
y2 dB gain compression point for the optimum and nonopti-
mum second-harmonic terminating impedance. We can con-
clude that, with a difference of only 588 between the optimum
and nonoptimum source second-harmonic reflection coeffi-
cient phase, tuning for minimum spectral regrowth needs to
be carefully done. With an optimum choice of the harmonic-
terminating impedance, an amplifier for use in PHS can
operate into the y3 dB gain compression point and still meet
the adjacent channel requirements. The method presented
here can be applied to any modulation format, and the
reduction in spectral regrowth can be optimized for a given
adjacent channel power requirement.
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Receï ed 3 March 2000

( )ABSTRACT: An incomplete LU ILU preconditioner using the near-
( )field matrix of the fast multipole method FMM is in¨estigated to

( )increase the efficiency of the iteratï e conjugate gradient squared CGS
sol̈ er. Unlike the con¨entional LU, ILU requires no fill ins, and hence
no extra memory and CPU time in computing the LU decomposed
preconditioner. It is shown that, due to the nature of the near-field
matrix, ILU preconditioning decreases the number of iterations dramati-
cally. Q 2000 John Wiley & Sons, Inc. Microwave Opt Technol Lett
26: 265]267, 2000.

Key words: fast multipole method; numerical methods; electromagnetics

1. INTRODUCTION

Ž .The fast multipole method FMM has been used to speed up
Ž .the method-of-moments MoM solution of large-scale elec-

w xtromagnetic scattering and radiation problems 1]11 . FMM
achieves its speed up by using an indirect fast computation of
the matrix]vector product in the context of an iterative

w xsolution of the MoM matrix. Various iterative solvers 4 are
Ž .available, including the conjugate gradient CG , biconjugate

Ž . Ž .gradient BiCG , conjugate gradient squared CGS , quasi-
Ž .minimal residual QMR , and generalized minimal residual

Ž .GMRES . The convergence of all of these iterative solvers
is, of course, dictated by the matrix condition, which typically
deteriorates as the matrix size increases. Therefore, iterative
solutions of such large, fully populated matrix systems in-
evitably require some kind of preconditioning. Otherwise, the
propagation of numerical errors during the execution of the
iterative solution may lead to convergence failures.

Various preconditioning techniques for improving the
w xcondition of the system can be found in 12 . Diagonal and

block-diagonal preconditioners for multilevel FMM imple-
w xmentations were reported in 6 . Here, we present an ILU

preconditioner for MoM and FMM implementations. By its
nature, the ILU preconditioner is constructed using the
near-field FMM matrix, and is shown to significantly reduce
the number of iterations required for convergence.

2. METHOD OF MOMENTS AND THE FAST
MULTIPOLE METHOD

The MoM formulation of electromagnetic scattering prob-
lems using second-order curvilinear quadrilateral elements

w xfor surface modeling is given in 13 . The FMM implementa-
w xtion used herewith was built upon that in 13, 14 .

Ž .Briefly, for the electric-field integral equation EFIE , the
resulting linear system after Galerkin’s testing is of the form
Ž yiv t .an e time convention has been assumed and suