)

~S'outside

but an accretion at the rate qlo = N-VF is supplied there to the

boundary, we have:

oF
(grel i—§)°VF T3t [41]

dF _ OF . _ _
where IE = F u VF = 0. Here VF =

|+
1
]
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The following are several examples of possible boundary
conditions.
A) At the outer end of a sample, r = R2, we may have an
impervious boundary, i.e., no flux normal to the boundary, i.e.,
Areg = 0 at r = R2

or in terms of pressure

= - kop 2 =
Areg = uor T oPgw r)lr = R, =0
or
E.E.l = -0 U)ZR [42]
dr'r = R2 £ 2

which is a second type (Neumann) boundary condition.

B) At the outer boundary we have a thin porous plate which
offers some resistance to the flow of water through it. This
may happen in some industrial processes and laboratory techniques
where the outer boundary of the sample is a filter cloth or
a porous membrane. At sﬁch a boundary we require that the outflow

at the boundary r = R, be equal to the (assumed saturated) flow

through the membrane. Hence
2..2 2.2
'y wr
B+ = og r=R, ~lp+ =5 g r=R+d'

a’' [43]

k 3p 2 _]E_'_
_il_(gE-kmrpf)rzR2 Y
where k' and d' are permeability and thickness of the membrane.

This leads to the condition

Ply =

k Bp L2 r—R2 k! 2 k' 2

- =] = —_— - —_— - — '

. (arl w R, Pr) e T Ryw'eg o a' o, [44]
r=R, H

with d' << R, , k' <<k, and d'/k' = membrane impedance,we

obtain
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p’r = R
ap 2 _ _ 2
3 Y TRETRT S T PeRy [45]
: r=R o
which is a third type (Cauchy) boundary condition.
C) Since in the absence of any semi-previous membrane, the

water at the external side of the outer boundary is already at

atmospheric pressure (p= 0), we have the condition

pl, - R, = 0 [46]

which is a first kind (Dirichlet) boundary condition. Unlike
conditions (a) and (b), this last condition is valid only for
saturated flow. For unsaturated flow, we do not know the pressure
just inside the boundary. We shall therefore employ the balance
condition described below.

D) At the outer boundary, if water can freely leave the

sample as a result of centrifuging, then the flux q is equal

ref
to the total change in moisture content along the sample. Hence

R
9reg | =4 J 2 6(r,t)dr; 6 = nS ' [47]
r = R2 dt Rl(t) w
or with Darcy's law
3R
k ,dp 2 - 9 - 5 - 1L

T Grlr = R, 0 PRy = Ry T RPO-OI g 5%

(48]

where é(t) denotes the instantaneous average water content along

the column
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R J 6 (r,t)dr [49]
- Ry Jp

and
k = k(elr=R ) .

In developing [48], we have made use of Leibnitz rule of differen-
tiating with variable boundaries. The term BRl/St is, in fact,
related to the displacement at the inner face of the sample.

For a small finite period At, we obtain

k 3p 2 - 8 - :
- (Brlr = .t WIPgR)AE = (R, - R;)O elr - R Urlr - R
2 1 1
(aRl/at)At = U [501

r r=Rl
Equation [50] expresses a balance during a small period of time
At. In numerical solutions, because of the various approximations
involved, we should check that this equation is always satisfied.
E) At the inner face, r = Rl’ we usually have a flux con-
dition. As stated in the introduction an important application
of centrifugal filtration is the drying and dewatering of porous
materials. In this case there is no layer of liquid over the
porous medium. This is also the situation after a liquid feed at
r = Ry has ceased in the filtration through a saturated material.

At the inner end, r = R energy is supplied to the sample,

ll
producing evaporation from the sample. When the rate of energy

supply is known, the rate of evaporation, ey is also known.

The boundary condition is then, from [41], we have

Ip 2 ] _
e + o R K = k(O o) [51]

r=R
= 1
r Rl
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Equation [51] is valid provided the soil, under the

condition of 6(r) and 3p/dr that develop can actually supply
q, to the boundary. Otherwise q, is an upper limit and the
actual flux will be lessthan g ; part of the energy will be
used up to heat the soil surface or produce evaporation at
the microscopic air-water interfaces and vapor flow (but this

is beyond the scope of this paper).



Often we approximate [51], by assuming q, = 0. Then
_ k ,9p 2 = 0: =
W = ¥ Grr - R, ¥ PgRy) = 07 K = k(0 r=r ) [52]
or
p w2 =
o Ir - R, + pgw’Ry =0 [53]

which is a second kind boundary condition.

We recall that in the above equations we may replace 3p/dr by

(dp/36) (08/9r), where 3p/36 is a known function from the reten-
tion curve.

Another possibility is that a certain flux a; is éupplied
at r = Ry but at a rate which is insufficient to produce ponding
on the sample's surface, then

- _ k/9p 2 _
gq. = + W prl)’ k = k(6

i uor|r = Ry r=Rl) [54]

is the boundary condition at the inner surface.

One should note that no information on p or S, at r = Ry
is available to enable the specification of a first kind boundary
condition. When supply a; exceeds infiltration capacity, we have

ponding.
F) At the inner face, a constant (or time dependent) supply

of water may maintain a layer of water adjacent to the porous
medium. This is similar to the layer of water shown in Figure 1
for the radial case. 1In many industrial filtration problems,
liquid is continuously added from the center of the centrifuge,
maintaining a layer of liquid with constant (or time dependent)
thickness over the porous medium. Then,assuming- that the liquid

layer like the soil also rotates about the vertical axis at the
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angular velocity w, in a forced-vortex motion, we obtain

0
p £ _ p2
, RO) >0 [55]

where R is the distance to the surface of the liquid layer from
the center of centrifuge. This is a first kind (Dirichlet) boundary
condition. At such a boundary, we also have Sw = 1.

One should note that all second kind boundary conditions
9S8

. . op _ 9p W
may also be expressed in terms of Sw since z= = 35y 3T ' where
%g— is obtained from the retention curve, assuming independence
w

of variations in porosity.

Boundary Conditions for the Displacement Ur

G) At the outer boundary r = Ry, there is no displacement
due to the rigid basket, or fixed holder. Hence the boundary
condition is

U =0 [56]

H) At the inner face, we have a moving boundary R, = Rl(t)

1
due to the deformation, or compaction, of the soil sample. With-
out a liquid layer on this boundary, we assume that the effective
stress vanishes, i.e., O;r = 0. Hence from [13], which for the

one-dimensional case reduces to

aUr
1 _ ' ' a
crr = (21.1 + A 5T [57]
we obtain the condition
aUr
= 0 [58]
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This condition is valid for both saturated flow without a water

layer and for unsaturated flow, if we neglect the effect of th

(negative) pressure in the water on the effective stress. How

e

ever,

if in the unsaturated case we do take the pressure in the water

into account, the total stress on the surface r = Rl is indeed

zero, but because of the pressure in the water Ofr = Swp\(Note

that this only is true if o= 0). This means that the boundary
condition is
) S
Up _ w? [59]
or (2u" + A")

However, one should think of this detail as belonging to the

microscopic level of consideration. At the macroscopic level,

we have to assume for the exposed solid surface in the r direction

that Uér = 0. For the general radial case, the condition is

derived from [13] in which we insert o;r = 0.

I) In the case where a water layer exerts an external

stress (compression) on the water-solid surface, we obtain the

effective stress (at the boundary Sw = 1 and p is expressed by
pew?
= 2 _ p2
ey =732 (Ry = RJ) [60]
Using [1] and [55], we obtain for the present case
ol, = 0‘ [61]

The condition for Ur is therefore

5"]:—- = 0 [62]

[551)
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This completes the discussion on the various possible
boundary conditions. In most cases, the boundary coﬁditions
remain valid also for a soil sample between two concentric
cylindrical surfaces. In other cases, the required modifications

are obvious.

THE COMPLETE MATHEMATICAL STATEMENT

A solution is sought of the system of equations describing
the flow through a deformable unsaturated porous medium as it occurs
in certain laboratory experiments (e.g., Johnson et al., 1963).
Since an analytical solution is not possible. A numerical
solution is employed. The equations to be solved are [30] and
[31], subject to the boundary conditions [50], [53] for p and [56]
and [58] for Ur’ In addition, we need information on the re-
lations k_ = k_(n), n = n('), and P, = P.(5,)-

The medium's permeability, ko, at complete saturation, and
the relative permeability, kre% will be expressed in the example

studied here by

3
k, = 1.06 x 1077 B~ [63]
(1 « n)?
Sw Swo 3
Kreg = (T =g ) [64]
wO

Equation [63] is known in the literature as Kozeny-Carman equation;
Swo is the irreducible saturation. The quotient (BSW/Bpé) will
be approximated from the following approximation of the reten-

tion curve
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S =-0.062p + 1.00 [65]
w ) c

The relation between porosity and pressure will be given

by
n = no-(l-no)(p-po)(sw-+p ds_/dp)/(2u' + 1) [66]

where n_ and Pq denote initial porosity and pressure, respectively.
o

Initial conditions for p and U, are given by [33] and the second

equation of ([35].

Equation [66] is obtained by making use of compressibility
definition and [A-16]. As well known, the compressibility is
defined as

1 1 d(l - n)

(2u' + A') 1 - ng do'!

SOLUTIONS AND DISCUSSION

Because the objective of the numerical solution presented
below is just to get some feeling for the drainage process that
takes place in a centrifuged soil sample, a very simple numerical
scheme was employed. No attempt Has been made to make use of
a more sophisticated scheme and/or a more refined grid.

Some of the equations are non-linear. 1In what follows,
they have been linearized, to facilitate é simple solution.

Equations [30] and [31] are replaced by the following al-

gebraic finite difference equations, using an implicit scheme and

linearization
1 [(kokrez)i+1‘(kokr)i]t[Pi+1 TP ]t+l
" Ax Ax Pgw X4
P. - 2p, + p,_, t+l
(L S U RO e S Sh i TR A
(Ax) 2
{[Ui+l - Ui]t+l_ [Ui+l - Ui]t} 1
Ax Ax At
£+l t
- [(n).1t [(ai R L SR [67]
i op At
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U,, 6 .,-2U0. + U, t+1 t p. - p. t+l
. ' i+l i i-1,7 "] , i+l i
(2u' + X ) [ (o) 2 ] [( Sw)i] [—__KE———_]
+ mzxi[(nSw)i pe + (1 - ni)ps] [68]

For the numerical calculations, the following hypotetical values
were used: Py = 5 gr/cm2, n, = 0.37, SO = 0.69, w = 10 1/sec,
Rl = 10.5 cm, R2 = 15.5 cm, Py = 2.5 grm/cm3, and 1/(2u' + \') =
4 x lO"6 cmz/gr. Spatial mesh size Ax and time step At were
taken an 1 cm and 0.25 seconds, respectively. These values are
realiable for soil samples.

The results of the computer runs for solving [63] through
[68], are presented in graphical form in Fig. 3. The changes
of porosity are not shown in the figures since it was found that
these changes are negligibly small during centrifuging (under
the conditions considered here). For example, the porosity changes
were less than 0.01% after one hour of centrifuging.

As seen in Figure 3, in the course of centrifuging,
water gradually drains from the soil sample. The reductions
in p, Sw and k are larger during the early stages. Note that we
assumed that w reaches its constant value w = 10 sec—l at no time.
In reality, a certain time may elapse until we get to w = 10 sec-l.
At large times, the decrease is smaller and asymptotic values

are reached. As is stated earlier, eventually, the porosity

changes are negligibly small, so that the changes in medium's
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permeability caused by changes in relative permeability
k  only.
ref

About 85% of the displacement takes place at the very
beginning of centrifuging, this is due to the immediate application
of a large centrifugal force. The latter is independent of time,
but varies with radius. This is shown in a dotted curve in Fig.
3. The rest of the displacement is due to the decrease in
pore-water pressure, which in turn is balanced by an increase
in radial intergranular (effective) stress transmitted through
the grain-to-grain contacts of the porous medium. For the par-
ticular values of X and U' selected here, the compressibility
is very small during centrifuging. Nevertheless, it may be
quite large for soft materials such as sludge and paper pulp
in dewatering and drying processes.

It may be concluded that the theory presented in this
paper satisfactorily and correctly simulates centrifugal filtra-
tion in deformable porous media. The change of pore-water pressure,
displacement, permeability, degree of saturation, and porosity
can be predicted by this model. Numerical solutions were given
to show what happens along an unsaturated soil column placed in
a centrifuge. A more sophisticated, detailed numerical technique
would improve the accuracy of the results. This will be the

subject matter of a subsequent paper.
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APPENDIX A

EQUILIBRIUM EQUATION FOR THE SOLID IN

MULTIPHASE FLOW

Bear and Pinder (1978), in dealing with porous medium
deformation in multiphase flow, developed the macroscopic
equilibrium equations by volume averaging the microscopic
equilibrium equation for each of three phases (solid, oil and
water) present in a porous medium domain, and summing the
resulting equations. They employ the following two kinds of

averages for any property G(x') at a microscopic point x'

< G > (x,t) = LTl- J G(x',t) du(x") [A-1]
~ o (v)y ~ ~
o
called phase average, and
G(x,t) = 1 [ G(x',t) du(x'), <G > =06 G [A-2]
~ U ~ ~ o
_ oa (Uou)

called intrinsic phase average, where U, is a representative

elementary volume (REV) around a (macroscopic) point x, and Uo

o
is the volume of a considered o phase inside Ui eu = Uou/Uo

is the volumetric fraction of the o phase. The selection of

the kind of average (= macroscopic) value to be used in each case

depends on the measurable quantity in that particular case.

They use two averaging rules (Gray and O'Neill, 1976)

(a) < VG > = V<G> + ;L-J v GdA;

U ~0
o (Aa)

6 TG = V0 G + — J v_ GdA (A-3]
o o U ~0
o (Aa)
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oG 9<G> 1
(b) < 3% > T3¢ § GU, Y, dB;
o’ (Aa)
a
— 36 G
e §_§ = o - ..}_ Gu LRV dA [A 4]
o ot ot U ~0 ~O
o (Aa)

where Aa is the total surface separating the o phase from
all other phases in Ugr 4y is the velocity of that surface, and

va is the outward unit vector on that surface.

~

By applying the volume averaging procedure to the (microscopic)
momentum balance equation written separately for each of the
three phases (o = s,o,w) present, and adding the three resulting

(macroscopic equations), they obtain:

Polo T H Py Tt ey > Ve <> - Ve <P T - V< Pt >

1 ( 1 1 B

t oo [z]o,w YodA ta L, [E]w,s Vg da + ﬁ-'J [E]schsdA_'o
o {a_) o 1A ) o ‘A ’

ow WS so

[A-5]
where f. is the body force on the ¢ phase, Eais the stress in the
o phase, P, is pressure (positive for compression) in a fluid
o phase, AaB is the surface of contact between

hases o and in U = T -7 = jump in T across
p B ol | ]a,B zla zIB Jump =

<
AaB’ and I is the unit second rank tensor.

In writing [A-5], they have already assumed that
(i) 1inertial effectsare negligible and can be neglected,

(ii) all interfaces separating phases are material surfaces.

Assuminag also that

. 1 1
ow WS
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(ii) in the absence of shear stress in the fluids,

1

1 J 1

= (7] v dA = — I pl I-vdA= — f

UO a ~ 0,W ~W UO A o,Wx ~ UO A
ow oW oW

(p, = Py Iv,da

= (5, - B, | Tugdh = p 0,E0,) (261

ow
where Po = Py ~ Ew is the capillary pressure and f'(ew) is a

function of the volumetric fraction of ew; f'(ew), dims.L—l,

(o}

is a vector that gives the total A, area per unit volume of
porous medium. This introduces the effect of capillary forces
into [A-5].
(iii) Qo’ pf, ps are constants; f&? g
With these assumptions [A-5] reduces to
(eopo * ewpw + esps)g + V'(<§s> - eogﬁg"ewﬁgg)*'9:(%ﬂ§'(gf =0

In saturated flow, this reduces to [A-7]

{npw + (1 - n)ps}g + V(<1 > - nﬁwg) =0 [A-8]

For unsaturated (i.e., air-water) flow, where eapa<<ewpw,

and assuming Ea = 0, we obtain
{nSwpw + (l~n)ps}g + Ve (<r > - ns p 1) + pc(ew)f (6,) =0 [A-9]

were O = nS_; S = degree of saturation.
w " w

In this paper.we neglect the effect of capillary pressure.
then

F + V- (< Ig > - nswpwg) =0 [a-10]

where F represents the total body force on the porous medium and
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(<

Qe
\Y2

s > nSWEQL) represents the total stress. 1In the text

< T > g' is the effective stress and 5& = p is the pressure in

0]

the water.

In spite of the above analysis, it seems that in granular
materials, where the area of contact between grains in a very
small traction of any cross-section, the common practice is
soil mechanics is define the integranular stress, g for

saturated flow by

g' =

rQ

- p,1 [A-11]
where P, is positive for compression, rather than bygg— nﬁwg

as indicated by the above analysis. The common practice in

soil mechanics (verified by numerous experimental and field
evidence) can thus be interpreted as assuming that solid matrix
deformation is caused only by the stress in the solid matrix

< T > minus the isotropic effect of the water pressure surround-
ing (pyactically complétely) each grain. It is assumed that
this pressure is equal to the pressure in the water at that

point. Hence; the effective stress is defined by

2 Q

= < gs > + (1 - n) pwg [A-12]
This can be obtained from [A10] by writing

2 = < Tg > - np z = (1 - n);c’S + (l-n)pw£ - (l-—n)pw£ - npw£

(1 -n)(1g -p,I) -p,I=0"-p

Wx > I [A-13]
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as in [A-11]. The effective stress causing matrix deformation
is thus defined as (1 - n)(zs - ﬁwg).

Thus, in considering saturated flow, we shall adopt
here the definition of g' as defined by [A-13].

In unsaturated flow, we may follow similar considerations.
We shall assume that the average equivalent pressure acting on
the entire surface of the grains is given by Swﬁwg, where it
assumed that ratio of solid-water surface area to total solid

surface area is equal to Sw' Hence: the effective stress is

< T > - Swﬁwg. Neglecting air pressure, it can also be derived
from
o = < T - npwg = es ;S —ewp I+ (1- n)Swpw£ - (1 - n)Swpw£
= - T - = - n - — v -
(1 - n)(1g - S, I) - p,IB, + (1 -mn)s.1 =g, SuPywl
[A-14]
where 6. = nS , 6 = (1 -n), 6_. =n(l -S ), 6_+ 6_+6 =1.
w w s air w w S a

Thus [A-14] defines the effective stress gs' and relates i£ to
the water pressure and to total stress in the case of unsaturated
flow,Eq. [A-14] will be used in the present paper.

Finally, we may add that some soil mechanics investigators

(e.g., Bishop, 1960) propose

2Q
rQ

L= xp, I [A-15]

where y = x(Sw) and depends also on the percentage of clay in

the soil. Although this relationship is ©€mpirically found to
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be non-linear, it seems that for sandy and loamy soils, ¥ = SW
is a good approximation. For clayey soils, more accurate ex-
preésions have to be introduced for X(Sw). Lee (1968) reviews
this subject in detail. The analysis presented in this paper

for X = Sy is just an example and can be
extended to other cases of X(Sy), recalling~

that s = Sw(pw). If the total stress is assumed to be constant,

then [A-15] yields

do' dsw
ap— = SW + pa—ﬁ— [A—l6]

The quotient (dSw/dp) is determined from the retention curve.
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APPENDIX B

EFFECT OF WATER COMPRESSIBILITY
The basic mass conservation equation, for both saturated

(Sw = 1) and unsaturated flow is

Vpg + B(npSw)/Bt =0 [B-1]

where g = nS V = nS V and q = q_ + nS V_. Another form of
W~ WA~W r W~S

~ ~ ~ ~

[B-1] is with V'VS defined by [22] and da( Y/dt = 3( )/3t + VaV( ),

[B-1] can be rewritten as

nSw dwp ndsSW Sw dsn-
V"ir*pw gt " @t t1—a a& = 0° [B-2]
We now define water compressibility B' = (l/pw)dwpw/dp and mois-
ture capacity for a deformable porous medium C'(PW) = dSSw/de,
and obtain
d . p d p S d n
. W . s w s _ _
Veq. + ns_g gt + nC (Sw)dt T H O 0 [B-3]

The last term on the L.HS.of [B-3] can be expressed either through

a porous medium compressibility a', defined by
d_(1 - n) d o' d n
1 S . g0 S - 1 s
1 -n do ! dt 1 - n dt

a' = -

or through the volume strain

V « V = éE = __l__ iiz [B—4]
~s 3t 1 - nadt ,
Recall that in the present work for do = 0, we have do' = d(Swp).
With [B-4], [B-3] becomes:
d p d.p
. '_.i_ ' __E_ 8—-E-= -
v gr + nSwB g ' nC (Sw) 3t + S, 5 0 [B-5]

Various approximations are possible at this point. For
example, (a) VVp << 3p/9dT, hence dwp/dt can be replaced by 9p/3t

(b) Ys p << 9p/9dt, hence dsp/dt can be replaced by 9dp/dt.
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, .
(c) YSVSW<O<BSW/8t hence C (Sw) can be defined by BSw/Bp.

With these approximations, [B-5] reduces to

Vg + [0S B +nC'(s)] g_ﬁ +s_ .g.i. -0 [B-6]

~

For saturated flow, [B-6] reduces to

+ nt_gcz + 38 _ [B-7]

Ve g 7t

ir
where B = (l/Ow) aOW/SP-

Another possible form is to introduce (a) through (c) in

(B-2) leading to

9S e

w - -
st S, =0 (B-8]

S

V . q, + nBSW

~

In [B-7] and [B-8] we have thus introduced the effect of

fluid compressibility.
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APPENDIX C

List of Symbols
a’ = thickness of the membrane (filter) (cm)
F = body force per unit volume of porous medium (gr/cm3)
I = unit tensor
ko = medium's permeability at saturation (cmz)
ir Z reiétiv?c%%gmeability (cm2)
k! = p§}£§§bility of the membrane (filter) (cm2)
n = porosity (cm3/cm3)
n = initial porosity (cm3/cm3)
P = pore water pressure (gr/cmz)
2 = capillary pressure (gr/cmz)
Po = initial pore-water pressure (gr/cmz)
q = specific discharge with respect to fixed coordinates
- (cm/sec)
Qren = specific discharge relative to the moving solid (cm/sec)
Rl = radial distance to internal surface of soil sample (cm)
R, = radial distance to exterhal surface of soil sample (cm)
Ry = radial distance to the surface of the liquid layer (cm)
Sy = degree of saturation (cm3/cm3)
t = time (sec)
U, = radial displacement (cm)
Vg = velocity of soil grains (cm/sec)
r,8,z = cylindrical coordinates
g = total stress tensor (gr/cmz)
g' = integranular (effective) stress tensor (gr/cmz)
€ = strain teﬁsor (cm/cm)
€ = volume strain (cm/cm)
TR = Lame constants of the porous medium
= compressibility of soil sample (cngr) [= 1/(2u' + )]
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SECTION II

MATHEMATICAL MODEL - FOR REGIONAL LAND SUBSIDENCE
DUE TO PUMPING

Part 1: 1Integrated Aquifer Subsidence Equations Based on
Vertical Displacement Only.

Jacob Bear1 and M. Yavuz Corapcioglu2

Department of Civil Engineering, University of Michigan
Ann Arbor, MI 48109

ABSTRACT

A mathematical model for regional land subsidence
has been developed by employing Terzaghi's concept of effective
stress and assuming vertical solid compressibility only. First,
the groundwater mass conservation equation in a compressible
aquifer is developed for a three-dimensional space. Assuming
that the problem justifies an assumption of
a thin aquifer, relative to horizontal lengths of interest,
this equation is then integrated over the aquifer's thickness,
taking into account the conditions on top and bottom sur-
faces bounding the aquifer. The result is the commonly used
aquifer flow equation in terms of averaged piezometric head.
Introducing a relationship between changes in averaged
piezometric head and corresponding changes in aquifer thick-

ness, a single equation is obtained in terms of land subsidence.

On sabbatical leave from Technion-Israel Institute of
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The development is carried out for a single and a multi-
layered confined aquifer and for a phreatic one. An

example is given of the application of the equation in

radial coordinatesdescribing land subsidence in a hypotetical

six-layered aquifer.



INTRODUCTION

" Land subsidence is often caused by the withdrawal of
water from an underlying aquifer, or the withdrawal of gas,
oil (and water) from an underlying reservoir. As a result of
pumping, the pressure in the water (= pore pressure) decreases.
This is accompanied by an increase in the integranular stress
(= effective stress) in the solid matrix, and compaction of
the solid skeleton of the agquifer ensues. The latter manifests
itself in the form of land subsidence. Although this phenomenon
is more significant in confined and leaky-confined aquifers,
it may also take place in phreatic ones. In fact, changes in
saturation, and hence in pore-pressure, in the unsaturated zone
will also contribute to subsidence, though to a much lesser
degree. When soft materials (sometimes as layers or lenses)
comprise part of the aquifer's solid skeleton, or when aquicludes
separate leaky aquifers from each other, appreciable compaction

may occur.

Actually, both vertical and horizontal displacements
of the solid skeleton take place as a result of changes
in the effective stress. Vertical displacements mainfest
themselves as land subsidence. However, horizontal ground
displacement, sometimes of significant and damage causing

magnitudes, have also been observed.



Only vertical soil movement is considered in the
present paper. In a separate paper, to be published as
Part 2 of the present one, the authors consider both
vertical and horizontal displacements.

In order to determine land subsidence, we have first to
determine the (effective) stress distribution in the solid
skeleton, and then employ some assumed stress-strain rela-
tionship to determine the distribution of strain. 1In
determining the stress distribution, we rely on the relation-
ship between the effective stress and the pore pressure.

Based on the effective stress concept introduced by
Terzaghi [1952], two basic approaches may be found in the
literature on land subsidence. In the first one, originally
presented by Biot [1941], a simultaneous solution is sought
for the pressure in the water and for the strain in the solid
matrix. Actually, Biot's theory describes the strain in
the solid matrix in a three-dimensional space, i.e., with
both vertical and horizontal displacements taking place.
Verruijt [1969], who employs Biot's approach, shows that
when only vertical displacement is being considered, Biot's
formulation reduces to that presented by Jacob [1940] who
assumed vertical consolidation only. In the second approach,
following Terzaghi [1925], water pressure is first obtained
by solving a simple partial differential equation (expressing
water mass conservation) in terms of water pressure in the

aquifer as the only dependent variable. In deriving this



equation it is assumed that pressure changes produce changes
in the effective stress, which, in turn, produce changes
in the porosity of the solid skeleton. Once the water
pressure distribution has been derived, the effective stress
and the resulting strain distribution is determined. Finally,
the latter is used to determine land subsidence. Thus
Terzaghi's theory is implemented as a two step procedure
[e.g., Helm, 1975]. Pore pressure distribution is either
obtained from field measurements, or calculated independently
by solving the fluid flow equation. In this approach, the
land subsidence is assumed to be one-dimensional (vertical)
only. Gambolati and Freeze [1973] and Narasimhan and Wither-
spoon [1976] made use of this approach.

The first approach stated above, based on Biot's
fully coupled three-dimensional formulation in terms of
pore’pregsure and displacements, has been further developed
by several researchers. In a coupled three-dimensional model,
one fluid-flow equation in terms of pressure or piezomettric
head and three equilibrium equations in terms of vertical and
horizontal displacements are the governing equations. Con-
sequently, numerical methods for the simultaneous solution of
the coupled partial differential equatioﬁs have been utilized.
Ghaboussi and Wilson [1973] and Lewis and Schrefler [1978]
present finite element solutions. Safai and Pinder [1979]

extend this approach to subsidence of saturated-unsaturated



porous medium. It should be emphasized again that by this
approach, the lateral deformation can also be simulated.

An early attempt by McCann and Wilts [1951] to arrive
at a mathematical analysis of land subsidence constitutes
another kind of approach. They investigated the consegquences
of two different models, both based on elastic continuum
mechanics, called "tension center" and the "vertical pincer"
model. A more general but analogous treatment was subsequently
presented by Gambolati [1972] and Geerstma [1973].

In principle, the problem can always be treated as one
in a three-dimensional space, determining the stresses and
the corresponding strains at every point within the flow
domain. The strains are then interpreted as vertical and
horizontal displacements. However, in regional land sub-
sidence problems, we are usually interested not in the varia-
tions of displacement, say in the vertical direction, along
" the vertical thickness of an aquifer, but rather in the in-
tegrated effect over the entire thickness of the aquifer.

The integrated effect is a function of the horizontal coordinates
and of time only.

We have introduced here the term "regional" to emphasize
that we are not interested in a "local" problem, where hori-
zontal distances of interest are comparable in magnitude to
‘the thickness of the considered aquifer. 1Instead, the con-

sidered problem of land subsidence, and horizontal displacements,



when these are also considered, is such that horizontal dis-
tances of interest,say between wells and points at which sub-
sidence is determined, are much larger than the thickness

of the aquifer. We then have the case where flow in the
aquifer is considered essentially horizontal and the hyd?aulic
approach is applicable [Bear, 1979]. 1In a similar way, we
may integrate (or average) Jacob's [1940] model of vertical
displacement only, or Biot's three-dimensional consolida-
tion model, over the thickness of an aquifer and obtain a
model in which the dependent variables: averaged piezometric
head in the aquifer, averaged horizontal displacement, and
land subsidence, are functions of plane coordinates and of
time only. The two-dimensional problem is simpler than the
three-dimensional one. One should note that the considera-
tions of an aquifer system as a thin, two-dimensional slab
has been reported by a number of authors [e.g., Corapcioglu
and Brutsaert, 1977], but theirmodels are different from
those obtained by averaging over the aquifer's thickness.

Obviously the integrated approach should not be used
for problems of a local nature.

The present work is reported in two parts. 1In the
present paper (Part 1), the regional land subsidence model
is obtained by employing Terzaghi's concept of effective
stress, and assuming vertical soil compressibility only.
Fi;st, the three-dimensional equation of (saturated) water

mass conservation is developed for compressible fluid and



and solid matrix. This equation is then integrated over

the aquifer's thickness, taking into account conditions

oh the top and bottom surfaces bounding the aquifer. The
result is a flow equation in terms of averaged piezometric
head. Relating changes in head to land subsidence, a single
equation is then obtained for land subsidence as a single
dependent variable. 1In this way, land subsidence is obtained
as a single step procedure. The development is carried out
for a single and a multilayered confined aquifers and for

a phreatic one. An example is given of the application of
the equation describing land subsidence in a layered con-
fined aquifer.

In Part 2, to be presented in a Subsequent paper, the
starting point is Biot's theory of consolidation, but the
objective is the same, namely to derive integrated equations
for averaged pressure, land subsidence and this time also
average horizontal displacements, all as functions of plane

coordinates and time.



THREE-DIMENSIONAL MASS CONSERVATION EQUATIONS

We start from the three-dimensional equation of mass

conservation for a saturated porous medium [e.g., Bear, 1979]

= 0 ’ g = nv (1)

~

where V and g are the velocity and the specific discharge of
water, respectively, p is the density of the watef, and n is the
porosity of the porous medium. In deriving (1), we have ne-
glected both the dispersive flux and molecular diffusion due to
spatial variations in water density. In a deforming porous

medium, it is the specific discharge relative to the moving-

solid, 9, that is expressed by Darcy's law

~

9, =9 -V, = - K - Vor (2)

where Vg is the velocity of the solid, ¢* is Hubbert's [1940]
piezometric head for a compressible fluid (see below) and K is
the hydraulic conductivity tensor.

We introduce the definition of a material derivative with

respect to the flowing water

d“”() 3 ()

= =5 +tV V), VvV =g/n (3)

and with respect to the moving solids
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a () a( )

gt = 3t Vst VO (4)

By inserting (2) into (1) and employing (3) and (4), we

obtain

d p d n
oV eqg_+n + ponV -V =0 (5)

N+, S
A dt P 3t s
Assuming that the solid's density, Pgr is constant, the

equation of solid mass conservation can be expressed by

3(1 - n)

V-(l—n) YS+—-—8—E———-=O (6)
from which, we obtain
d_n d p
. _ 1 s _ ., s
VeVs=s1T-mae - T (7)

where o' is the coefficient of matrix compressibility of a moving
solid. Equation (7) actually serves as a definition for a'. In soil

mechanics, a coefficient of soil compressibility a, is often used

such that
oe: a' '
a, =357 = 1T -3 = a(l + e)
where e = void ratio = e° + av(o'-o'°); e =n/(l-n),e®°, o'° =

initial values of e and o'.

In developing (7), Terzaghi's [1925] concept of intergranular

o=9'-pl '- (8)

has been used. Where 0 is the total stress, 0' is the inter-
granular stress, p is the pressure in the water (positive
for compression), I is the unit second rank tensor, and it

is assumed that no shear stresses exist in the water.
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Actually, the total (macroscopic) stress ¢ at a point in

the porous medium can be shown [Bear and Pinder, 1978] to be

g=(1-mn) <gg > - n < P, SW1 ;s <p W =p (9)

s . . w o,
where the average stresses < o, > 1in the solid and<<pw >" in the

~

water (positive for compression) are defined as intrinsic phase

averages by

<g_ > (x) = g (x',x) dau__(x"),
xS < os J(Uos) s '~ = os '~
w 1 ] ]
< >¥00 = g | Py (23) AU, (X7 (10)
os (UOW)

where Uos and Uow are the volumes of solid and water, respectively,
within a representative elementary volume around any considered
point within the porous medium domain; x' is the microscopic
point within the individual phases.

However, in the practice of soil mechanics, Terzaghi's

[1925] concept of effective stress, o', is defined by (8), i.e.,

w
- ' -
g=g"-<p, > 1 (11)

~
=

as if each solid particle is assumed to be completely surrounded

by water at pressure < Py >%

The latter produces a stressin the
solid particle. However, as solid density is assumed to be
constant, no strain is produced in the solid by this stress. Only

the difference (1 - n)[< g > 4+ < Py, >wi]produces solid deforma-

tion. By comparing (9) with (11), we obtain:
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s w w
g =1(1-n) <o > =nc< ST I = 0' - < sV T
g ( ) I Py, i g Py

£

where the deformation producing effective stress is

w [} W
' = 0 4+ < > = - < O > < >
g g P, g (1 n) [ s +<p, 1]

This corresponds to Terzaghi's definition as employed in soil

mechanics. Equation (11) will be employed in the present work.

If we assume that dg = 0, i.e., no change in total stress,
then

d

uQ

d(pI) (12)
Assuming vertical compressibility only, (12) is replaced by
do' = dp (13)

The compressibility of water (in motion) is defined by

T S
B' = 5 3 (14)

By inserting (7) and (14) into (5), we obtain

] dwp [] dsp (15)
v - q, + npg Tt g T 0
By assuming ndp/dt>»> g ¢ Vp and 9p/dt >> Ys + Vp, we may

approximate (15) by

V-gr+(u'+n8')-§—%=0 (16)

It can easily be verified that in writing (16), we have

neglected the term [nB' V + o' YS]~ Vp on the left hand side.

~
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~

By assuming ndp /3t >> g * Vp,and (as an approximation) defining
the solid and fluid compressibilities in (7) and (14) by partial
derivatives rather than by material ones (using the symbols o
and B, respectively, to indicate this approximation), (1) be-
comes

L] -a_B = * = —
Veg+ S, gp=0; S, =(l-na +¢n (17)

where SOp may be interpreted as the specific storativity with

respect to pressure changes (= volume of water added to storage

per unit volume of porous medium per ﬁnit rise in pressure).
From (1), by assuming ndo /3t >> g + Vo and 3p/ot >> YS~Vp,

we obtain

QL

V.g, + (@' + np) 5% =0 (18)

Thus we see how different approximations lead to different
forms of the continuity equation.

The relative specific discharge q, in the continuity equation (18)

can be written in the form

= | R

P dp
(Vp + 0gVz), ¢* = z + J m (19)

p
o
where k is the medium's permeability (or scaler k for an isotropic

~

medium) and p is the dynamic viscosity of the water.

Finally, (18) can be rewritten in terms of ¢* as

. * Q*
v qr * So gt =0 (20)
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where S_* = gp (' + ng). Because in (20) we have V + g, and
not V - g, it would not be appropriate to refer to S; as a
spécific storativity (= change of water volume per unit volume
of porous medium per unit change of ¢*), although often S;

is defined so in the literature. It is also often assumed that
o' >> nB, so that ng is‘omitted.

CONDITIONS ON TOP AND BOTTOM OF AQUIFER BOUNDARIES

To obtain equations of flow and subsidence in an aquifer,
we integrate the point (or three-dimensional) equation (18), or
(20), over the aquifer's thickness [Bear, 1977]. By this procedure
we obtain an integrated equation where the dependent variables
(e.g., average pressure, or effective stress) depend only on the
planar coordinates x and y and on time. The bottom and top
boundary surfaces of the aquifer cease to serve as boundaries.
The conditions on these boundaries become source/sink terms in
the corresponding two-dimensional equations.

In order to perform the integration along the vertical, we
have to know the boundary conditions on the top and bottom bound-
ing surfaces of the aquifer.

We shall consider three types of top and bottom aquifer
bounding surfaces: an impervious boundary, a semipervious one and
a phreatic surface (with or without accretion). A more detailed
discussion of the integrated aquifer equations, taking into
account the conditions on the top and bottom bounding surfaces

is given in Bear [1977]. To simplify the discussion, we shall
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assume here that the shape of the lower aquifer boundary is steady
(i.e., independent of time). Denoting the elevation of a point
on this surface by bl = bl(x,y), the shape of this surface may

be described by the function
Fl = Fl (x,v,2) =z - bl(x,y) =0 (21)

We shall assume that the shape and position of the upper
surface vary with time; the elevations of points on it are
given by b2 = bz(x,y,t). The function describing this surface
is

F, = Fz(x,y,z,t) =z - bz(x,y,t) =0 (22)

The thickness of the aquifer is given by B = b2 - b1 =F, -F

(Figure la). For any moving boundary we also have

2

dF__BF . _
'a‘E——E'l‘Ij VF =0 ' (23)

where u is the speed of displacement of the boundary.
When we consider the flow of water, the condition to be

satisfied at any boundary is

I
o

g -n E]u, -« VF (24)

2

where [A]u,ﬁ = A]u - AIQ denotes a jump in A from the upper
side (subscript u), the lower (aquifer) side (subscript %) of the
boundary.

An impervious boundary is a material surface with respect

to the water (i.e., no water passes through it). Hence
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(g - n E)lz * VF = {q, + n(V, - w} 12 « VF =0 (25)

If we also assume that F is a material surface with

respect to solid, then

vy - E)Iz « VF =0 (26)
Hence, (25) written for the impervious boundary F2 becomes
q. *« VF, =0 (27)

An alternative form of boundary conditions can be obtained

in terms of g from (23) and (25)

oF
N oy for a moving surface :
q |, VF, = (28)
- 0 for a stationary surface

where n]l = n is the aquifer's porosity at the boundary.
In a leaky aquifer, let F, = 0 be the surface through which
leakage takes place. If the surface is also assumed to be a

material surface with respect to the solids, the boundary condi-

tion on it is

S
. ] - . = e . *
[gr]u,z VF2 0 ; VF 5 Vo?

e VF
a 2

(29)

S - . .
where K is the hydraulic conductivity of the semipervious for-

=

mation overlying the aquifer. When the leakage takes place through

a relatively thin layer of thickness B° and resistance

o° = BS/KS, we may write the condition in the form
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e VFP. = — (30)

where (¢i - ¢*) is the difference in head across this layer.
When a phreatic surface serves as the upper boundary of a

flow domain; we have on i£ the condition

BFZ
ql - vE, =-NVz - VF, + [n]u,k Pr (31
1y SF )
= - N + [n]u I} "2
3t
where q = N= - N Vz is the rate of accretion, and -[n]
<lu ~ u,?

=nl|, - n|u should be interpreted as effective porosity or

L

specific yield.
INTEGRATION ALONG THE THICKNESS OF A CONFINED AQUIFER

As stated in the introduction, our objective is to obtain a
field equation to be used for predicting subsidence as a func-
tion time and of the plane coordinates x and y only. To achieve
this goal, we start by integrating (20) describing saturated
flow in a three dimensional space, along the vertical thickness
of a considered aquifer, taking into account the various boundary
conditions on its top and bottom surfaces. This will yield
equations written in terms of dependent variables which are av-
eraged values. The latter are functions of time and the plane
coordinates % and y only. Following the procedure outlined by Bear
[1977, 1979, p. 5221, the integration of (20) means

bz(XIYIt)

. *
(v gr + So ot

ydz = 0 (32)
bl(x,y)
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By performing the integration, we obtain

L . - . G * o5
v Bq, + grle VFZ grlFl VFl * 55 (B 5t * ot
oF
2 oF
boor| =2 o gl 1, _
v, 3% Pl )] = 0 (33)

where the tilde (~) symbol indicates an average over the vertical

thickness B, e.g.,

5*(XIYIt) =

W=

J o*(x,y,z,t)dz (34)
(B)

and B = B(x,y,t).
The primed symbols indicate vector components and deriva-

tives in the x,y directions only. For a confined aquifer by

assuming vertical equipotentials, i.e., &* = ¢*l = ¢*l ’
F F
2 1
and using the condition given by (27), (33) reduces to
V' « Bq ' + S* B 9% _ (35)
ir o ot }

In (35), all dependent variables and coefficients are now averaged
values. The average relative specific discharge, ié,may be

expressed in terms of ¢*, assuming vertical equipotentials, by

b b
~ 1 [72 1 2 '
g; (X,Y,t) = E j gr'(leIZ,t)dz = - E { 5' « V ¢*d2
i by by
K' (b, K' b,
~ o 2 . * = - =_ . ' * * - bk
* - 5 Jb V'o*dz 8 [v Jb d*dz + ¢ |F2 VF, b F, VF,]
1 1
R
= - 2 . IR * * - Ak
5 [V'BO* + ¢ g VF, b |F VE, ]
2 1
K . N .
= - X . vk S AvAl * - * e R . [
o [BY'o* + (F*V'B + ¢ 'Fz VF2 ) Fy VFl] K VAR

(36)
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where K'(x,y,2) and i'(x,y) are the hydraulic conductivity
tensor and its average over the vertical, respectively.
Hence, (32) becomes

~ a(b*

. v, Ti%xy — &%
v (BK V'p*) S¥ B o1 (37)
Let us introduce the following approximations for the
spatial and temporal derivatives of ¢*
P ~ |~~l - e p
V'o* = V'¢g ~ — V'p + V'z , ¢ = z + B (38)
N Pg
gp
and
2% . 3¢ . 1 dp , 9%
3t 3t | - 3t T 3¢t (39)
e
where z = bl + % indicates the average elevation of the (moving)

mid-thickness of the aquifer.
By integrating (17) instead of (20), and making use of (28),

we obtain

oF oF
' . ~' -— ——~2_ —_]; q P 3—.¢_*. =
v Bq Ny 3¢ * 0y 3t Sop P9 B =% 0 (40)

By aésuming ﬁ::an = n'F (or accurately so, if the aquifer is
1 2
homogeneous), (40) becomes

dd*
ot

o3
o

-V' - Bq'=n24+5_ ¢ g (41)

op

o+

Since we have assumed that the bottom surface at z = bl(x,y)
is stationary,and redefining o'in (7) for vertical compressibility
only, as

_ 1 _ 1 %72
"B .~ T B (42)
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We obtain from (39)

— ) &r (43)
i'mpg OF

Or, since usually &'Bﬁg/2<< 1l (e.g., for sandy-clay aquifer,

6g = 100 N/m3, &' = 107/ m?/N, 1/4'Bog = 1000, B = 50 m)

8 _ , _4'Bpd Ad* | ~yn~ 3%

R 5Bpg ot - B9 g% (44)

1+
2
Hence (41) becomes
~ U'eRy' = S*% 99*
v Bg So B 5% . (45)

where §O** =pg (na' + gop)' If we use (37) and approximate

—— .~ - ~ i~ ~
= (1 - n) o + nB =(1 - n)a' + nR, then Sé* = pg(a' + 1nBp),

S
op
i.e., with these approximations q'

~

~

q,', and both (41)

and (45) may be approximated by

~ ~ - 8$
[ (] ' = —_r
v (5 BV'¢) S, B 5t (46)
where §O = 5; = §o** = average specific storativity.

If net withdrawal takes place at a rate of Q, = Qw(x,y,t)
(in terms of volume of water per unit area per unit time), we
should add - Qw(x,y,t) on the L.H.S. of (46). This comment is
valid also for the other aquifer equations developed below.

We note that in (46), the transmissivity of the aquifer

T = K' B and its storativity S = §O B vary with B. In fact, XK and
§o also depend on the porosity n-which varies continuously during

the consolidation process. Usually this effect is neglected in

aquifers (not so in clays).
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Equation (46), usually neglecting the affect of B on T and
S,is the basic continuity equation for aquifer flow, i.e., for
predicting the piezometric head distribution ¢ = 5(x,y,t) in

an aquifer.
INTEGRATED EQUATION FOR A LAYERED CONFINED AQUIFER

Let a confined aquifer be comprised of m layers of thick-
ness B , B = Z%n[ Fig. 1(b)]. Each layer is homogeneous, but
o (M)
the various layers may have different hydraulic (e.g., K)

and elastic (e.g., a') properties.

We assume here that some of the layers are semi-pervious,
or even impervious, they are not continuous, so that the whole
complex may be regarded as a single aquifer with essentially
horizontal flow.

By integrating (20) over B, we obtain

b M b
2 . **_8_¢1 - 2, ° * a¢*
f (v d, * S&*5y)dz B mil J mAV 9m * Som 55—)dz
bl bm_1,u
Dzd (VeB_q
= D 'B q' + q . V F - q CVF
m=1 M=rm ~rmlFm m, g ~rmlFm_l m-1,u
dp*
* — =
* S5om Bizy) =0 (47)

where we assume that equipotentials are vertical throughout the

. . T * = * = H = * . [y
thickness B(i.e. ¢m ¢m Fm-l b4 En ¢* for all m); subscript u

and % denotes upper and lower side of F.

If we assume that all the surfaces separating adjacent layers,
as well as top and bottom impervious bounding surfaces are material
surfaces with respect to the solids, then for every surface Frns

m = 1 through M - 1, we have [qr]um-VFm = 0. Hence (4) reduces to
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M M 3$*
. J?' * =
Vo B3 * (21 Som Bn) 3t 0 (48)
or, using (37)
M - M 35*
V- (mgl Km Bp)® V'ex = (mgl ng B 3t (49)

L K' B)

Equation (49 can be used to define the transmissinty (T =(@)zm m

and storativity (S = S* B ) of a layered confined aquifer.

X
(m) "om "m
INTEGRATED EQUATION FOR A LEAKY-CONFINED AQUIFER

For a leaky aquifer, where F, is a semipervious boundary, by

following the procedure outlined above and using on F. the condi-

2
tion expressed by (30), we obtain
1 ) g 8(1)*
V'e Bql + g *+ VF, + S * B =0 (50)

2riu 2 o ot

where Iy 'VF2 may be expressed by either (-K® Vo*) u s VF

~

2

or, for a semipervious layer which is a relatively thin (B')
membrane, by'A¢*/OS where ¢° = BS/KS is the resistance of the
membrane and A¢* is the difference in ¢* across the membrane (posi-
tive for leakage from the aquifer).

Inserting gq! as expressed by (33) in (47), leads to
dr ,

*

-2

v'(g'B . V'g¥) - dply © VF, = Sx B g

(51)

+

We may also apply to (51) the same approximations leading to
(46) . When pumping takes place, we add the term -Qw(x,y,t) on

the L.H.S. of (51).
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Equation‘(Sl), with transmissivity T = K'B and storativity
S = §O* B are the basic aquifer continuity equation used for
determining b* = ¢* (x,y,t). Usually the effect of changes in

B on T and S are neglected.
INTEGRATED EQUATION FOR A PHREATIC AQUIFER

To emphasize the fact that in this case the upper boﬁndary
is a phreatic surface, we shall replace bz(x,y,t) by the ele-
vation h(x,y,t), so that the thickness of the saturated flow
domain will now be given by B = h - by .

Following the procedure and assumptions (e.g., vertical
equipotentials) outlined above for a confined aquifer, we first
obtain (33), rewritten in the form

3o*
5t

L ~' . - ° n ~* -
v'-Bq. + q. F, VF2 q, Py VPl + So B 0 (52)

From (28) it follows that on the impervious bottom,

VF, = 0.

?rlFl ) 1

For the phreatic surface, we obtain from (31)

3F2
EIrle * VF, = - N - Sy'zF - (an)le - VR,
or
q cVF, = - N + 8 B _ (nv)F . VF (53)
~rlF2 2 yot ~S 2'F2 2
where S = - [n]u I} is the specific yield of the phreatic aquifer.

We often neglect the third terms on the R.H.S. of (53), assuming

ny, + VF, << S 9h/dt. Then, with 6* = h, (52) becomes
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VAR Bci]; - N= (s + SSB) — (54)

In general, §O*B << S
In this case, the total flow in the aquifer is given by

h(x,y,t)
B! = (=K' + V¢*)dz = - X' + (h - b;)Vh (55)
P1(x,y)

where the approximation is due to the assumption hﬁ%*x¢*|h = ¢lb“'
1
The resulting equation is therefore

} oh

[ -
v ot

(56)

RN

L - - - = * -
(h bl) Vh - N {sy + s* (h b,)

When the phreatic aquifer is composed of several layers,

we replace in (56)

K(h - b;) by I KB,
(m)

and where £ B_=h - b (57)

m 1
S *(h - B,) by I S* . B, (m)
o 1 (m) ©m m

One should note that actually within a phreatic aquifer, the
total stress at each point varies as the water table fluctuates,
although in our basic assumption expressed by (9), we have

neglected this effect.
SUBSIDENCE IN A CONFINED AQUIFER

At this point, the usual procedure for determining land
subsidence ¢(x,y,t) in an aquifer due to pumping, is to start
by determining the piezometric head distribution $==$(x,y,t)

or the drawdown s = $(x,y,0) - @(x,y,t) in the aquifer, as
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produced by the pumping distribution described by - Qw(x,y,t),
using (46) for a confined aquifer, (51) for a leaky aquifer,
or (56) for a phreatic aquifer (always adding - Q, on the left

hand side). Then, the total subsidence,say for a confined aquifer
§(x,y,t) = B°(x,y) - B(x,y,t) (58)

is determined by using

a
\4

8(x,y,t) = B o' pg(s - Az) *Ba' pgs = B = Ap (59)

where, usually, B and e are taken as their initial values B° and e®°.
may also adjust B and n (or e) as subsidence and soil compaction
progresses. Actually (59) 1is valid only for our present assump-
tion of bl = bl(x,y). Otherwise, the land subsidence should be
defined only as §(x,y,t) = b (x,y) - b, (x,y,t).

In this procedure, the effect of change in porosity on
permeability and on soil compressibility, as well as the continuous
change in B, is usually neglected; initial values B°, n°, k°
are usually employed.

Instead, let us try to state the prob:
of § = §(x,y,t) as the dependent variable. We shall continue to
assume that bl = bl(x,y), i.e., independent of time. We shall
assume, as is common in consolidation studies, that some initial
steady state exists, and that pumping produces incremental effec-

tive stresses and pressures which cause subsidence. Accordingly,

with ¢ replacing ¢*, we write:

One
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n=n°(x,y) + ﬁe(x,y,t) * n°(x,y), n° >> ac
¢ = ¢°(x,y) + 5e(x,y,t) = ¢° - s(x,y,t)
~ ~ ~e
p = p°(x,y) + p (X,y7,t)
Y - < ~,€
o' = o'"Ax,y) + o' (x,y,t) (60)
B = BO(X,Y) - 6(erIt)
z = z°(x,y) - 2°(x,y,t) (60)
Since
B° ~
> - >0 — E - —_) = - e——g
Z z° = (bl + 2) (bl + 5 ) z- = 5
6= 0'° - B° =3§'°(x,y) + 5'®(x,y,t) - [p_(x,y)
~e
+ p (x,y,t)] = const.
We have
Hence
1 3B Ap° 968
OLl=___;a'B____.=———- (62)
B spe ot ot
since
§(x,y,t) = o' Blp(x,y,t) - p°(x,y)] = a' Bp® (63)

Inserting (60) through (63) in (46) we obtain for the undisturbed
initial steady state

~

V' « (K" B » V'$°) =0 (64)

and for the deviation from steady state produced by pumping

ze
' (RY R TP IR = 3 3¢
v (5 B V') Qw(x,y,t) = 5, B 5% (65)
where usually we neglect the effect of subsidence on ng'B

in (64).
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Obviously some steady state pumping may also be included in
(64). Similarly, steady state recharge and natural replenishment

may also be included.

Now,
00 . 1 2p® L, 92° _ 1 53 &, . 3 &
5t - = 3t T - o5 (50 tae (D
og og a'B
-2 H ¥ s (66)
pga'B oga' Pga'B

i.e., the effect of changes in the aquifer's axis is negligible, and

~,a - ~ S
VoS = {L vpe-+vze = 9; V(:%—) + V(3)
pg pg  o'B
- (—1 +-%W6-+ L osytor L vs (67)
pga'B og G'B  pga'B

where we have assumed that 4'B may vary in the xy plane, yet

we have assumed

3s
ot '

QU
Q
H

B , 1
._E..;.&.‘..

( 1

) << va'; >>

pgd'B

(68)

|

OrfH

1 1
§V(S >>§VB+

W
Q-

(o34
+

With these approximations (which amount to linearizing the

effect of the gradual change in B) we obtain from (46), with

pumpage .
K'
a ~ a ,
V. v8) - Q,(x,y,t) = §_ L gg (69)
pga’ pga’
or, with K' = k' fg/u,
.]z'
~ ~ 936
vV e (— V§) - QW(XrY,t) =Sy 3¢ (70)

I3

u
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~

SO
=1 + n

)

where év =
~ !

oga.

QR |m

In Soil Mechanics, the coefficient of consolidation for

an isotropic medium is defined by

C, = k/ua' = k(1 + e)/va = k (1 + e®)/ua_

v
N For clay nB << 4'. Then év = (1 + 1 %) ~ 1 and (70), with
C, = E'/&'u, may be written in the form o
> _ _ 2§ (71)
v (gv Ve) - 9, = 3%
In order to solve (71) for 8=6(x,y,t), with §(x,y,0) = 0,

in a given aquifer domain, we have still to provide boundary
conditions on the boundaries of the flow domain in the xy plane.
At a sufficiently large distance from the zone of pumping,
subsidence vanishes, i.e., § = 0.
At the circumference of fully penetrating pumping wells,
we may use the condition of specified pumping rates. For an

isotropic aquifer, we obtain:

Q. (t)
0 _ oS _ d 1 -~e S
57— = - TBK 5= | _ = TIBK s (—p + 2)|r=r
w \
~y 2’ dr . ~, OF v or
a'pgB r=r,, ua r=r

which is a Neuman Type boundary condition.
It is of interest to note:
(a) By the various approximations proposed here, we have actually

linearized the problem by neglecting the effect of subsidence on Cyr

although we may still have a nonhomogeneous aquifer, with

gv = gv(x,y)
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(b) Due to the linearization, superposition is permitted.

This means that the total subsidence is equal to the sum of
subsidences produced by the individual wells, each with its

own pumping schedule. |

(c) We note that the thickness B is eliminated from both the
p.d.e. (71) and the boundary conditions. Puzzling as this may
seem at first, this is a reasonable consequence of the lineariza-
tion and of the fact that for the same Qw’ drawdown is inversely
proportional to thickness while subsidence is proportional to

drawdown.

Equation (71) and the various initial and boundary
conditionsare similar to those commonly used for determining
drawdown and piezometric head distribution in aquifers. The
advantage lies in determining ¢§(x,y,t) in one step rather than

by first determining drawdown.
SUBSIDENCE IN A LAYERED CONFINED AQUIFER

Let ém denote the contribution of the mth layer to §.
Then, with vertical equipotentials, and hence with the draw-
down s (and ﬁe) common to all layers, we obtain the total

subsidence § from

§ = I Sm = pg I Bmum(s - Azm) = pg( Bmanﬁs
(m) (m) (m)
= (I Bo)p" (73)
(m)
or
a, .
§ = [ Z B_( ) 1Ap (74)
(m) ml + e o
With the nomenclature of the previous section applied to
each layer separately, and with %* X 5 we now obtain

V'« (Z K'B)V'g° =0 (75)
(m) ~m m
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for the initial steady flow without subsidence producing

pumping  and

V' « [ I(K' Bm)v'ie] - 0,(x,y,t) = I(s

34°
(m) =M ) om Bm! T (76)

for the subsidence causing piezometric head changes produced
by the pumping.
By applying (66) and 67) to each of the individual layers,

(76) becomes approximately

V' (CV8) - 0 (x,y,t) = § 28

v w'XeYet) =S o2 (77)

where
) LS

& - @) ™ M _ T L~ _(m) om s
v ~ oL ' Sv T . = .

pgZ o' B g I o'B og I oy pPg I a'B

(78)

where év and év may vary in the xy plane. Again, if water com-
pressibility is negligible (i.e., nt << a&), then év - 1. It
should be noted that in év’ the contribution to T is primarily
by the aquiferous layers while the contribution to Zaéﬁm is
primarily by the clay, or aquaitard, layers (see example below).

Table 1 gives some typical values of év‘

EXAMPLES -
Let us demonstrate the one-step approach proposed here
by examples of a single well pumping from a (practically)

infinite homogeneous confined aquifer. For this case, (71)
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reduces to

Q
O

3¢ (79)

2
o~ . 9°8 _
C. 1 r]—gE

v ar2

+ L
r

QL

The boundary condition at a sufficiently large distance
from the pumping well, say R = r is §6(R,t) = 0. At a fully
penetrating pumping well, which is pumped at a constant rate
of flow, Q. the condition is obtained from (72)

3¢ Qw

lim [r —] = - — (80)
2TC
v

or
r=1r >0
w

where we have assumed an infinitesimally narrow well.

The solution of (79), subject to the above condition, is

0 2
§ = —2 w(=—) (81)

4ﬂCV 4CVt

Equation (81) is analogous to the classical Thesis
solution for drawdown in a single pumping well;W( ) is the
well function for a confined aquifer.

As a second example, we consider a region (approximated
as a circle of radius R) in which more or less uniform pumping
takes place through a large number of wells. In this case we
may use the solution derived by Hantush [1964] for drawdown
in an aquifer which contains a large number of pumping wells
within a circular area of radius R,with more or less uniformly

distributed pumping rate. For this case, for t >O.4r2/éV and r <R
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ZQ 2 4C_t 2 2

6 = gre- (W(=—) + —J— [1 - exp (-———)1 - (D) %exp(-——)} (82)
v 4CVt R 4CVt 4CVt

for t > 0.4R2/évand r >R

) (83)

ZQW is the total pumping within the circular area.

In order to demonstrate the application of this solution,
let us assume a layered confined aquifer, for which the data is
summarized in Table 2. For this layered aguifer system, év
is calculated to be 6 x 103 cm%%ec. For ZQW = 500 lt/sec, the

amount of subsidence calculated at a distance of 3 km from the

center of pumping by using (83), is shown in Figure 2.
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SUMMARY AND CONCLUSIONS

By averaging the three-dimensional equation of water
mass conservation, o&er the thickness of an aquifer, and
introducing a relationship between changes in averaged
piezometric head and land subsidence, a single equation in
terms of land subsidence has been obtained for pumping
from a confined aquifer. This was stated in the introduction
as the objective of this paper. The development has been
based on (1) Terzaghi's concept of effective stress, (2)

an assumption of essentially horizontal flow in the aquifer,

and (3) an assumption of vertical aquifer compressibility
only and no horizontal displacements. Similar equations
were also derived for a layered aquifer.

Obviously, due to the various approximate assumptions
involved, the resulting land subsidence should be viewed
only as an estimate of the true land subsidence. Such estimates
should be sufficient for most engineering purposes. The
justification for averaging over the vertical stems from the
fact that we are interested here only in regionalland sub-
sidence problems, i.e., problems in which horizontal lengths
of interest are much smaller than the aquifer's thickness.
Otherwise, we have to treat the problem as one in a three-

dimensional space.
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An advantage of the resulting equation is that the
problem of determining land subsidence has been reduced to
one in two-dimensions (x and y) only. The examples demon-
strate the simplicity of the proposed approach.

In a subsequent paper, the authors present another
model for regional subsidence, based on averaging Biot's
three-dimensional model. Such a model provides also estimates

of averaged horizontal displacements.
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Range of typical values for K,

a', and CV for different soils.

Material K(cm/sec) O"(mz/N) Cv(cmz/sec)
Gravel 1 - 102 10710 _ 1977 107 - 1012
Sand 1077 -1 1072 - 1072 1072 - 10°
Clay 10711 _ 107t 1078 _ 1070 107% - 10°
Peat 1074 - 102 2 x 1074 0.5 -~ 50




TABLE 2. Data for a hypotetical
aquifer system.
Thiii?ess Aquifers Aquitards
K(cm/sec) a'(mz/N) K(cm/sec) a'(mz/N)

5 6 x 107°| 1x107°
40 0.010 | 1x107’
10 3x107%| 7x107°
30 0.005 3x 107/

7 1x 107° 5 x 107°
50 0.008 9 x 1078
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LIST OF NOTATIONS

a, = a coefficient of soil compressibility.

bl,bz = elevation of bottom and top aquifer bounding surfaces.
B = b2 - bl = aquifer thickness

gv = consolidation coefficient

ds( y/dt = total derivative of ( ) with respect to the

moving solid.

dw( )/dt = total derivative of ( ) with respect to the
moving water.

e = void ratio

F=20 = equation of a surface, where F(x,y,2z,t) = z - b(x,y,t).

h = elevation of water table

I = unit second rank tensor

K = hydraulic conductivity tensor

n = porosity

N = rate 6f accretion

o,e = (as superscripts) denote steady initial values
and incremental, or excess, unsteady ones, causing
consolidation.

P = pressure 1in water

< P >¥ = pressure in water

q = specific discharge (vector) of water

q, = specific discharge (vector) relative to solids

Qw = rate of withdrawal

r = radial coordinate

R = radius of circular pumping area

S = drawdown

S = storativity (= SOB)

S Sg = pg(a' +nB)
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* % = ' =

SO pg(no' + Sop) pg (o + nB)

o = specific storativity with respect to pressure

p changes [= (1 - n)a + nBg]

T = transmissivity

Sy = specific yield of phreatic aquifer
u, = (as subscripts) denote the upper and lower side

of surface F(x,y,z,t) = 0

u = speed of displacement of the boundary

U = solid displacement
U = volume of solid

os
U = volume of water

ow
v, Vs = water and solid velocities, respectively
W( ) = well function

X,y = horizontal cartesian coordinate

z = vertical cartesian coordinate

z = average elevation of the mid-thickness of the aquifer
o = coefficient of matrix compressibility

o' = coefficient of matrix compressibility of a moving solid
B = water compressibility

S = land subsidence

€ = volume dilatation

U = dynamic viscosity of water

o = water density

g, g' = total and effective stresses, respectively

¢* = z +J dP__ _ Hubbert's potential

ge (p)
< 9 > = s0lid stress
b* = % J(B) ¢* dz (and similarly for other variables

and parameters).
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piezometric head [= z + p/ /pgl
over a vector or an operator (V',V'.) denotes

vector components or operators in the xy plane
only (i.e., not in a', B' andd")
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SECTION III

MATHEMATICAL MODEL FOR REGIONAL LAND
SUBSIDENCE DUE TO PUMPING
Part 2: Integratéd Aquifer Subsidence Eéuations for
Vertical and Horizontal Displacements.
Jacob Bearl and M. Yavuz Corapcioglu2
Department of Civil Engineering, University of Michigan

Ann Arbor, MI 48109
ABSTRACT

A mathematical model for regional subsidence due to
pumping from an aquifer is developed on the basis of Biot's
work on coupled three-dimensional consolidation.

Following Biot's work on three-dimensional consolidation,
with coupling between mass conservation and equilibrium equations,
a mathematical model for regional subsidence due to pumping
from an aquifer is developed by averaging the three-dimensional
model over the thickness of the aquifer and assuming conditions
of plane stress. Both (vertical) land subsidence and horizontal
displacements, as functions of plane coordinates and time,
can be estimated by solving the model equations for a given con-
fined or leaky-confined aquifer. An analytical solution is
presented for the special case of a single well pumping from

an infinite homogeneous isotropic aquifer. The solution provides

lOn sabbatical leave from Technion-Israel Institute of Technology,
Haifa, Israel.

2On leave from Middle East Technical University, Ankara, Turkey.



estimates of changes in averaged (over the vertical) values of
piezometric head, vertical subsidence and horizontal displace-
meht. The results indicate that under the conditions of the
studied case of radial flow, the solutions for piezometric head
is identical to the one obtained by non-coupled models. Further-
more, half the volume strain is produced by vertical subsidence,
while the other half by the horizontal displacement. Hence,

the vertical subsidence is only half the value obtained in non-
coupled models which neglect horizontal displacement. A

numerical example demonstrates these conclusions.



INTRODUCTION

The author's objectives in Part 1 [Bear and Corapcioglu,
1980] of this paper were to develop a mathematical model to
determine the regional subsidence, 6 = §(x,y,t), produced
by pumping from an aquifer. As a first step, a water mass
conservation equation was developed for a point in a three-
dimensional flow domain using Terzaghi's concept of effective
stress, and taking into account the compressibility of both
the water and the solid matrix. However, only vertical aquifer
compressibility was considered. This equation was then inte-
grated (or averaged) over the thickness of the considered
aquifer, employing a procedure which takes into account the
conditions on the top and bottom surfaces bounding the aquifer
[Bear, 1977, 1979]. 1In this way, the commonly used aquifer
continuity equation in terms of averaged piezometric head
& = 5(x,y,t) was derived. Then, assuming certain relation-
ships between changes in $ and changes in aquifer thickness,
B, a single equation was obtained, in which the dependent
variable was land subsidence § = §(x,y,t). This equation
enables a direct determination of 6(x,y,t), for a given dis-
tribution of pumping from an aquifer. Certain averaged consoli-
dation coefficients have to be known.

Because only vertical aquifer compressibility was con-

sidered, often observed horizontal displacements, which



are due to the nonuniform distribution of drawdown, could
not be taken into account in the model described obove.
Acdordingly, the main objective of the present paper is to
develop a mathematical model for regional aquifer consolida-
tion due to pumping, in which both vertical land subsidence
as well as horizontal displacements will be considered.
Obviously it is possible to achieve this objective by
solving the problem as stated among others by Verruijt (1969),
in a three-dimensional space, following the classic work of
Biot [1941]. This, no doubt is the most accurate approach.
Analytical solutions of such problems were presented by
de Josselin de Jong (1963), de Leeuw (1964) and Verruijt,
1969). An example of a numerical solution of this problem,
employing essentially the same formulation, but for a saturated-
unsaturated domain, is presented by Safai and Pinder (1979).
Numerical solutions of this problem were also presented by
Ghaboussi and Wilson (1973) and Lewis and Shrefler (1978).
However a basic assumption underlying both the earlier paper
on this subject (Bear and Corapcioglu, 1980) and the present one
is that we are dealing with a "regional" problem, i.e., one
in which horizontal length of interest, say between a pumping
well and a point at which both the piezometric head and land
subsidence are observed, are much larger than the aquifer's
thickness. In such cases, the aquifer may be considered as

a relatively thin slab, with averaged (over the vertical)



properties and with averaged dependent variables (e.g.,
piezometric head) which are functions of the plane coordinates
x,y and of time only. The reduction from a problem in a
three-dimensional space to one in two-dimensions only, is
achieved by the procedure of integration over the vertical,
already mentioned above. This procedure is also employed
here.

In this way, the resulting subsidence model contains
averaged piezometric head (or water pressure), land sub-
sidence and averaged horizontal displacement as dependent
variables which are function of x,y, and t only.

To a certain extent, the work follows that of Verrujt
(1969), but with a more generalized averaging approach.

To avoid repetition, the basic methodology of averaging
over the vertical, taking into account the conditions on the
top and bottom boundary surfaces, is presented only in Part 1
and is not repeated here.

Although in this work the porous medium is assumed to be
perfectly elastic, other types of media, described by different
stress-strain relationships may be employed, following the
procedure presented here.

We shall consider only the cases of a confined and a
leaky confined aquifer. However, in the latter case we shall
assume that the semi-previous formation is a relatively thin

membrane and shall not take its compaction into account, separately.



THE INTEGRATED (WATER) MASS CONSERVATION EQUATION

In Part 1 (Bear and Corapcioglu, 1980), we have
developed the following equation for water mass conservation
equation in saturated flow, where both the water and the solid

skeleton are considered compressible

dwp dsn
+n—-——-—dt+p—-—+an'V=0 (1)

v - q dt ~S

<X

where all symbols are defined in Part 1 (see also list of
symbols at the end of this paper).

With Y denoting the solid's displacement and € denoting the
volumetric strain, we have

BUX BUY BUZ 3
= . - + 2. - 2. . - — = = =
€ \Y g - + I TR v s Ve V

9€E
By using (2) to express V -V_ and d_n/dt, and assuming 3¢ > VS'V€

dp/dt >> V - Vp, (1) becomes

. € 9P _ g . g = 1 3p
\Y (gr+8t+n6 £ 0 ,6—5-'5-5 (3)
or, in terms of o*
P
de dd* dp
A + = =0; ¢* = <P __ 4
qr t t PonB 5% 0; ¢ Z+j gp (p) (4)
Po

We now integrate (4) over B = b2 - bl’ using the procedure

presented by Bear (1977, 1979). We obtain

and



bz(x,y,t)
e ap*
(Veg,_  + =— + ognB Ydz = 0 (5)
bl(XIYIt) =X t ot
vie BG! + I - VF, - *VF.] + B §E+~~ nkB Gl
9r gr‘Fz 2 gr.Fl 1 ot & Pgn ot
oF oF ’
~ ~orTx OB | 2 _ % 1y _
pgnplo* == + ¢ |F23t ¢ lFl 5g1 = 0 (6)

For impervious top and bottom boundaries which are also

material surfaces for the solid, the second terms on the L.H.S.

of (6) vanishes in view of the condition q, « VF = 0 satisfied
on an impervious boundary described by F(x,y,z,t) = z - b(x,y,t) = 0,
where 9. = - K- Vo*.

By assuming vertical equipotentials, i.e., b* = o* F

= ¢* P the last term on the L.H.S. of (6) also vanishes.
2
We obtain

e yh*
V'-BG! + B g + PgigB af_f =0 (7)

where B§£ is expressible by
B3y = -BK"V'F (8)

In the presence of sinks of magnitude éw (x, yv,t), (7)

becomes
Se Do *
1, a1 g€ ~ o~ ~ =
V'*BGL + B mp + PgnBB 71— + Q. 0 (9)



In a leaky aquifer, dp |p_* VF2 expresses the leakage
~ 2

through F We shall express this leakage by A¢*/L where L =

2"
resistance of semipervious layer = ratio of the thickness to
the hydraulic conductivity of that layer; A¢* denotes the
difference between the averaged piezometric head in the aquifer
(5*) and that in an overlying one. The continity equation

then becomes

&% * ~
v . Bﬁ; + B o€ + pgnBB 0% + Ag* =0 (9a)

Because we are interested only in subsidence, we separate
the flow into (a) steady flow, including possibly steady
pumping, without subsidehce, and (b) excess flow producing
subsidence. Denoting parts (a) and (b) by superscripts ° and

e, respectively, we have

p(x,y,2,t) = p°(x,y,2) + po(x,y,z,t)

gr(xIYIzlt) = gro(XIYIz) + gi(XIYIZIt)
e

o* (x,y,2,t) = ¢*¥(x,y,2) + 6*(x,y,z,t)

etc., and the corresponding averaged values

p(x,y,t) = p°(x,y) + pS(x,y,t)

q‘:];.(XIYIt) = C:I:];,O(XIY) + CEI'_e(X,y,t), etc.

The continuity equation (9) can now be separated into

V'B3l® + é& =0 (10)
Vound ~
*e ~
V'Byle + B oo + PgigB 2L + 02 = 0 (11)



For a leaky confined aquifer, we add A¢*/L on the L.H.S.
of (11).
In separating §£ into its two parts, we have neglected

the effect of consolidation on k,p, etc. Equation (11)

may be rewritten in terms of p® by employing

vra* ~ vva)=_l'_v'§+v'§, ¢=z+tp—,§=—'];—§——2' (12)
P9 g
and
29+ 3¢ 1 3p 3%
5t % 3t © g ot | 3t (13)

The averaged temporal rate of change of €,9e/9t can be
obtained as follows

38
— == V o Vv = V' o V ' + V . w - v AV

1 (14)

Since the top and bottom surfaces are assumed to be material
surfaces with respect to the solid, we have on them

(Vg - E)IF «VF =0 (15)

Hence:

\4

~S’F " VF

.VF

[[}
G

- 3F/3t (16)

and (14) reduces to

o oF oF
38 _ v .59 2 1 =, , OB
Bae =V BYg g g = VBV + 52 (17)
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With Ys defined by (2), we obtain

U 5 . oF 3F
BV!' = vV'dz = J ~ dz = —(BU') + U — - U' ~—
~S J () ~S (B) ot ot T~ < |F2 ot ~ |F, 3t
pYill F dF
— i ~l_a_B_ ' 2‘_ ] 1
=B * W et Ve 5w - e, 5w ) (18)

At this point, following the integration procedure, we

need information on U' and U"? . This information is not

IFZ P
1
available. One could use an assumption with respect to slip

or to shear stresses on the boundaries. Instead, we introduce

a simplified assumption, namely that of practically no

variation in horizontal displacements along the vertical.

g = u' = g (19)
In view of (18) and (19), we now obtain:
— 20" 3u"
€ < 9B ~ 9 ~ 9B
—_— = v'u —— —_— = S ' —_— v'c ¢t —_—
B 3¢ Byt *3c -3 "V BB g Ut + 3¢
(20)

The continuity equation (ll) can therefore be rewritten for a
confined aguifer in terms of variables ¢* (or p®) and Q’

(or components ﬁx and ﬁy) as

~

3y’ Pt
~ ~ 9B . dp*e ~e
' re ''e B 4+ 2 — =
\Y Bgr + vV B 5T '*Bt + pgnRBB st t Q 0 (21)

where B&£ can be expressed in terms of 5*9 following (8).
For a leaky confined aquifer, we add Ad*/L on the

L.H.S. of (21).
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Equation (21) may be linearized by introducing

)

B(x,y,t) = by(x,y,t) - by(x,y,t) = b§(x,y)4-Uzl .

- —(bihmy)+Uzl

5 F

BO(x,y) + b; A, =1U - U (22)

z F z!F

2 1

and neglecting second order small terms.
THE INTEGRATED EQUILIBRIUM EQUATIONS

The componentsof the total stress tensor, 0, at a point
within the flow domain satisfy the following equilibrium

relationships (Biot, 1941 Verruijt, 1969).

aoxx chy aoxz
5= T oy T 3z T =0
3o t1e] 30
YX Yy yz -
s+ 5y + 55+ fy =0 (23)
BOZX Bozy aozz
3% T dy t o FE =0

where f represents the body force and the inertial force
- 2

components pa U; , 1 = x,y,2, have been neglected. Using
ot
g = ¢g' - pI to express the total stress in terms of effective

stress and pressure (positive for compression) in the water,

and (following Verruijt, 1969) separating both g' and p into

steady initial values g'® and p%, and consolidation producing
incremental effective stress, g'e, and excess pressure pS,

we obtain for the initial steady state equations
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aoi? 31 °
‘——a—}% + f]?. - % = O,irj = errZ (24)
J 1

and for the incremental effective stress and pressure

3g.€

> e
i 9 .

The summation convention is to be invoked in both (24) and
(25) as in subsequent equations written in identical notation.
In writing the last two equations we have assumed (as a good
approximation) that the body force remains unchanged, i.e.,
£€ = 0, i = x,y,2.

We now assume that the solid is isotropic and (for the
relatively small deviations considered here) perfectly elastic.

For such a solid, the stress-strain relationship are expressed

by:

BUi U, BUk
018 = Glag- * 5 * Mg ) Syy
i3 j i x

(26)

where € = BUk/Bxk, G =E/2(1 + v) is the shear modulus, E
is the modulus of elasticity, v is Poisson's ratio and
A=E/(L + v)(1 - 2v); X and G are the IL.ame constants.
Relationships other then (26) may also be used.

Following the methodology of deriving integrated aquifer
equations, before continuing to integrate (25) and (26), we
have to introduce the conditions on the top and bottom boundary

surfaces.
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The conditions for total stress at any boundary F = 0
is

[g]u o VF = 0 (27)

or, in terms of effective stress and pressure

[

rQ

~ 14

Separating into initial steady state and displacement
producing excess effective stress and pressure, we obtain for

the upper surface (F2 = 0)

]

{g° + ge}u - VF {(g'° - p°I) + (g'® - p€I)}, - VF

2 2

where, as before u and 2 denote the upper (or external) and

lower br internal) side of F. Hence,

o . = ' - o .
9° 1y VE, =(g'° p E)IQ VFZ
€ . = e e . »
g Iu VPZ (o P E)Iz VF2

Assuming now that the total stress remains unchanged, i.e,

g€ = 0, we obtain the condition

e e . -
(g P g)le VF, = 0 (30)
In a similar way we obtain for the lower surface (Fl = 0)
re e . =
(g peI) |F1 VF, =0 (31)

Next, we integrate the first equation in (25) i.e., for

i=x
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e
e 2, X2 g, - (32)

5 oF OF 5 BFZ
—_— e re - re —— 'e e —
5% (B39 + oye F, 3% ‘xx|F, 3% ' 3y (Boge) + O o F, 3y
oF oF
- ore 1 e e 3 nxe e 2
XY 1F) oy * o IF -9 lF X(Bp I IFZ ox
oF
e 1 _
%l e o 33

However, from the first equation of (30) and (31), we obtain:

dF. oF, oF, dF.
cg'e 1 ' i i i .
J— e —_— ' — - _— = =
SR Oxy F, oy * kg F, 0z P F, 9x 0 1 1e2
(34)
Since BFi/Bz =1 for i = 1,2, by inserting (34) into (33),
we obtain
) e 3 grey - i 58y =
% (Bo ) + y(Boxy) % (Bp~) =0 (35)

In a similar way, from the two remaining equations of (25) we

obtain
2 (B5'e) (Bo'e) e (36)
0x TUyx yy, ~ 3y P
(Bc'e) + i (BO'e) =0 (37)

in which all averaged values are functions of x,y and t, only.
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We now express the average excess stress components in

terms of averaged displacements, making use of (26) and the

assumption expressed by (19). We obtain:
30, aﬁy 30, dU, 30 A,
e= et et %5x Yoy 3z T Taw tE
30 aﬁy A,
g'e = g e = —— — —
Crs AE + 2Gex (A + 2G)ax + A(ay + B )
N 30 a&y A,
0'® = A€ + 2GE._ = A——= + (A + 2G) =% + A=
Yy y oy ( ) 3y B
aﬁy 3u_
S1e = ——— = F'e
Xy G(Bx * oy ny
0. 30 30 3 OF
U F
5'€ = .—-—z _}_{. = __.._E. _G- Hg_g .__._l._— _—];
Ixz G(Bx * 5z ) G 5% ' B {Uzax * Ulezax Uz’Fl 8x]
oU ouU oU oF 1
'€ = — Yy - __Z _C:'_ 0 .2.)_]%. _.___l- —J
Oyz G(Sy * 3z ) G oy * B [UZB * UzIF oy UZ‘F 9y
y 2 1
. 5T, i Sﬁ; A
re = e — = _— —_ 3 -
0,5 AE + 2G "z A(ax + 5y ) + (A + 2G) 3 (38)

By inserting these expressions in (35) through (37), we

~

obtain 3 equations in the 4 variables pE, ﬁx' Uy and ﬁz,

all functions of x,y and t.

~ ~

; 3T, aﬁ? Az 5 U, 9
5 (BL(A + 26) ==+ A(5§—-+ )1+ §§-{BG(§§— + §§X )}
9 ~e
- =— (Bp) =0 (39)

ax
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. aﬁ; aﬁy . aﬁ;
T {BG(§§— + 5§—0} + 3y { BI[A . + (A + 206)
d ~e, _
" 3y (Bp7) =0
~ OF
U 9B "2
9 z ~ —— + U - U
30 . 3F
.9 z ~ 9B 2
Foy LBy O, 5yt Ualr, 3y~ Ve

For constant

= BO(X,Y) + AZ(XIYIt)I AZ

<< B°, we obtain by

N

(40)

oF
Ix

| o

)}

oF

1)y -
poag) T 0 (D)

A and G (actually'Xand é), and with B(x,y,t)

linearizing (39)

and (40)
N 3(A_/B°)  9p°
2~ € z _
GV'! UX + (A + G) 5; - G 5% - 3% =0 (42)
2~ ag a(Az/Bo) I’Se (43)
GV'U_+ (A + G) == -G - =0
Y ( ) oy oy oy
or N ~
U U d(A_/B°) e
2~ X y z _9op~ _
GV! UX + (A + G)(§§— + v ) + A oy 5w 0 (44)
30 U 3(A_/B°) e
27 X y z _ 9p_ _ 4
GV Uy + (A + G)(§§— + §§—) + A 5y 3y 0 (45)
The second and third terms on the L.H.S. of (21) may also
be written in a linearized form
9U' | 3B _ o 9F
v .3t T " P IE (46)
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= ~|. ]
where B BO + Az, Az <<Bo and we have assumed Ys V'B << 3B/3t.

In (41) we have used U =U and Uy'F = U as in (19).
2

X F2 X Fl ylFl

We note that in (41) we have only u,- In prineciple, together
with (21) we have 4 equations for the four dependent variables.
However, in these four equations, we have Ulel and Ule2 (and
A, = Uz|F2 - Ulel, B = B° + Az). These are actually conditions
on the two boundaries Fl = 0 and F2 = 0, for which we have
no information. 1In fact, the land subsidence UleZ is the very
unknown for which a solution is sought in most subsidence
problems.
At this point we may continue by introducing certain simplify-

ing assumptions instead of the missing information. For example,

we may assume that the bottom of the aquifer is stationary i.e.

_ e . . . ~ 1
Uz Fl = 0 and that Uzvarles linearly with z, i.e., UZ =5 Uz F2
= - 6/2 where § is the land subsidence (positive downward). Then
we end up with 4 equations for ﬁx, ﬁy’ § and §e(or $*e).
Another approach is to assume that consolidation occurs
under the condition of plane incremental total stress, as
suggested by Verruijt [1969, p. 347]. This means
e e e e e _
Oz = 0, Oy = Opy = 0, oyz = ozy =0 (47)

As indicated by Verruijt [1969], this assumption is
justified when the aquifer is between two soft confining layers
(e.g., clay) which cannot resist shear stress. Furthermore,

this assumption also justifies (19) since in a relatively thin
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aquifer as implied by the plane stress assumption, lateral
deformations is, more or less, uniform throughout the re-
latively small thickness. From (47), it follows that (25)

reduces to

Boi? 5p&
TR T 3= 0 1= xy (48)
J 1

with the boundary conditions (30) and (31) also written the
xy coordinates only. Following the integration procedure
which led above to (35) through (37), we now obtain (35)

and (36) only. Equation (37) drops out. We could have ob-
tained the same result from (35) through (37) by assuming
that deformation occurs under conditions of plane incremental

averaged total stress described by (47).

Accordingly, (41) vanishes, but (39) and (40) or (42)
and (43) or (44) and (45) remain unchanged. We now have to
solve (21), (44) and (45) for p°, GX, ﬁy and A, . The needed
fourth equation is now obtained from the first condition in (47),

which leads to

' _ e
0,7 = P (49)

and therefore, from the expression for oég in (38),
3T U A A

5y Yy + (A + 2G)B AE + 2G 3 (50)

~e _ X
p = X(§§— +
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This completes the formulation of the problem where
ﬁe(x,y,t), ﬁx(x,y,t), ﬁy(x,y,t) and Aé(x,y,t) are the sought

for unknowns. Usually we assume Uzl = 0, hence 4, = UZIF

Fy 2

= - §(x,y,t) = land subsidence.

Initially, the values of these variables is zero. As
external boundary conditions, we shall usually assume vanishing
values of all these variables at a distance sufficiently
remote from the zone of pumping (éS(x,y,t)).

By differentiating (42) with respect to x, (43) with
respect to y, linearizing them and then adding the two

equations, we obtain

—~ —~
2 Uy 3, 2 B 2~e
1 L — - \J -
(A + 2G) V (ax + 3y ) + AV 5 V' p 0
or, for constant A, G and B°
5 9T, aﬁ? A, .
' ——— —_ — - D =
VAR N VR 2G)(BX + 5y ) + A 5o 0 (51)

Following Verruijt (1969), we integrate (51), obtaining

CIi aﬁ§ A, 5, .
()\ +2G) ('é-}—{— + -ay—-) + }\g—é-= ()\ + 2G)e - 2G ﬁ)— = p + f(x,y,t)

(52)

Where f satisfies V 2f = 0 for every t, comparing (52) and (50),

obtained by introducing the plane stress assumption, we find

that — —
BUX ) Az Az

where € is defined by (38).
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If we assume no average lateral displacements, i.e.,

~

7' = 0, (21) reduces to
- B | ~ ~,_ dp*e
re —_ = =
V:Bgr + AT + pgnRB ST 0, B Bo + Az (54)
and from (50) we obtain
e Az
p. = (A + 2G) 5 (55)

which are two equations in ﬁe and 4,.
We mav combine (54) and (55) to yield

VIBG! + Blr———x + 8] 2B _ 0 (55a)
<29 A+ 2G t

where we have assumed Az << B.
For a leaky-confined aquifer, we add + £¢*/L on the

I..H.S. of (54).

Equations (54), (55) and (55a) are obtainable also by
assuming vertical compressibility only, with a' = 1/(A + 2G),
as assumed by the authors in Part 1 of this paper.

If we now compare (53) with U' = 0 with (50), obtained
by the horizontal plane stress assumption and vertical dis-
placement only, we obtain

A

z
f—-ZG?

As pointed by Verruijt (1969) the function f "describes
the deviation of the simplified Terzaghi-Jacob Theory from
the Biot Theory" where the former assumes vertical consolida-
tion only, while the latter considers the three-dimensional

nature of consolidation. Here f expresses the deviation
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when integrated aquifer consolidation equations are used.

It is of interest to note that here in the comparison
between (52) and (55), £ does not vanish, while Verruijt (1969)
shows that in the comparison between Biot's (1941) three dimen-

sional considerations and (55), f vanishes.

INTEGRATED EQUATIONS IN RADIAL COORDINATES

When we consider consolidation in the vicinity of a
single pumping well, we start by writing all flow and
equilibrium equations in cylindrical coordinates, assume radial
symmetry and integrate over the aquifer's thickness. Equation
(21) reduces to
r ) aB

+5ais 29 _ o (56)
* 3¢ TPINRB —— =

For a leaky confined aquifer, we add + A¢*/L on the L.H.S.

of (56). Under the conditions of plane incremental total
. e e v e C s
stress (i.e., Opr = Cpp = 0, O,y = 0), the only remaining

equilibrium equation reduces to

re e _ 'e
80rr Orr %96 Bpe
+ - =0 (57)
or r or

The constitutive equations reduce to

U U 4] U
OlF = 26 gt de i e = gt e & 4 2
U
04e = 26G ;ﬁ + e
3U
6'® = 26 —Z + Ae (58)

2z 92z
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By averaging (57) over the vertical thickness of aquifer,

using (30) and (31), we obtain

336£§ N
e - —— =
9) AT (Bp™) 0 (59)

or

Averaging the constitutive equation yields

35U u_ A 35U
1€ = (2G + A) z—— + Al— + = 1 = 26 s+ AE (60)
U 3. & b
548 = (26 + M F+Alg— + =1 = 26 — + AE (61)
~ Az 8Ur Ur AZ ~
G188 = (26 + N5 + Mg+ &1 = 26 5 + A€ (62)

where € = aﬁr/az + ﬁr/r + AZ/B. By substituting (60) and
(61) into (59), we obtain

aﬁr B aﬁr U

9

2 r) ) ~e
or

- 5~ (Bp

+ 5T ) = 0 (63)

From (62) and the assumption of plane incremental total

. ~ 2 ~ ~
stress, we obtain G__ =0 = Oéi - p®. Hence (to be compared

with (50) above).

~

. A BU_ U, A

N

Equations (56), (63) and (64) constitute now a set of
equations to be solved for Gr, A, and §e. By inserting 6r =0
in (64) we obtain the relationship for the assumption of
vertical compressibility only.

By linearizing (63) we obtain
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30 U
9 (—L
dr 9r

+ -5) + Aé—--
r

™2
QL
[5;
]
o

2G (65)

@
a}
@
a}

Integration of (65) with constant G and A yields

30 U N A
26(5= + 5) + AE - p° =(26 + NE - 26— - 3% = g(t) (66)

where g(t) is the arbitrary function of t.

Equation (66) has also been derived by Verruijt (1969)
without the vertical integration. However, for the particular
set of assumptions underlying the analysis here (plane stress
assumptions and vertical integration), f in (52) and g in (66)
are identical.

A comparison of

A, 3ﬁr Gr
= 26 5 + AE = (26 + M & - 26[5~ + ] (67)

~e
P or

obtained from the plane stress conditions (49) and (62), with

(52) leads to

30, U, 8, A,
f(r,t) = 2G(§'r—— + -—r— - §—°- = 2G(€ - 2 —B?) (68)
which is similar to (53). The term A,/B, representing the
boundary conditions on F, = 0 and F2 = 0, is introduced by the

vertical integration procedure.

It is of interest to note that the term

_ 3U 30
v'u' = (525 + §§ZJ is replaced in the radial case by
£ jL(rU )= 3?5 + ﬁr VAR L he in the latter case U' = U_lr
T 3r(*U) = 5% — = U', where in e e e U' =0T lr.
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By inserting (64) into (63) we obtain

U U A A

. 69
= = =) = 2G(& -2§)=g(t) (69)

N
a
+
|
I
i
1]

From (68) it then follows again that here g(t) = f(r,t).

In comparison to Verruijt's (1969) non-integrated equations,

oU
we observe that in Verruijt's case f(r,t) - g(t) = 2G —=.

9z
he difference is due to the fact that he does not introduce the
plane stress assumption in the equations written in casterian

coordinates.
AVERAGED EQUATIONS FOR A LAYERED CONFINED AQUIFER

Figure lb gives the nomenclature for a layered confined

aquifer, comprised of M layers of thickness B_ IB = B
. (m;

Each layer is homogeneous, but the various layers may have

m.

different hydraulic (e.g. K) and elastic (e.g., G,\) proper-
ties. We shall assume that equipotentials are vertical
throughout the aquifer.

This means that when some of the layers are semipervious
or even impervious, they are discontinuous, so that the entire

complex behaves as a single aquifer, with essentially horizontal

flow.



25

One way of solving such a problem is to treat it as one in
a three-dimensional space, employing appropriate boundary
conditions at the surfaces separating the individual layers
from each other, as well as on the top and bottom bounding
surfaces. Obviously, this approach is the most accurate one.
Another possibility, which yields estimates of subsidence
for problems of a regional nature, is to apply the averag-
ing procedure employed above, to the individual layers.
However, that will require information about conditions at the
interfaces between the layers and also abou£ the rate of
pumping from each layer. The layers are coupled by the trans-
port of water and stress across these inner boundaries. To
circumvent the lack of such information, we shall consider
the entire aquifer as a single unit with averaged behavior.

By integrating (4) over B, we obtain

b2 o€ dp* ! bm’z
L) e — = Z V'
Jb (Veq, + 3¢ + egnfgp)dz - [b (Vqm
1 m-1,u
d¢€ M
m d)* -— 1. S . - 'VF
t o + pgntm ot )dz-—mE{V Bmgrn1+ q IFm va qrﬂllFm_l m-1
d€ pt
m S o 0%y _ 70
+ B, 3t (pgnt)Bm t ) 0 (70)
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~

where we have assumed ¢; = = ¢* for all m;

*nlr

ox |
m-1 m Fm

subscripts u and % indicate upper and lower sides, respectively.
If we assume that all surfaces separating adjacent layers,
as well as top and bottom impervious bounding surfaces, are

material surface Fo»m= 1 through M - 1, [q.] JF_ = 0,
ir'u,f

m

where [A] , = A|u - A[Q indicates the jump in A from the
’

upper side of F  to its lower side. On the top and bottom

impervious surfaces we have g

~r]FM~ VFy = 0 and qr]F « VF_ =0,

: o
respectively. Hence, the second and third terms in the sum
vanish. The contribution to the total horizontal flow Zquém
will come mainly from the aquiferous layers.

By following the procedure outlined in (14) through

(20), we obtain for B Bem/étassuming that within each layer

u_| zu |, 2U.
~m Fm—l ~m Fm ~m
de 30! 9B
m_ Zm, g, LIS m
Bt = 5t V' Bn *t Bpor’ ‘Um t 3% (71)

If we now assume that all averaged horizontal displacements

are equal, i.e., ﬁﬁ = U' for all m, then

I N e

] ~ 9B
V'B+B'ﬁ A [2' +5? (72)

M de ]
X

"B m
1 m ot ~ 3

+
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Altogether (70) becomes:

30"

VARI) N = 9 ~ 9B |, . . d ¥
- - — o ! — . —— Z -
(m)(Bmgrm) ot VB + B ot vieu' + 5t t pr((M)ntm) ot 0
(73)

to be compared with (21).
For a leaky confined aquifer, we add + A¢*/L on the L.H.S.

of (203), expressing the leakage . VFM.

9r FM
Equations (23) through (26) are also valid within each layer.

With the assumption that the total stress remains unchanged,

i.e., ge = 0, (30) and (31) are valid for the top and bottom
bounding surface. We may therefore rewrite them for Fy and FO,
e 3 = . e -— . —

(g'® - p g)lFM VEy = 0 (g peg)lFO VF_ = 0 (74)

On all intermediate surfaces, we have the condition ex-

pressed by the second equation of (29), namely
(g.e - Pel)lz e VF = (g.e _ Pe£)|u°VF (75)
With these conditions, let us now integrate the first
equation in (25) i.e., for m= x

. XX Xy xz _ op° _
- 5x T 3y ' 3z 3% 192 = 0 (76)
m=1 b

m-1,u

M (b 3o 'e do'e do'e
J m, L (

M oF oF
d o ; m m-1 ) ~
% {== (B &' ) + o!C = - 0!& + (B.o'C. )
m=1 9xX m xxm' XX Fm’ﬁax XX Fm—l,u 9x oy m- xym
oF oF

+ o'€ m e m-1 -

Xy F —_ - ! + 5'e - g'e

Y m,u 9y xylFm-l,z dy xz'Em,2 xz"Fm-l,u
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- 5% Bf) - P lp gt P %1 =0 (77
9x m-m Fm'zax Fm-l,u 90X
In view of (74) and (75), (77) is reduced to
3 2 (B 512 ) + (B 516y - 2 58 =0 (78)
m=1 9x m XXm m- xym ox '"m'm

and in a similar way, from the remaining equations of (25),

we obtain

M

e 0 ~, e _ d ~e _
le{~§(Bm0yxm) + §§(Bmoyym) §§(Bmpm)} =0 (79)
M
v e ___ ' =
m—il{a (B0 xz) + (Bmoygm)} 0 (80)

in which all averaged values are functions of x,y, and t.
Equations (38) are valid for each individual layer.

Hence, for the layered aquifer, the equilibrium equation (39)

becomes
M ~ ~ ~
ouU U A oU
xm ym zm 9 Xm
e 1 Bx[B (A + 2Gm)ax + Bmxm(a + B_ Y]+ ay[Bme(EE“_
30 9B_B°
- = } =0 (81)

Equations similar to (40) and (41) may be derived in a similar
manner.
At this point we introduce the simplifing assumption (consistent

with the plane stress assumption to be invoked below) that
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U = U_ and U = U_ for all m; the total land subsidence is
Xm X ym ~y
given by ZAzm = 0. Under this assumption, (81) may be approxi-
(m)
mated by
; _ . 90 . aﬁy s, ] . 30 aﬁy
3% [BL(A + 2G) 5% F Mg—y— + g5t 1+ W[B{G(S;{— + W—)]
3 ~e, _
-5z (BB) =0 (82)
Y ~ ~e ~e
where BA = ZBmAm, BG = ZBme and we have assumed that ¢ >> zi

i.e., changes in averaged piezometric head are much larger than
vertical displacements of the mid-elevation of the individual
layers. All averages in (82) are over the entire thickness of
the aquifer.

Thus, with the above assumptions and definition, (40)
remains valid, if A and G are replaced by X and G, respectively.
Attempting to continue in the same manner and develop the equa-
tion corresponding to (41), will end up with the same difficulties
as encountered ébove when dealing with a single layers. We
therefore introduce at this bbint the assumption of plane incremen-
tal total stress. This means that (47) may be written for each
individual layer. Equations (37) and (41) vanish. Equation (50)
with A and G replaced X and & and remains also valid. The problem

actually reduced to one in a single layer with averaged properties.

EXAMPLE: DISPLACEMENTS DUE TO PUMPING FROM A SINGLE WELL
Consider a single fully penetrating well of radius r
pumping at a constant rate 63 = QW from an infinite single layered

confined aquifer. We wish to estimate the subsidence §(r,t), the
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horizontal displacement 5r(r,t) and the pressure drop —ﬁe(r,t).

Initially, the aquifer's thickness is B°(x,y) = constant. The

coefficients k,2 and G are assumed constant.

(a) The continuity equation (56), which with

T ~—

Bl(qp) 15 - B

I

=

34z __ 1 3B

(ie _:.L__...._<<_
Tt Az Ot

K|

2 k2385,
or T 95

30U 3u
~ 3 Az 3 ry -~ 9 r
= B a—t-(—'B—), and ‘a—f(r B—'—ar ) = B ar(rar )
E—B-<< E) reduces to
or r''
a5e
+ np 5%— =0 (83)

Actually, assuming a hydrostatic pressure distribution

along B,
Te
~ ~
op_ _ 9p ~_ 02
or r t P9 r
where
5 - bl + b2
2

Here and in (88) below we have assumed

~ ~
op ~ _0Z
st > P9 37
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With k°, fi°, fi° denoting the respective initial values or

values at some intermediate pressure, we obtain the linearized

equation
13 . ko ap® |, 38 . ~,,8B° _
“rar Cgmar) taet MRy 7O (832)
(b) The definition of dilatation
aﬁr 6r A,
E=w T T (84)
(c) Equation (66) rewritten as
Az e
(26 + \)E - 2G B° = fj + 2g(t) (85)
where the 2 was added for convenience.
(d) Equation (64)
e A
p =2G7323+)\§ (86)

~

There are 4 equations in the variables 5e, £ , U, and 4,

The boundary and initial conditions are:
t <O r>r

u, b, €=0 (87)

t >0 r=r P_ = w (88)
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r - « ’ ﬁer € , AZ =0 (89)

r =r ’ U =0 (90)
w r

r + o ’ Ur - 0 (91)

Following Verruijt (1969), we combine (85) and (86) to
yield

(A + G)E = 8% + g(t), g(0) =0 (92)

By inserting € from (87) in (83), we obtain

1 9 ke 3pS 1 oy OPC 1 3g(t) _
tor T T Gre ™ e -ire e O (93)
or
2~e ~e ~e e,
R T ]
dr v k°
~ ~y
where o" = 1/(G + A) and CV = = k = — K = g
H(a" + 0B) py(a" + [B)
where S is the aquifer's storativity and T is its

transmissivity. Verruijt (1969) already indicated that (94),
(except for the last term on the L.H.S., which will be shown
below to vanish as g(t) = 0), is identical to the commonly used
aquifer continuity equation, derived by assuming vertical com-
pressibility only. However, in (94) the aquifer's compressibility
is defined by a" rather than by d= 1/(A + 2G) (compared with
(55)).

The Laplace transform of (94) leads to

2ze ze oy -
9 p 1l op 1 _ze _ upa" =

>t r o7 c_Sp =T, 9% (93)
or A k
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where an overscope denotes the Laplace transform of a variable.

Equation (95) is a Bessel equation. Its general solution
is
—e ﬁﬁ"cvs -
=~ - TN — - v g
ClIO(r//CV/s, + czKO(r//cV/s) (96)

~

ko

where Io and KO are zero order modified Bessel functions of

first and second kinds, respectively.

From (88) and (89), written in their transformed forms

se aée _ Ot 1

B> =0atr > e and 5= |r=r = 5= pos. 5 ¢ Ve obtain
w wo X

QM /Cv/s
2 2mr _B°k%s K, (ry/ /C_ /s) (o7

Actually, from (85) and (89) it already follows that g(t) = 0.
Hence

Qw u/Cv/s Kb(r//cv/s)
p = - .

2ﬂrwB k Kl(rw//Cv/s)

O)

(98)

Making use of the approximation x Kl(x) - 1 for x > 0,

and taking the inverse of the resulting expression §e, we obtain

~e ~ éi Qw r2 Sr2
o = 3 = - 7y W), u = Ic_t = ITt (99)

which is the usual equation used for drawdown in a confined
aquifer. For a leaky aquifer, Verruijt (1969) obtained the
same result except that W(u) is replaced by the Well Function

for a leaky confined aquifer. In writing (99), 0 (p) was taken
a constant as for as it affects T. Also, we have ' neglected the

change in Z (see (13)) in the relationship between &e and pe.
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By summing (85) and (86), we obtain

5 = (A + G)E = g&/a" (100)
Hence: e

. prga"

€= - - W (101)

If we assume a" >> nB, we may neglect fluid compressibility,

and (10l1) may be rewritten as:

Q 2 ~0
~ _ A _r _ k
©= g W v S T @ (102)

=5 =3 (103)

which is a very interesting result. Under the assumption of
vertical compressibility only, we obtain (55) while here, the
relationship between ﬁe and € is given by (100). We note also

the difference in the coefficient as indicated already by Verruijt

(1964) .
Accordingly the subsidence § = - Az is given by
§ = z—a— W(u) (104)

8mC
v

This is half the value obtained in Part 1 where it was assumed
that only vertical consolidation takes place. The latter assump-

tion leads to an overestimation of subsidence.
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From (103) and W(u) = - Ei(-u), we obtain
Q 2
-1 3 ~ _ “w r
£ or TY) T - g ie (105)
v v
N Qwr r2
Oy = f grcp B (- g p)dr * G
v v
~ Q,t 2
rUr = MOJ El(—X)dX + C3; X = 4Cvt
where W(u) = - Ei(-u) is the exponential integral.
Using a table of integrals, we obtain
~ 't -X
ru,. = Z}gb[XEl(‘X) -1l+e 7] + Cyi
or
-Q t C
~ W -u 3
Ur = m[uW(u) + 1 - e ] + - (106)

Using the boundary condition (90), we obtain

Ot Yy ré
C3 = gypo [y, Wlny) + 1 e 71, u = Ic t
Hence
Q. t -u
x W B _ _ _-u \
Ur = Zngr[uW(u) uwW(uw) e + e 1

-u
At this point we approximate, assuming uwW(uw)= 0 and e "~ 1.

Then

I

r _ 4mB°r

[uW(u) - e % + 1]
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or
Qr _ -u
0, = - oo W + 2

(107)
r lGﬂCv

~

As r>o, u > o, Ur » 0, thus satisfing (91).

Since Gr = 0 at both r =r and r = » , it may be of interest

w
to find its maximum value at r = roe We calculate
EEE =13 (0= EE = - __Eﬂﬁ_ W) - *w) 1 - e—u]
dr ~ r dr r r 8ﬂCvB° 2 2u
For Bﬁr/ar = 0, we have
-u
W(u) = l-e , u = 0.323
u
r_ = 1.1367 /C t (108)
m v

Figure 2 gives the plots of

o o
AT 4ﬂCvB . 81rCv ‘ leCVB -
- Q—.— (i) ; - 0 € 0 3 and - —————O T Ur
\Y w ‘W W

Given T, Bi QW, C., a", r and t, we calculate u = r2/4Cvt

v

~

and determine 56, € , ¢ and Gr from these curves.

For a leaky aquifer, the analysis is very similar to that
given above for a confined aquifer. 1In (83) we add + A¢/L
on the left hand side. This case was solved by Verruijt (1969).
He obtains for ﬁe an expression similar to (99) except that the

Well Function for a confined aquifer, W(u), is replaced by the
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Well Function for a leaky aquifer, W(u,r//TL). +/TL is the
leakage factor. This means that the same replacement should be
introduced also in (101), and (104). For the horizontal dis-

placement U., we obtain

2
-1 - L
5 Q. - 1 - e 4TLu
Ur = - W [W(u,r//TL) + r2 (109)
Ut g

Numerical Example (see Table 2 in Part 1 for T and Cv).

Data: Confined aquifer with

T = IK B = 821 m°/d = 95 em®/s, B° = 142 m, q, = 180 m>/h
=5 x lO4 cm3/s, CV = 6X lO3 cmz/s;
For this case, r/f]rmax = 51093.
Figure 3 shows ﬁe, § and Gr as functions of r after 3 years
of pumping.
Figure 4 shows variation of ﬁe, § and Gr with time at 3 km.

form the pumping well.
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COUPLING VS. UNCOUPLING

In Part 1 of this paper [Bear and Corapcioglu, 1980],
the problems of determining the pressure distribution and that
of determining the distribution of land (vertical) subsidence,
were actually uncoupléd. Horizontal displacements were neglected.

The uncoupling was introduced by the coefficient a'defined by

dse 1 dsn dsp
= = L -dji i 1 i
3t -7 3t o T - Then, once the p-distribution 1is
known, the subsidence could be determined b% a'B p /3t = - 3§/9t.
2
For the radial case example we obtained § = Ane W(-grg) and
Qw5 g 2 v rCy

~e X
P =TT W('4E"vt) )

In the present paper, we left the two problems coupled
d_e

by leaving %% as an approximation of a%— in the flow equation (3).
However, in the radial case example we note that since the
special conditions of the problem led to g(t) = 0 in (92),
we could relate £ to §e and replace 23&/3t in (83) by
38/ot = (38/5p%) (08%/08) = (A + 6y hop/at = a"  3p%/3t.
In this way (83) would have become a single equation in §e,
identical to the one solved in Part 1 and indeed, the solutions
for ﬁe are identical in both solutions. Then, once ﬁe is known,
we can use (92) to determine € and from it use (103) to determine
Az and @r.

Thus, the interesting point is that also in this case,

under conditions which lead to g(t) = 0 in (92) the two

problems may be uncoupled.
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SUMMARY AND CONCLUSIONS

The three-dimensional coupled Biot equations are averaged
over the vertical thickness of an aquifer, assuming that the
problem justifies an averaged approach, an assumption of shear
free boundaries and plane stress. The development is based on
(1) Terzaghi's concept of effective stress, (2) an assumption of
essentially horizontal flow in the aquifer, and (3) elastic
stress-strain relations. The resulting model consists of a set
of averaged mass conservation and equilibrium equations, with
averaged pressure, volumetric strain, and vertical and horizontal
displacements as dependent variables for which a solution is
sought.

Closed form analytical solutions are derived, by using the
Laplace transformation, for an example of radial flow to a single
pumping well in an infinite homogeneous aquifer. The expressions
obtained for averaged changes in piezometric head, land subsidence,
and horizontal displacement are functions of x,y and t only. The
solution for changes in piezométric head (or pressure) obtained
for this example in Part 1 [Bear and Corapcioglu, 1980], where the
flow and equilibrium equations are uncoupled by introducing a
coefficient of aquifer compressibility and the solution obtained
here, where flow and strains are coupled, are identical. In
fact, this result is obtained due to the boundary conditions of
the problem which leads to g(t) = 0. 1In other words, these con-

ditions cause uncoupling. Therefore, by (103, the contributions
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to total volume strain by the horizontal and vertical strains

are equal. This leads to values of land subsidence which are half
of those obtained by the uncoupled approach presented in Part 1.
Also an expression is derived here for the horizontal displace-
ment with a universal function R(u) for the single well case.

The results show that the horizontal displacement has a maximum
value some distance, ro from the well. An expression is given

for calculating this distance.

When numerical solution techniques are employed, the

graduate change in B, n, k etc can be taken into account

Whenthe equations are linearized, superposition is applicable.
For example, the total effect of wells pumping simultaneously

can be calculated simply by adding the effect of the individual
wells. In this way, the total excess pressure drops (or draw-downs),
the land subsidence, and the horizontal displacement at an obser-

vation point in a multiwell system can be easily estimated.

In order to arri&e at an analytical solution for the radial
case example, we have linearized the equations in the present
work.

In this work, perfectly elastic stress-strain relations have
been assumed. The results of many uniaxial tests indicate an
approximately linear void ratio versus effective stress relation
on a semi-log scale, and in many cases the effect of hysteresis
due to swelling and reloading is neglected. This indicates that

compaction of soils is not elastic in nature. This is especially
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exhibited by various clay and sand types. When rebounds occur
different coefficients of compressibility may have to be introduced
for the rebounding process which are much smaller than those for
compaction. The land subsidence occuring during pumping is mostly per-
manent and cannot be recovered by termination of pumping or by
injection.
Whenever a leaky aquifer has been considered here, the

consolidation of the semipervious layer has not been taken

into account. We have considered only the consolidation of

the pumped aquifer, assuming that it is made up of a defor-

mable material, or that its average behavior is that of a

deformable material due to layers and lenses of soft materials

The general model presented here can be used, using numeri-
cal solution techniques for nonhomogenous aquifers and for other

than elastic stress-strain relationships.
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LIST OF NOTATIONS

bl’bz

B

C
~V
ds( )/dat

a,()/dat

ARA H oA

=

B

23

c
=

Il o ]

elevation of bottom and top aquifer bounding surfaces
b2 - bl = aquifer thickness
consolidation coefficient

total derivative of ( ) with respect to the
moving solid

total derivative of ( ) with respect to the moving
water
equation of a surface, where F(x,y,z,t) = z - b(x,y,t).

a function of time

shear modulus

unit second rank tensor

Bessel functions

permeability

hydraulic conductivity tensor

resistance of semipervious confining layer
porosity

(as superscripts) denote steady initial values
and incremental, or excess, unsteady ones, causing
consolidation

pressure in water

specific discharge (vector) of water

specific discharge (vector) relative to solids
rate of withdrawal

cylindrical coordinates

a universal function

Laplace transform variable

storativity

transmissivity

(as subscripts) denote the upper and, lower side
of surface F(x,y,z,t) =0
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1]

O

2{e]
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speed of displacement of the boundary
solid displacement

radial displacement

water and solid velocities, respectively
well function

horizontal cartesian coordinate
vertical cartesian coordinate

4

coefficient of matrix compressibility [(XA + 2G)~
coefficient of matrix compressibility [(A + ¢) "1
B - B
o
water compressibility
land subsidence
Kronocker delta
volume dilatation

a Lame constant

dynamic viscosity of water

density of water

total and effective stresses, respectively

Z + J dp_ _ Hubert's potential
ge (p)

% ((B) ¢* dz (and similarly for other variables
J and parameters).

piezometric head [= z + p/pg]
over a vector or an operator (V',V'.) denotes

vector components or operators in the xy plane
only (i.e., not in a', B' and o')
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LIST OF FIGURES

Figure 1 - Nomenclature for a single layered (a), and
multilayered (b) aquifer.

Figure 2 - Universal functions for solutions in a radial flow
’ to a single pumping well.

Figure 3 ~ Spatial change of average piezometric head, sub-
sidence, and horizontal displcaement after 3 years
of continuous pumping.
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COMMENT

After submitting the paper for publication, we found by private
communication with Prof. Arnold Verruijt of Delft Technological University,
The Netherlands, that in 1970 he studied the problem of vertical subsidence
and horizontal displacement in steady flow produced by pumping from a leaky
aquifer. It is interesting that he also concluded that in a pumped aquifer,
horizontal displacements of the same order of magnitude as vertical ones

may occur (Verruijt, 1970).



SECTION 1V

A MATHEMATICAL MODEL FOR CONSOLIDATION IN
A THERMOELASTIC AQUIFER DUF TO HOT WATER INJECTION 7~ PUMPING

J. Bearl and M. Y. Corapcioglu2

Department of Civil Engineering, University of Michigan
Ann Arbor, MI 48109
ABSTRACT

A mathematical model is developed for the areal distribu-
tion of fluid pressure, temperature, land subsidence and horizon-
tal displacements, due to hot water injection into a thermoelastic
confined and leaky aquifers. The underlying assumption is
that the aquifer is thin rélative to horizontal distances of
interest, and hence all dependent variables of interest are
average (over the thickness) values. The solid matrix is assumed
to be thermoelastic.

Following the development of three-dimensional conserva-
tion of mass and energy equations, and equilibrium equations in
terms of horizontal and vertical displacements, the mathematical
model is derived by averaging the three-dimensional model over
the vertical thickness of the aquifer, subject to conditions
of plane total stress. The effects of viscous dissipation and

compressible work have been included in the formulation. The

lOn sabbatical leave from Technion-Israel Institute of Technology,
Haifa, Israel.

2On leave from Middle East Technical University, Ankara, Turkevy.
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resulting averaged coupled equations are in terms of pore-
water pressure, temperature, and vertical and horizontal dis-
placements which are functidns of x,y, and t only.

The equations are non-linear and have to be solved simulta-
neously due to the coupling that exists among them. Equations
and appropriate boundary conditions in radial coordinate have
also been presented for an example of a single injecting (or

pumping) well.



INTRODUCTION

There has recently been a growing interest in two groups
of pfoblems: land subsidence and heat (and mass) transfer in
aquifers, the latter connection with geothermal energy pro-
duction and with proposals to store energy in aquifers by hot
water injection. Only a relatively small number of papers have
treated the problem of land subsidence and horizontal displace-
ments due to pumping from a geothermal field or due to the
injection of hot water into an aquifer. This paper is an
attempt to contribute to this important, and interesting topic.
Its objective is, therefore, to present a model for estimating
land subsidence and horizontal displacement with non-isothermal
flow of a compressible fluid in a deforming aquifer .

A rather large number of papers on heat and mass transfer
in porous media can be found in the literature, especially in
that of reservoir engineering. Bear (1972) reviews some of these
papers. In recent years, with the growing interest in geo-
thermal energy, and with the development of powerfull numerical
techniques, renewed interest in the subject has led to the
development of a variety of models simulating the flow of heat
and water in geothermal (hot water dominated and mixed water-
steam) reservoirs under various assumed conditions.

A study, reviewing and comparing the various balance equa-

tions appearing in earlier works was presented by Corapcioglu



and Karahanoglu (1979). Mercer and Faust (1979) present a
descriptive review of numerical geothermal models. In most works,
thé mathematical model consists of a fluid mass conservation
equation and an energy balance equation, both for a (single,

or multiphase) compressible fluid and deformable medium

[e.g., Huyakorn and Pinder, 1978; Horne and O'Sullivan, 1978],
but do not take into account the complete effect of compaction
and consolidation. In a large portion of the studies, porosity
is assumed to be a function of pressure only. The pressure and
temperature related equilibrium equations are not included in
the model. For example, Faust and Mercer [1979] present a
three-dimensional model with coupled flow and energy equations
for a single and multiphase fluids, and the derived two-dimen-
sional equations by averaging over the reservoir's thickness.
The reservoir's compressibility is taken into account through
changes in porosity produced by changes in pressure.

Lippman et al [1976] introduced a model which simulates
the effects of geothermal production, as well as reinjection, on
the deformation of a liquid dominated geothermal system. Their
approach combines a numerical model for themass and energy
equations with the numerical solution of Terzaghi's consolida-
tion equation. Since the temperature field varies much more
slowly than the pressure, much smailer time steps have been
taken in the flow cycles than in the energy cycles. The full

coupling of the behaviors of the porous solid matrix and the



fluid in geothermal reservoirs, including momentum and energy
transfer and the dependence of porosity and permeability
upon fluid and solid stresses,are discussed by Brownwell et al
[1977]. The ground surface subsidence history of Wairakei
has been examined by Pritchett et al. [1976] interms of the calcula-
ted two-phase fluid flow and the local geology. A similar
study for a geopressured dissolved methane reservoir is present-
ed by Garg et al [1977]. Aktan and Farow Ali [1978] study
the thermal stresses induced by water injection. They consider
a single phase compressible fluid, and calculate the stress
distributions in the reservoir. Similarly, Ertekin [1978]
developed a two-dimensional, two-phase fluid flow, a three-
dimensional heat flow, and a two-dimensional displacement
model to simulate the subsidence-compaction phenomena in an
hot water flooded oil reservoir.

In a more recent study, Derski and Kowalski [1979] derived
a set of linear equations based on irreversible
thermodynamics. The local temperatures of the fluid and solid
components have been assumed identical. Coupled equations of
conservation of mass, conservation of thermal energy and
equilibrium have been given for a thermoelastic porous medium
saturated with a compressible thermal fluid. - The assumption that
both the solid and the fluid are at the same (macroscopic)
temperature serves as a basis for most of the studies mentioned

here.



As demonstrated by some of the works described above, the
problem of non-isothermal flow of a compressible fluid (or
fluids in multiphase flow) in a deformable porous medium can, in
principle be stated as a model consisting of the following
equations:

- mass conservation equation énd an appropriate motion equa-
tion for the fluid

- energy conservation equation for the porous medium

- equilibrium equations for the porous medium

- equations of state for the fluid and stress-strain relation-

ships for the porous medium.

However, in many cases, in treating problems of flow and
subsidence in aquifers, horizontal distances of interest are
much larger than the thickness of a considered aquifer. Under
such conditions, a. somewhat simpler approach although this
approach is an approximate one, yet yields estimates which
are sufficiently good for most engineering purposes. According
to this approach, the three-dimensional model is reduced to a
two-dimensional one, in the horizontal plane, by integrat-
ing the former over the thickness of the aquifer (Bear, 1977,
1979). 1In the resulting model, all dependent variables (and

coefficients) are averages over the aquifer's thickness.



Bear and Corapcioglu (1980a and b) demonstrate the application
of the approach to regional subsidence resulting from pumping
under isothermal conditions. In the present paper, this
approach is extended to the case of non-isothermal flow con-
ditions,

It is obvious that the approximate approach employed
here should not be used for cases of a strictly local, or
three-dimensional nature.

We shall refer mainly to a liquid flow in a confined
aquifer, with comments relating to the extension of the results
to a leaky aquifers, and to multiphase flows.

A large number of assumptions are introduced along the
development (e.g., that the solid is a thermoelastic one), in
order to simplify the presentations. Also cross-transport
phenomena, like the Soret effect or the Dufour effect have not
been considered in this study. However, the methodology pre-
sented here can also be applied to other sets of perhaps less

restrictive assumptions.



THE FLUID MASS CONSERVATION EQUATION

The discussion in this section is at the macroscopic

level. Without any special notation, all variables are at
the macroscopic level (i.e. averaged over an REV of a porous
medium).

Our starting point is the fluid's (macroscopic) mass
conservation equation for saturated flow in a three-dimensional

space

on
Vepeq + 5EB =0, g = nV (1)

where we have neglected mass dispersion due to microscopic
variations in fluid density and microscopic velocity and where
both the fluid and the medium are compressible. 1In (1), Pe =
fluid's density, q = specific discharge, Yf = fluid's velocity,
n = medium's porosity and t = time.
Equation (1) may also be rewritten as
1 4y leen)

Veve + oen ac 0 (2)

where dw( )/dt = 9( ) /3t + Vf°V( ).
Because eventually we are interested in expressing the
fluid's motion by Darcy's law, we rewrite (1) in terms of the

specific discharge q, relative to the moving solids
d n d p
s n w f _ _
VqetTomaE t oy at I T3 (3)




where Vs is the solid's velocity and ds( y/dt = 9 ( )} /ot + Vs- V().
The change in porosity is related to the volume strain
(dilatation) € of the porous medium by
dse 1 dsn

dt " T-nac - V¥ (4)

obtained from the solid's (macroscopic) mass conservation

equation

p. (1 -n) =0 (5)

9
v ps(l - n)Ys * 3¢ Ps

in which we insert our assumption of constant solid density
Pgr and the definition of € (see below).
In the present study, Pe= pf(p,T), where p is the

fluid's pressure and T is its (absolute) temperature. Hence,

dwpf _ Bpf | dwp . Bpf arT

v (6)
dt P |T dt = 9T | p dt

Introducing the coefficient of fluid's compressibility (at

constant temperature),Bp and fluid's coefficient of thermal

(volumetric) expansion (at constant pressure) B8,, defined by
1 %P 1 %P

"o T o, 75 v Bp =T o FT

P Pe 9P | peconst o¢ p=const. (7)

equation (3) can be written as
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=0 (8)

I » ral = T).
n gene Bp Bp( )

The last term on the L.H.S. of (8) introduces a coupling
between the continuity equation (8) and the fluid's tempera-
ture T. We shall see below that a further coupling is intro-
duced by assuming that the dilatation e is also temperature de-
pendent, in addition to its dependence_on effective stress
(i.e., & = E(Oij’ T); see below).

Note that a fluid sink is not included in (8) and in
other continuity equations in this section. It will be

introduced at a later stage.

Let us approximate (8) by assuming:

Vs°Ve << 9dg/9t, yf-Vp << 9p/ot, VS-VT << 9T/3t (9)

-Then, (8) reduces to

a€ P 9T _
Vedp + 3¢ + mB, gp - By 5T - Bpd, VT = 0 (10)
For vertical consolidation only, we may assume & = e(p,T).
Then
d_si=a_€ i§£+§_§_ iS_T—OL d;si+a ii_s..i_I'. (ll)
dt op | T dt oT | p dt =~ “p dt T dt
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and (8) becomes:

v. p - T .
Veq, + (up + an) 5e t (aT nBT) T +(apys + angp \

P

+ (O‘TYs - nBT\Q-VT =0 (12)

With the approximations of (9), (12) reduces to

Veg, + () + nBl) g% + (ap - ngy) - Bg VT =0 (13)

By introducing (9) and the assumption of € = €(p,T),
with the coefficients ap and Oqs We have actually removed
the coupling with €. Equation (13) includes only p and T
as dependent variables.

In (10) and (13) we express q. by Darcy's law:

~

- _k
gr = m (Vg + pngz) (14)

where k is the medium's permeability which depends on n

p and U are the fluid's temperature and pressure dependent

density and dynamic viscosity. We need expressions for k = k(n),

pe = pf(p,T) and 4 = u(p,T). Usually the dependence of u on

p is mich smaller than on T, and may be neglected.
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THE ENERGY CONSERVATION EQUATION

In this section, we will develop the macroscopic energy
conservation equation. We start from microscopic considera-
tions and derive the macroscopic ones by averaging the former
over an R.E.V. of the porous medium. All symbols with asterisk
(*) denote microscopic values.

The microscopic equations of energy balance for a point

in a fluid continuum may be written as (Bird et al, 1960,

p. 315)
aTY -
* _r *eUPk) = - UeTk _ mk (22 Uk - * o YUk
PECs (gg~ *+ VE'VTE) VeJg Tf(BTE)p§V v - (ZE WP

(15)
where C_ is the heat capacity (per unit volume) of the fluid
at constant volume and JE
conduction. The last term of the R.H.S. of (15) expresses the

is the flux of thermal energy by

irreversible rate of internal energy increase per unit fluid

volume by viscous dissipation. In many cases, this term is

neglected. We may do so also here, or note that if we assume
no shear stresses to be present in the fluid, then —(£§'VY§)
can be replaced by +(pf-VY§) as an expression for viscous
dissipation.

The second term on the right hand side of (15) is the

reversible rate of internal energy increase per unit volume

by compression. We recall that

* * *

1 -
~f pf dt ~ T4t = 3t (16)
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where e; is the fluid dilatation.

%
From (7) it follows that (abg/aT) appearing in (15)

p*
f
is equal to the ratio BT/BP. This ratio depends on the nature
of the specific fluid and is obtainable from the appropriate

pressure-volume-temperature relationships. For a certain range

of temperatures, the following linearized relationship is often

used with constant Bp and BT

0f = P31 - By(TE = T2 ) + B (P* - P* )] (17)

where p; is the density at P*O and T;O.

Combined with the mass conservation equation

Bpg

sg— + Veoivi =0 (18)

£~ £

equation (15) without the dissipation term becomes

* da C
jL * * Je *mM% = - UeTk _ m% BE Uk _ Mk %k W ¥
5t (P¥CGTE) + VepgC VETE = - V-J% Tf(aTg)v VE-TEPE aT
(19)

where the last term on the R.H.S. drops if we assume Cv =

const. We note that p%CVTE could be replaced by p%h;, where

h% is the fluid's enthalpy.

For an isotropic thermoelastic solid continuum, the

corresponding energy balance equation is given by (Nowacki,

1975, p. 12)

oT* de*

_S cUT*) = — UeTk — mkr __S
psce(at + Ys VTs) v gs TsY ot (20)

where C. 1s the specific heat of the solid (per unit volume)

at constant strain, and
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= * * X . - : .
Yaij (aosij/BTS) e; = consti Jg stress in the solid.

We note that a thermoelastic body is one in which we have a
reﬁersible elastic process and an irreversible thermodynamic
one.

The external energy sources or sinks have been omitted
in all the balance equations presented above. They will be
introduced at a later stage.

Equation (20) can also be combined with the solid's mass

balance equation, leading to

_g_* * e (n* *Mk) = . YeT* _ m%*
Bt(psceTs) v (psCEYsTs) - veJg ISY 5t (21)

where we have assumed Ce = const.

We note that the terms related to energy change by dilata-
tion are often overlooked in the energy balance equations for
both solid and fluid.

In order to obtain the macroscopic energy balance equations,
we have to average (19), assuming dwcv/dt = 0 and (21), over a
Representative FElementary Volume (REV) of the porous medium
(Fig. 1). The methodology of averaging is well known and will
not be discussed here [see, for example, Bear, 1979; Hassanizadeh
and Gray , 1979 ].

Use is made of the following averaging rules for an in-

tensive property Ga of the o phase.
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<« % 5 = 3 < G > l ( Gu -*v dS (22)
ot ot o Uo J(S ) Ta~0 <o
1
< VG >=V < G > + =— G,V ds (23)
U (s ) :
o
where
= 1 a__L1
< Ga > = g I(U )GadU, < Ga > "U I(S )G du,
o) o)
< G >=806 <¢ >
o o o
6 =U_ /U, S is the total area of contact between the «o
o oo’ "o o

phase and all other phases in Uo’ Vo is the outward unit vector

~

normal on Sa and ga is the velocity of Sa' Hereiia 51{,
ea =n, s = Seqt Subscripts f and s denote the fluid and the
solid phases, respectively.

By applying (22) and (23) to (19), we obtain:

9 * * 4 *q . *C UkT
5 © PECHTE U—f(s yPECGTE g7 VgdS + Ve <pgC VETE >
o) sf
+ 5 ((s )PEC,TEVE Ve = -V < TE> - o f(s yJE vgdS
o J sf v I~ o sf’~" 7
BT
- < T*% = *V'V* > . (24)
f Bp|pf ~f

where Cy is assumed constant. If we do not neglect the dissipa-

*VV%* > has to be added on the R.H.S. of (24).

. o< ke
tion term, F°VVE

L]
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Let us now make the following assumptions and approxima-

tions:

(l)‘ That <p*CT*>= *CT* >fzn<(“T* >f<p >f i.e
£ £ Pf £ ¥ f £ A

neglecting the average of the product of their deviations from

°
the average, (i.e., assuming < B% C%T% > << < p% > ¢ T > )

(2) That the solid is a material surface, i.e., on it (V% - u)°vf =
(3) That the thermal dispersive flux of heat through the

tortuous fluid filled void space is much smaller than the average

. . f
m *C TRYXx > * *\yk

convective flux through it. Then < pr fo n~<pr vaf >

x n<<p§C T% >f<<V§ >E . n<<p§ >fe C T; >fe VE >f The neglected

thermal dispersive heat flux through the fluid is the average

of the product of deviations of both temperature and fluid velocity
from their respective averages (= <(Cv%f*)?* >). Eventually,

we may include this flux in the macroscopic equation, if so
desired.

(4) That the conductive average flux through the fluid

< J%¥ > = - < A* YT* >, where A%

~f £ £ f
the fluid, may be expressed by

is the thermal conductivity of

1
* = - )\ * * = - \* * - T*y)
< Jg 2 Mg o< VTR MIVTE> + g ((s ) TEVgdS]
o) of
— _ *m . * = _ . * Sf
= nkfgf Vv < Tf > = néf vV < Tf >L,
where the second rank symmetric tensor T_ is the tortuosity of

=f
fluid occupied void space [e.g., Whitaker, 1967]. The coefficient

Af is the thermal conductivity of the fluid occupied void space.

=
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Underlying the introduction of a tortuosity is the assumption
that it is a geometrical property, independent of the heat

flowrpattern.

8 B
(5) That < TE(B—?)I £V'VE > ~ n<T} P T I . >Ee vevE >
p pf ~ Bp Qf ~
=< T* >f< BT! >f< VeV%k > < T* >f< BT l > Ven <V* >f
- ES -t * ™ — *
£ Bolot ~f £ B, lo% ~f
* o - - *7 ek
(6) That < Tf-VV. > <pivev: >
f f f
- * . - - . % VL
~ n < pf >T< ¥V Yf > < Pf >T< ¥ Yf>

f

Q

f
- <Ak . *
p% >* Ven < Vi >

With these assumptions and approximations, and with a dissipa-

tion term included, (24) can be rewritten as

—8—— * f * f . 7 * f * f * f L] L * f
5E n < PE >7< Cva >7 + Ven < oE >7< CVTf >T< Yf >T <~V néf V<Tf>
+ L J J*v_dSs + [<T% P E~| S pX >f]V~ < vx ST =0
A * - =
Us (sz)~f~f f B PE f ~f
(25)
Brownwell . et al [1977] relate the viscous dissipation term

to the (macroscopic) fluid velocity relative to the moving
solid.
To obtain the averaged equation for the solid, we apply

(22) and (23) to (21). We obtain
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o
> - = LTk
UO (sz) s

0 * x> - L * * u . .
3t © psCeTs U (s )psceTs~ssts FV
o sf
g [ (s, ) PECYETE v as = - v < g

o sf - - -
oe*
- < TRy 2 >,
s' dt

We now introduce assumptions

similar to those introduced above

(1) < 8* ¢ 7* > « < ¥ >S¢

AN

* * 5 - *
pSCETS g (l n)< ps

(2) (YS - u)'\)S = 0.

~ ~

(3) The thermal dispersivity flux throuc the solid skeleton

is negligible with respect to

° ° s S S
< (p;CET;)Y; > << < p;CET; >T< Y; >~ , hence
€ PICCTIVE 7 = (L -m) < oCTIVE T (1 - ) <ope Ty >T< vy >
* (1 -n) < pr>%<c T >S< yx >S,
(4) < gg > = - (1 - n)és'v < T; >S , with similar comments

about the approximation involved

skeleton tortuosity.

de*
S

ot

*
(5) < Ty

>~ (1 -m<1r>% y <

C T* >S;
€ S

>S< ¢ px S
€'s

the convective flux, i.e.,

oe*
s

ot

>S

= (1 -n)<Ts >S-y§E§ >

< *
QSCS

and approximations which are

for the fluid phase:

in assuming a constant solid

]

S
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By introducing these expressions into (26), we obtain

90 * S * S . * S * S % S
9t (1 - n)< Pg 7> < CsTs >+ V(1 - n)<ps >< CETS > < Ve 2
S Vel - AV < TE S e j(s , 3%« v_ds
- o sf’ ™ s
R
- * ;5
+ (1 n) < T* >7 5T . (27)

We obtain the thermal energy conservation equation for

the porous medium as a whole, by adding (25) and (27), noting

= - * e - - * o 1
that Ve Vgr gf Ve gs Ys on sz, and assuming
< T; > 2 < T% >f = T, i.e., the fluid, the solid and the porous

medium as a whole have the same averaged temperatures.

Removing now the intrinsic average symbol i.e., < p; >S Eps,
< p* >£ =p < vestz \Y <vx >% =y < g¥* S = €, the result-
£ £’ ~f ~f’ ~S ~s’ s !

ing equation is

9 .
-,C}—-E-[(npfcv + (1 n)psCE)T] + V [(nprva + (1 - n)pSCEVS)T]

de

B
- Velnde + (1 - n)) IVT + [T (<L) - P]V+nV .+ (1 - n)Tyzg = 0

Bp £

(28)
We note that the second term on the L.H.S. of (28) may

also be written as

[- npC (Vo = Ve) + (npCo+ (1 - n)p CHV IT; n(V-Ve)= g

Since we have assumed that Cv and Ce are constants, we may com-

bine (28) with the mass conservation equations



2D

onp ¢ (1 - n)oS
_a_?__ + v.prf = O; 5T +V'(l - n)QSYS =0 (29)
We obtain
T A, .
(pC)mﬁ - Ve VT o+ [(pC)mYS + pfcvgr] VT
BT o€
+ [T —6—— - P]Venv_ + (1 - n)TY-a—t =0 (30)
o ~

where we have introduced

(pC)m = npfcv + (1 - n)pSC8 = heat capacity per unit volume of
the porous medium as a whole, and Qﬁ = ngf + (1 - n)és =
coefficient of thermal conductivity for the porous medium as

a whole. We note that (pC)m depends on p and n, which in turn
depend on pressure and temperature; Qm depends on n which also

depends on pressure and temperature.

Equation (30) may further be simplified by
a_.T

. 9T _ ] oT
(1) Noting that (pC) (5% + V_*VT) —(pC)maE—iz (pC) 5%
where we have VS'VT << 9T/9dt.
(2) Assuming that n-VVs »»VS°Vn and therefore
= T . Y= Yo o€
v nv. = v (gr + an) v q, * nV Ys =V q, +1n 5%
where we introduced the assumption VS'Ve << 9dg/9t,
We then obtain
(oc) 2L _ gep ovr 4 o C -VT+[TB—T——P]°V
PC9m 3E ~ ~m Petydy Bp 9y
+ {n[T EZ - P] + (1 - n)TYV} 3 0 (31)
B Ve =T



With the approximations of (9), (31) reduces, for vertical

consolidation only to

{ s 3T | v.A
(pC)m + aT[n(T 5 - P) + (1L - n)Ty]l} at'+v'“m'VT
PB :
* PeCeq, VT + (T E; - PlVeq_ + uP[n(T E; - P)-+(l-n)yT]§% =0

(32)
Equation (32) coupled with (13) are the governing equations
for the temperature and pressure fields in a porous medium
with vertical compressibility only.

Obviously, other simplifications and approximations are
also possible, depending on an estimate of the order of magni-
tude of the various terms.

In all these equations, we have a clear coupling betwéen
pressure, temperature and dilatation (or changes in porosity).

The last two terms in (30) and in (31) express the source
of heat due to the internal energy increase per unit volume of
porous medium by viscous dissipation and by compression.

They may be relatively small in many cases of practical interest.

THE EQUILIBRIUM EQUATIONS

All considerations in this section are at the macroscopic
level. Bear and Pinder (1978) develop the macroscopic equilibrium
equations by volume averaging the microscopic ones.

We assume here that the solid skeleton of the aquifer is

a thermoelastic body. For such a body, the mechanical and

thermal state at a given instant is completely described by

the distributions of temperature, T, and strain, eij' Two
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processes occur when changes in temperature take place:

a reversible elastic process and an irreversible thermodynamic

one. The main difference between the problem of thermocon-
solidation considered here and that of consolidation under
isothermal conditions lies in the stress-strain relationships
which in the former case include also the effect of temperature.

Neglecting the inertial terms, the total stress g at a
point within the aquifer satisfies the following equilibrium
equations

9954 _ .

5;;— +f =0, 1i=1,2,3 (33)
where f represents the body force, and the summation conven-
tion is employed.

Using 0;3 =0 to express the total stress in

. '
J 1]
terms of the effective stress Oij and the pressure p (positive

- F(sij
for compression), and separating both Oij and p into initial
steady values o;; and p° and consolidation producing incremental

ones oi? and pe, we replace (33) by

to

90

(a) ij o _ 9p° _ ij _ _8p~ _
%3 R T ek < O (b) P 0 (34)

where £9 = f£,.
i i

For a thermoelastis porous medium, the stress-strain
relationships are given by the Duhamel-Neumann relations
(Nowacki, 1975)

‘e _ e _ e
cigz = CiijLEkQ, BijT (35)

. . e
where ¢& are components of the incremental strain, T T - T°

k
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is the incremental temperature, and the material coefficients

'e
T = const. .’ Bij = - (acij/aT)

: = re/3es

Cike (Boij/eekz)
are calculated in the isothermal state. The development of
(35) is based on the assumptions (1) that strains are small,
(2) that Te/T<0<l , and (3) that the free energy depends on
both the strain and the temperature.

For the sake of simplicity, we shall henceforth limit

the discussion to an elastically isotropic porous medium.

We shall also assume that the medium is also isotropic with
respect to permeability. For an isotropic elastic body (35)

reduces to

tre — & = =
Oij 2Geij + (Ae + YT), € = €k €op + Eyy +e (36)

where G and )\ are the Lame' constants of the porous matrix

and Yéi. = (30,./0T) The coefficient y is also

3 ij € = const.
related to the coefficient of volumetric thermal expansion O
by
1 2 G
@, = 5 v Y= (A + x06an ¥ = (37)
)\+':-3—G P
Using the usual relationships between eij and the com-
ponents of displacement Ui
1 an BUW)
¢35 = 3hax, Yy e = VY (38)

€= const.
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we may rewrite (36) in the form

SUi BUj U
ij + Bx.) + [A

k

0!€ = G( —_ -
ox
k

e
i5 YT ]Si. (39)

J

Equation (38) together with (34b) into which we insert
(39) provides four equations in the six variables Ui’ o<,

Te

and e. The mass conservation equation and the thermal

energy conservation equation provide two additional equations
in terms of p, T and €. Altogether we have six equations for
the six variables. We have not mentioned q, as a variable as

it is easily related to p. 1In addition, we need information

on k = k(n), with n related to ¢, u = H(p,T)~ u(T) and Pe = pf(p,T).

CONDITIONS ON THE TOP AND BOTTOM SURFACES BOUNDING THE AQUIFER

According to the methodology of averaging (or integrat-
ing) over the vertical thickness, B, of an aquifer, we have
to know the conditions that exist on the top and bottom
surfaces bounding the considered aquifer.

Let F = F(x,y,2,t) describe the shape and position a
surface which bounds the aquifer from above or below (Fig. 2).
The unit vector normal to this surface is given by In = VF/|VF].
With b = b(x,y,t) denoting the elevation of this surface

above some datum level, we have

F=F(x,y,2,t) = z - b(x,y,t) =0 (40)
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For this surface

dF _ OF _
JE-5¢ T WVF =0 (41)

where u denotes the velocity at which this surface is dis-

placed.

Water Flow Boundary Conditions

Bear (1977, 1979, 1980), starting from the general

boundary conditions on F for both the moving fluid and solid

lg - ng]u,l *VF = 0, [(L - n)(yS - g)]u,£°VF =0 (42)

where [A]u,ﬁ = A]u - Alz indicates the jump in A from the
upper to the lower side of F, shows that (a) On an impervious
boundary which is also a material surface with respect to the
solids, the condition (on the aquifer side is

gr°VF =0 | (43)

(b) For a semipervious boundary

q *VF = q

dr |aquifer side "7 = 9r|outer side "'F (44)

where the R.H.S. gives the rate of leakage through F.

Heat Flow Boundary Conditions

For the flow of heat by convection and conduction, assum-

ing Tf = T = T, the general condition on F is:

S

(a) Through the fluid phase (per unit area of porous medium)

[prvT(g - ng) - n%f °VT]u Q-VF =0 (45)

14
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(b) Through the solid phase (per unit area of porous medium)

[psceT(l - n)(YS - u) - (1 - n)és'VT]u’z'VF =0 (46)

~

Together we have for the porous medium as a whole:

~ ~

- - - -N . . =
[prVT(g ng) + psCeT(l n)(Y u) - VT]u,l VF 0

(47)
For a boundary which is a material surface with respect

to the solid, (YS - g)-VF = 0 for both sides of F. Hence the
second term in the square brackets vanishes and the first
term reduces to prngr-VF which vanishés in view of (43) for
an impervious boundary. If the upper side of F is assumed to
be impervious to fluid (n = 0), then AS—*XS and (47) reduces
to

— A L] . —3 - L]
- VT|Q VF = ASVTiu VF (48)

where subscript % denotes the aquifer side of F.

If the solid on the external side of the boundary is
assumed to be impervious to fluid and an insulator with re-
spect to thermal conduction, (48) reduces to

A . . =
n VT VF 0 (49)

x '3

If the boundary, say the upper one, is not an insulator,
and heat can leak through it, we have to use (48). We may
replace the R.H.S. of (48) by some estimate of the rate of

heat loss by conduction.



27

Equation (47) may also be rewritten as

logCuTay + (pC)py TV - w) =4 wvr] o9F = 0 (50)
or
[0¢C,Ta, + (9C) TV, - /im-VT]u,jL'VF
= [(pC)_T] *uVfF = - [(pC)_T] 3F (51)
m “u,g -~ m "u,ldt

For an impervious insulator boundary, (51) reduces to

{pcC Ta,. + (pC) [ TV = A <VT}|_+VF = - (pC) T 5t (52)
where subscript F denotes the aquifer's side.
Stress Boundary Conditions
On any boundary F = 0, equilibrium requires that the
total stress ¢ satisfies
[g]u,ﬂ *VF = 0, glu ‘VF = glg-VF (53)

Separating the stress in to an initial steady one and

an incremental, consolidation producing one, we may write

[g°1, ¢VF =0 (54)
(%1, #VF = 0 (55)

Assuming that ¢ remains unchanged on the external (or out-

side the aquifer) side of F, i.e., ge _— 0, then ge u *VF = 0,

and the condition on F becomes
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e
g

]
o

*VE= (g'e - peg) g VE (56)

F
where I is the unit tensor and subscript F denote the aquifer

side of the boundary surface F = 0.

THE INTEGRATED EQUATIONS

The dependent variables in the fluid mass conservation
equation (10), energy conservation equation (31) and equilibrium
equations (34b), are all functions of x,y,z and t. By integrat-
ing (or averaging) these equations over the vertical thickness
of the aquifer, these variables, as well as the various aquifer
properties, will be replaced by averaged dependent variable
and properties which are functions of the plane coordinates
X,y and of t only. With the nomenclature presented above in
the discussion on the conditions on the top and bottom surfaces,
the integration is carried out employing the following typical

rules (Bear, 1977, 1979).

(a) For any vector or J = g(x,y,z,t) and bl = bl(x,y,t),

b, = b, (x,y,t)

— b2 ~
BV.J = f VeJdz = V'+BJ' + J! » VP - JI *VF (57)
b b h R 'F 1
b 2 2 1
1
(b) For and scalar y = ¥(x,y,z,t)
~ b F oF
W (P2 80 4, L 3 53 2 _ i
B 3t 5t 9% = 3¢ (BY) + wleat WIFl 5t (58)
b
1
and
BVY = Vydz = V' By + ¢ VF, - ¢ VF (59)
b F2 2 Fl 1
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where the average is defined by

b
~ 1 2 _
V(x,y,t) = 5 J V(x,y,t)dz, B = b2 - bl = Fl - F2 (60)
b
1
and the prime (') symbol indicates a vector or a vector opera-

tions in the xy plane only. J‘F , JIF , wIF , etc. are con-
R | T2 1
ditions on the surfaces F, and F, which bound the aquifer. They

have been discussed above.

If we assume

J);w[Fl -—-sz

(58) and (59) reduce to

3 W=y
ot

- ’

|
#e)

The Integrated Fluid Mass Conservation Equation

By integrating (10) over B, we obtain
b2(x,y,t)
e T
b, (x,y,t) =r t T ot T2r
1
Since we have assumed here that both Fy and F, are impervious
to water and material surfaces to solids, we obtain in view
of (43), for the first term in (61)
BV+g

- R . - . = U eRE?
9, = A Bg, + 9. P, VF2 q, ry VFl v'-Bg, (62)
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For the second term, Bear and Corapcioglu (1980b) showed

that

_ g .= 4 0B (63)

~ ~ o~
where U' (components Ux’Uy) is the vector of averaged horizontal

displacement. In developing (63), it is assumed that
and VS'VE << 9dg/9dt

For the third term in (61), we obtain
— ~ oF : OF
9P 2 53 (B R 4+ (p B 2 _ 1
ne, 3¢ - BB IB gE + (P gp +p F, 5t P|F, 3T M (64)
Assuming that the pressure distribution in the aquifer is

hydrostatic, then

~ 3 _ PpgB ~ = PgB
PF2—P 5 Plo. =P+ =5— (65)
2
Hence
9P 2 =3 p(P , Pg 9B
an 5t anB(St * 530 (66)

The fourth term is integrated with the assumption of no

variation in temperature along the vertical thickness of the

aquifer (i.e., T £ T =T ). Hence
[r, = Ty,
T 37
nBT 3E " nBTB 3t (67)
Finally we assume that
e - o~ 7\{ - —~ " f\/_\/
q. VT = q.*VT + q VT = gr°VT; ngT >>q VT (68)
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i.e., neglecting the average of the product of deviations,
—~—

A A . .
qr-VT, of q, and VT from their respective averages.

~

. Then, with

— b ~
BVT = f 2(VT)dz = V'(BT) + T F .VF, - T|{,-VF. = BV'T (69)

. 2 2 Fl 1
1
we obtain
—~ -
qr-VT = Bq£°V'T (70)
Accordingly, the integrated form of (61) is
3u" .
~ ~ BB ~ 5 Bp ~N o~ B aB
\] ) L IS — — — mam—
v Bgr + V'+B T + 3t + anB ra + angg > 5%
=n oT Py Sy Uvm —
1f we assume vertical consolidation only, i.e., ﬁ' =0,
with
o = 1 9B and o = 1 9B
= = 28 = = o
p B 3% T B o7
equation (71) reduces to
Ve'Bg! + [1 + fig_pa E][oc 2p + a éi] + fig_ B EE
ir P E 2 P ot T 3t P ot
> 3&" 3 oy m o—
- nBTB T BTBgr VT = 0 (72)

In general ﬁéoﬁ%B/Z << 1l. By neglecting in (72) the term
ﬁépB%B/z, we obtain an equation which could also be obtained

by integrating (13).
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In (72), we shall use (65) to obtain the approximate

expression
e X B
§' 2 B X yr z2_g K (03 4 5qU5). 3 = B
Bgr B m v p B . (V'p + %?Vz), z bl + 3 (73)
where z = (b; + b,)/2 and a hydrostatic pressure distribution

has been assumed along B, with a fixed bottom at bl = bl(x,y).

The Integrated Energy Conservation Equation

We shall integrate (31). Assuming T = T =T ,
2 F1
we obtain:
2 (pc) &L az = B(/_C)\E'Ilz s(pey 0T (74)
°“'m 3t B P“'m 3 T °“'m 3t
bl
With (49), we obtain for the second term
f Ve(h evm)az = B-v(D cvT) = vr. f (Ligrimyaz
b *m m b m
1 1
I’V
o ° - A.. ° = ] . 1
+ (A -vT) r, VF, (sp) VT)lFl VF, V'By V'T
-~ ~
= V'eBA VT (75)
m
The integral of the third term yields the following
approximation
r’z i o
. = ~ [ v |
. (pfcvgr VT)dz Bpfcvgr vrr (76)

1
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—

n,

where, as before we assume T = T‘F T\F , and we neglect
1 2
averages of products of two or more deviations (7) from their

—_——~—~—~~ .~

respective averages (i.e., we neglect p_.C.4 IT e q VT
s ! f'vir ' TfTvIr !

A A
pfgrcv-VT, etc).

For the fourth term we obtain the approximation

b Q-

2 BT ~ ~ BT ~ ~
[Tt gt - mveg) a2 @D - Byveeg (77)
bl P P

The last term on the L.H.S. of (31) is estimated by

b B
( 2 (a(T % - p) + (1 - n)Ty}3E 4z
b Bp 3T
1
o B ae 30 g
= —) - - m . — i
= {n(T 3 ) =-B) + (L-A)Ty} (Ve B st * 50 (78)
p
where de/9dt is expressed by (63).
Hence, the integrated form of (31) is
8(50) 2T SVeBY  U'E 45 G BT eTE 4+ (T (BT) B)Ve BF!
*“'m 3t m Peedr g TP dr
~—~ -
.~ Bp N s V' 3m
+ {n(T(B;“) - p) + (1 - n)T'Y}(V *B 3t + —S—E) =0 (79)

Equation (32) can also be integrated in a similar way.

-~ N4 3 . .
The averages Cv"% o etc. can take into account variations of

these parameters along the vertical, say in a layered aquifer.
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The Integrated Equilibrium Equations

The point equilibrium equations are.(34b). Making use
of (57) and (58) and following the detailed presentation of
the authors in an earlier paper (Bear and Corapcioglu, 1980¢)
we now integrate (34b) over the vertical thickness of the aquifer.

In view of the boundary conditions expressed by (56), we obtain

9 pTve . 9 e _ 9 nxe _

5% By * 3y BG}’{Y 5% B =0 (80)
P s Te 9 e - P ~ _

= chx + 3y Boyy 3y Bp =0 (81)
P e 0 e -

3% BOXZ + s—y— BOYZ 0 (82)

in which all averaged values are functions of x,y and t
only.

Next, the thermoelastic stress-strain rleations given by

(36) are expressed in terms of average excess stress components

~

and average displacements. Assuming, that g’ = U

Ul
IFZ ~ IF]_
i.e., practically the same horizontal displacement along the

vertical, we obtain

U, 30 5,
€ =€ % eyy te,, =3t §§Z t 5 (83)
= - = o - [ = o _ho
where B = b, - b, (b2 + UZIFZ) (bg + Ulel) (b5 - b3)
_ mo o s s .
+ (UzlF2 Ulel) = B® + A, B° is the initial value of B;
Az is the change in B due to the movement of both F2 and Fl'

If bl is fixed, —AZ is the land subsidence.
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—~ ~
—~— oU U
1€ — & g — 7€ = X - é.%. _~~e
O s 2Gexx + A€ - YT (A + 2G) P -+A(8y B) YT (84)
— o AU aﬁy by e
0'€.= 2GE + X8 - YT =X == + (XA + 2G + A =— - YT 85
vy vy Y 5% ( )Ty 5 Y (85)
50 5T,
o~
e = ~ 4 X
0xy G(Bx + oy (86)
30. U, 30 3 OF
—_— U U U F
e = __z —§ = _..__z_ —_ 0 .?E + _.__2.. - _i]
Oxz G(ax + 9z ) G ax * [Uz oxX Ulez 9x UlelBX
(87)
— 508U 1 _ oF oF
'€ = G(—2 + =¥) = G —2 + = [ é-B—+U|~——2-U| ]
vz oy 9z oy z Jy z F2 oy z'Fq oy
(88)
—~ ~ ~
— ou U U A ~
'€ = gg 2 _ \7® = — A 2¢) 2 - 7€
0, Ge + 2G 7 YT X(ax + 5y ) + (A + 2G) B YT
(89)
By inserting these expressions into (80) and (81),
and linearizing the resulting equations, assuming constant
A, G, and y(in fact A, G, and y) and B(x,y,t) = B°(x,y) +
Az(x,y,t), Az << B°, we obtain
~ d(A_/B°) ~e ~
2 J€E z _9p_ _ = 39T~ _
GV'"U_ + (A + G) % G P N e 0 (90)
~ d(A_/B°) e e
2~ 9€ Z Bp ~ 3T
' —_— - - - =
GV'"U_ + (A + G) v G 3y T3 3y 0 (91)
or - .
U ] 3(A_/B°) e ~e
2~ X y z op T
1] -— -— =
GV'"U_ + (X + G)(ax + 3y ) + A oy N Y 3% 0 (92)
39U 30 3(A_/B°) e ~e
2x X N z op oT
' - - —_— =
GV Uy + (A + G)(ax + 5y ) + 5y Sy 3y 0 (93)
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Equation (82) becomes

oU oF oF
d z ~ 0B 2 1
3% (BG 53~ + G(U, 3% T UzIF2 ox Ulel TR
53U 5F OF
d z -~ 0B 2 1.,,_
+ ¥y {BG 35— * G(Uz 3y + UZIFZ —y——- - Ulel 5?')}— 0
(94)
Studying (94), we note that it contains information which
is usually unavailable, (i.e., U_|., and U_|_ ). Therefore,
z F2 z Fl

we have to introduce additional (albeit, simplifying) assump-
tions. One assumption could be that the bottom boundary is

[F2 = A, = -§, where

§ 1is the land subsicence which is considered positive downward.

stationary (i.e., bl = bl(x,y)). Then Uz

In this way, the number of variables in these equations is
reduced to four: S, Gx’ ﬁy, pE.
Another approach (Bear and Corapcioglu, 1980, following

Verruijt, 1969) is to introduce the assumptions that the

stress distribution satisfies the condition of plane incremental

total stress. This means

o =0, © =0 =0, O =0 =0 (95)

Bear and Corapcioglu (1980c)discuss this condition and its
justification in detail. The variables in (95) may be re-
placed by averaged ones. The first of (95), combined with the
definition of effective stress, leads to

—

e _ e
o,, =P (96)
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and hence, (89) yields
3U 3U A
~e

= N ST 4 _Z _ w7
p = X(ax + 3y ) + (A + 2G) B YT (97)
Fquation (82) now vanishes due to the second and third
equations of (45), but with (97) replaces (82). We have
again four variables (ﬁx, ﬁy, A, and ﬁe) and four equations:
(71), (92), (93) and (97).

If we assume nho average lateral displacements, i.e.,

U = 0, (97) reduces to
AZ 5
€ = (A + 206) 5 " yT° (98)

COMPLETE MATHEMATICAL MODEL
The complete mathematical model consists of the following
equations:
* The fluid mass conservation equation (71), with g% expressed
by (73)
* The energy balance equation (79)
* The equilibrium equations (92) and (93)
e

to U', A, and T,

* Equation (97), selecting ﬁe

These equations have to be solved for the variables

¥ p, T, Ux’ Uy’ AZ

However, we note that these equations contain also p and
T as dependent variables as well as pressure and temperature

dependent fluid and solid properties, e.g., § = p(B3,T),

i =1{i(T), & =a(p), k=%k(@), and B, so that we have to add

~

the ﬁ, T, and B as additional variables to be determined from
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— [o]
B = B° + Az (99)
T = T° + T° (100)
P = p° + B¢ (101)

where p° and T° are the initial steady state distributions of
pressure and temperature. They may be obtained from field ob-
servations or by solving
IRAt'o _ 3 V0 ,Umo —
v Bq, BTqu vT 0 (102)

o

o3}
Q
[o]
Il
|
to
o
l??‘z

(V'p° + p°gvze) (103)

o

=
[*~]

-V'eBoAtoVITo 4 pchB°§£-v-%° + [T°(5B) - B°1V-BG’° = 0  (104)
~ . T ~

™)

In order to follow the continuous change in n, as con-

solidation occurs, we integrate (4), making the usual assump-

tions with respect to the bounding surfaces Fq and Fy and
i =n|_, =n|_ . We obtain
Fl F2
N 9U 39U
on _ ~ 0 X 3 v 9B

where we have assumed 9n/dt »>YS~Vn. Using this additional
equation, we may consider i as an additional variable.

By using (99) and (105), say in a numerical solution,
n(x,y,t) and B(x,y,t) can be determined at every time step.

We observe that the equations comprising the model are
non-linear, and therefore simple superposition of incremental
changes and initial conditions is not possible. This nonlinearity

may be even more significant if the considered problem involved
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a large range of temperature and pressure variations. For
example, the effect of temperature on the dynamic viscosity of
the'fluid (appearing in (73)) may be very significant, say in
in hot water injection operations.

The number of variables combined with the model's non-
linearity preclude any analytical solution. Numerical methods
have to be employed.

We may attempt to simplify the problem by introducing
certain linearizations, say with respect to B.

For example, since (BAZ/Bt)/AZ >> (9B/3T)/B, we may assume

9B/3dT = B3 (A,/B)/3t. Also we may use the approximations
) ou!’ ou!

€ - ° 3E
Equation (71) then reduces to

v-si; = BV-q Ve' B

T e
rl

Ve gL o+ V! Eg; £ (1 + 8B pg) 2 (AZ ap, I
qr '3t nBeg) 3¢ (33 - nBp 3¢
5 9B _ 3 iyt o=
+ B gk - BpgrV'T =0 (106)

In a similar way we may linearize (79) with respect to B. We

obtain
~ 9Tt e o VB
(DC)m 3¢ ~ V"&"m'V'T + prvg"V'T + [T(EE) - plve gé
5T ﬁ; ~ ~yv=m O 86x o0 Az
+ {n[T(Eg) - pl + (1 -n)YT 3¢ (—§_ + 5y 4-5:) =0

(107)

In an earlier paper (Bear and Corapcioglu, 1980b) the

oU U A
authors show that &= —= + —L + 2
0xX By B°
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i) i) A ~e ~e
, 2 X V. ) z p ~9 _
GV Ux+ ()\+G)[${—+ 5y ] +A§§ E-o—) —.3_}_<——Y§;-_O (108)
: ou 90 A ~e ~e
25 : X y 9 .z, _ _9p _2dT _
GV Uy + (A + G)[§§_ + 5y 1 + Aay (B°) 5y Y-T;— =0 (109)
The plane stress assumption leads to
. 30, 30 b, o
p = A(§§— + §§X) + (A + 2G)§? - YT (110)
A similar linerization of (105) leads to
N 39U Y3 .
on _ _ o=y O X y Az, _ ~, OE
3F - (1 n) 5t (—BX + 3y + =%) = (1 - n) s (111)

Altogether we have six equations to solve for ﬁe, ie,

U , g , A and n.
x' Ty z

To complete the statement of the mathematical model, we

require information on initial and boundary conditions (in the

~

, U' and A _.
z

~

xy plane!) of §e, 7€
The above model has been developed for a confined aquifer
where the confining layers are assumed also to be insulators
with respect to heat flow. There is no difficulty in replacing,
say the upper boundary by.a boundary through which leakage of
water and loss of heat may take place. This means that in the
mass balance equation (71) we have to add a source of water
representing leakage say, from an overlying aquifer (expressed

in terms of the pressure difference across the semipervious

layer). Similarly, we have to add in the energy balance equations,
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terms representing sources of energy due to convection (by the
leakage) and conduction through the semi confining layer.
Actually, we do not have to introduce them as an after thought.

They will appear automatically in the integration process.

TEMPERATURE AND PRESSURE DEPENDENT PARAMETERS
To solve the model for a particular case of interest,

~ ~ ~

information is required on the parameters &p’ Qp s Bp’ BT' Y s
5f, i, E, Qﬁ, E;, A, and G which appear in it. Some of them
are sensitive to temperature and pressure changes. For example
ﬁf, u, E;, E} change considerably with temperature. Some like
p vary also with pressure too. These effects further complicate
the solution of the model.

The equation of state for the fluid (say water) can be

expressed as a function of temperature and pressure in various

forms. For example, [Fernandez, 1972]

= 5° exp[-BT(T - T°) + BP(P - P°)] (112)

Pg
where p° is the fluid's density at some reference state (5°, P°).

By retaining the first order terms of the series expression for

(112), we obtain

be =g°ll = Bp(T - T°) + B (B - B°)) (113)

Sorey [1978] suggests that the pressure dependence of
density in liquid (single phase) geothermal reservoirs can be
neglected. An expression given by Wooding [1957] could then

be used
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— ~ r~

mo 1 2
Bp(F - o) - Bp

p. = p°I1 - (T - T°)“] (114)

Pt
In equations (112) through (114), T is in degrees Celcius.
The liquid's viscosity is also strongly dependent on tem-
perature. Bird et al. [1960, p. 327] suggests
= @° expla(d - 21 (115)
T T°
in which A is a constant. Huyakorn and Pinder [1978] used an

expression to compute the viscosity of water.

-6

~

No= 10 10[248.37/T + 133.15]

x 239.4 x (116)

where {i is given in gr/(cm.sec) and T is in degrees Celcius.
(Recall that everywhere else in this paper, T is the absolute
-temperature.)

The fluid's thermal expansion coefficient BT can be estimated

by an expression given by Sorey [1978]

. /- D
By = 5o(f - To)

(117)

~

where B is given in (gr/cm3) and T is in degrees Celcius.
Heat capacity of the fluid at constant volume E;, is also tem-
perature dependent, and is given in tabular form by Dorsey
[1968].

Other parameters of the model can be approximated as con-

stants to a certain degree of accuracy.

EXAMPLE: A MODEL FOR A SINGLE PUMPING/INJECTION WELL

When we consider thermoconsolidation in the vicinity of

a single pumping/injection well (rate Q radius rw) extracting
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hot water from an infinite (liquid) geothermal reservoir, or
injecting hot water into an infinite cold water aquifer for
storage, or cold water flooding of a warm reservoir, and we

assume a situation of complete symmetry with respect to the

well, we write all linearized averaged flow, energy and equilibrium
equations in radial symmetry.

For this case, we obtain from (65)

Y e ~ e~ ~
— "‘
r'r U 5r ~ T ~ r
: H H

where z = (bl + b2)/2. Assuming here and in (126) below that
3B 5, g 22 s
sE O PE AT (and also for p ), (118) reduces to

~~ N

> k 9p
(@), = - =37 (119)
i
In (1l06), ﬁ@;ﬁf g %?-<<l. Hence this equation becomes
13, k3, 3% a5 B _az 9T 5 K 9B AT _
T rarlt T ap) gt BBy 3g - BB 3y *+ B L or o = O
H (120)
where we have introduced the dilatation defined by
A 53U U A

~ 1l 9 ~ 4 r r Z

e=r3r WU ) t g =5 Tt Ee (121)
The equilibrium equation is

) at~Jr ~ 1 8?]r 6r Bﬁe 3fe
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The plane stress assumption leads to
€ by Bﬁr 6r ~e Az ~~e
p=(2G+}\)F+>\('§'£:—+?)-YT = 2G = + X - ¥T
(123)

Bear and Corapcioglu (1980b) show that from (122) we obtain

>

(2G + N € - 2G E% =% + 1€ + 2g(t) (124)

where g(t) is a function of time to be determined by the
boundary conditions. A comparison of (124) with the total plane

stress assumption (123) gives

A

g(t) = 26G[V'+U' - =% ] (125)

In radial coordinates
8ﬁr ﬁr Az Az

g(t) = 2G[F + T - F] = 2G[e - 2 B_° (126)
Equation (107), can be rewritten in the form

0 _ 1 on

- T -1 3t (127)

S0 T _ 1 9 ..~ 3T .~k 3p oT
°COn 3¢ ~ ¢ 3¢ Fdy 57) - PeC ar o
B ~ ~
~ P .. 1 9 k 19
‘[T(E';) - p] E 5? (r E ar)

P
+ {”[;(B—T) - Bl o+ (L - T 2 g (128)
n B, pl +Y 3t -



45

Equations (120) through (123), and (128) constitute now

32

a set of equations to be solved for P, T, §0U and A,. Ina
r
single well problem the solution is subject to following boundary

and initial conditions

t <0, r>or, p=p°, T=T°
U, Az’ € =0 (129)
t > 0, r=r pe _ Q!
w or ~ 2mr_ B°f (130)
w
r=r U_ =0 (131)
w r

Boundary conditions for temperature at the well can be obtained
from the continuity of heat flux at the well.
27r B°(q.) p.C.T = 2mr B°(q.)_p.C.T® - 2mr B® K ii?
wo Al rPevetw T wo A’ rPete w mor
(132)
The terms on R.H.S. of (131) are convective and conductive fluxes,

respectively. %w is the temperature at the well. 1In the case

of hot water injection into the aquifer, the condition is

Q 3.C e

= ~ w £ v aT
t>0, r=r (T - T%) — = (133)

w \ 2nrwB I or

In the case of hot water withdrawal, T = @;, hence
—_— ~e
t>0, r=r gT =0 (134)
r

The amount of water injected or pumped out is

—~

s o
Q, = 2ﬂrwB (qr)r.
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At infinity, the effect of injection or withdrawal

vanishes. Hence
r >, ijer ,Ee’ gr Azl Ur =0 (135)
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SUMMARY AND CONCLUSIONS

By averaging three-dimensional coupled equations of mass,
energy and equilibrium over the vertical thickness of an aquifer,
and introducing thermoelastic stress-strain relations, we
obtain a mathematical model composed of a set of partial differ-
ential equations in terms of pore water pressure, temperature,
vertical subsidence and horizontal displacements, as dependent
variables. The development is based on Terzaghi's concept of
effective stress, and assumptions of essentially horizontal flow
in the aquifer and shear free boundaries. The effects of vis-
cous dissipation and compressible work have also been included.

The model developed in this study can be employed to simulate
hot water injection into an aquifer for energy storage, as well
as for geothermal production by pumping hot water from a reser-
voir or for cold water flooding a warm reservoir. 1In the
first two cases the mobility fatio (which for a single fluid sa-
turated reservoir is defined as the ratio of viscosities of the
displaced fluid to the displacing one) is greater than unity.
This produces instability'{fingering) at the advancing front.
This phenomenon is neglected in this paper. In the last case,
the mobility ratio is less than one, and no fingering occurs.

So far we have been discussing the case of a single liquid
saturating the porous medium. In principle, the methodology

presented here is applicable also to multiphase flow (e.g.
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0il and water in an oil reservoir, or water and steam in a geothermal
reservoir), however, certain modifications have to be intro-

duced. The mass cbnservation will be treated separately for the

two fluids. This means one (macroscopic) mass conservation

equation will be developed for each fluid. Each fluidwill have its own
pressure and its own saturation. The saturations will constitute additional
variables (with their sum = 1) and the difference between the
pressures of the non-wetting and wetting fluids (two additional
variables) will be given by the capillary pressure which is a function
of the saturation. The effect of phase .changes may also be

added. The relative permeability of each of the fluids depends

on its saturation.

For the energy balance equations, we shall usually assume that
the temperature (at the macroscopic level) is the same for
both fluids and for the so0lid, and combine the individual
equations into a single equation for the porous medium as a
whole with the two fluids regarded as a mixture. The coef-
ficients of heat capacity and conductivity will be functions of the
varying saturations.

To obtain the equilibrium equations, we shall regard again the
two fluids as a mixture. The effective stress in this case will be
given by g = g‘-—x(sw)pwg, where. ¥ is some function of the
water's saturation [Narisimhan and Witherspoon, 1977; Bear and
Corapcioglu, 1980c].

In order to perform the integration of the three-dimensional

equations, we need boundary conditions on the top and the bottom
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boundary surfaces with respect to the flux of each of the
fluids and the thermal flux and stresses for the system as a
whole. Some of these modifications are presented by Faust and
Mercer (1979).

Due to nonlinearity of the equations (even after they
have been linearized with respect to B) and because of the
solution dependent n,n,k, 0, etc., superposition isvnot applic--
able. A further attempt to linearize the equations, with para-
meters taken at some initial or intermediate pressure and tem-
perature values would fail due to product terms. When numeri-
cal solution techniques are employed, the continuous changes
in these parameters have to be taken into account.

In the derivation of the mass conservation equation we
have started from the known three-dimensional equation, in which

f

the mass dispersive (<p&V%>» = - Q-fo) and diffusive

(-D3Vee) fluxes have been neglected. In the next step of averaging
——”

over the vertical, we have neglected macrodispersion (=5f§)

(Bear, 1979, p. 256) due to both specific discharge and density
variations along the vertical. Actually, in order to take
macrodispersion into account we should have integrated

o~ ~ =
V-pfq + Bnpf/8t=0 over the vertical, leading to Peg = 5fq + ﬁfg,
where the last term is the macrodispersive flux. These mass
fluxes can easily be added to the equation, if so desired. It
is assumed here that they are much smaller than the convective

flux. The macroscopic level is also the starting point for develop-

ing the equilibrium equations.
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For the energy balance equation, we have started from the
microscopic level and averaged over the vertical, in order
to emphasize the various assumptions involved in employing the
balance equation at the macroscopic level. 1In the macroscopic
equation, the thermal dispersive flux <(p§C§°T*)(Y§)>f has
been neglected, assuming that it is much smaller than the con-
Qective flux expressed by <DECVT§ >Ee VE >f. Similar consider-

tions apply also to the solid matrix. At the next step of

averaging, we have neglected the thermal macrodispersive flux
——

(pfé;T)é. Again, the assumptions are that these are relatively
small terms.

In employing the stress strain relationship (39), we have
assumed that although they are strictly valid for a solid continuum,
they are also valid, at least as far as their structure is concerned,
for the solid porous matrix. In doing so, the two Lame coeffi-
cients G and A are no more those of the solid continuum,
but new coefficients of the porous matrix to be determined
experimentally. Another alternative is to obtain the macro-
scopic constitutive equations by averaging the microscopic
onegover the REV. The same observation is true also with respect
to some of the other coefficients.

To simplify the discussion on the equilibrium equations,
we have assumed that the thermoelastic solid is isotropic (al-
though we maintained the symbols indicating the tensorial

nature of k and_ﬂﬁ If the thermoelastic body is anisotropic

~
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(and it is usually so if its structure is such that permeability
is anisotropic, and hence also thermal conductivity), we have

to use (35) instead of (36). 1Instead of two Lame constants,
Cijkl depends on more basic constants depending on the kind
of symmetry we assume to exist (see any text on the theory of

elasticity).

Finally we would like to gmphasize again that in view of
the various assumptions and approximations, the results, which
may be obtained by solving the model by numerical technigues,
should be viewed as estimates. These estimates, however, should
be useful for assessing the effects of various pumping and
injection schemes on vertical subsidence and horizontal dis-
placement. Obviously, much more work is still needed in order
to determine the values of the various coefficients and para-

meters appearing in the equations.
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LIST OF NOTATIONS

A = phase average = 1 A du
U (U)
o o
<a>° = intrinsic phase average = L . A du
U (v )
oa oa
bl,b2 = elevation of bottom and top aquifer bounding surfaces,
respectively.
B = thickness of aquifer ( = F, - F, = b2 - bl)
Cy = fluid's heat capacity (specific heat) [per unit
volume] at constant volume
C. = so0lid's heat capacity (specific heat) at constant
strain
C. = (90.'e/9eS )|
1jke ij k2" 'T = constant
dw( )
3t = total derivative of ( ) with respect to the
moving water _9() .
=5+ % vl
a ()
3T = total derivative of ( ) with respect to the
moving solid [, _ 9( ) .
[ = ot + Vs vl
e = (as subscript) denotes excess value
f = (as superscript) denotes fluid
£ = body force acting on saturated porous medium
Fl=0, F2=0 = equations describing top and bottom surfaces,
respectively
g = gravitational acceleration
G = a Lamé constant
hf = fluid's enthalpy
J = conductive flux
k = medium's permeability
n = porosity
o = (as superscript) denotes initial steady state

value
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(above a letter) deviation from intrinsic phase

average
pore water pressure

specific discharge

specific discharge relative to the solid
rate of withdrawal or injection

radial coordinate

(as subscript) denotes solid

time

temperature

tortuosity

velocity of microscopic fluid solid interface,

velocity of surface bounding an aquifer from
above or below

solid displacement
water and solid velocities, respectively
(as subscript) denotes water

(Be/ap)lT = constant

(Bg/BT)Ip = constant

fluid's coefficient of compressibility (at
constant temperature)

fluid's coefficient of thermal (volumetric)
expansion (at constant pressure)

- re
(aoij/aT)le = constant

aosi.
( 1|

BTS € = constant
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B - B®°

Kronocker delta

solid's strain

volumetric strain (dilatation)

a Lame constant

heat conductivities of fluid and solid, respectively.

heat conductivity of fluid filled void space
and solid matrix, respectively

thermal conductivity of saturated porous medium
dynamic viscosity of water
density

heat capacity (per unit volume) of saturated
porous medium

total stress

effective stress

stress in fluid

(as superscript) denotes a microscopic value
(over a letter) average over the vertical

(over a letter) deviation from average over the
vertical

over a vector, a tensor, or an operator (V',V' ) denotes
vector components or operators in a Xy plane
only
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LIST OF FIGURES
Figure 1 - Nomenclature of Volume

Figure 2 - Nomenclature for a single-layered aquifer
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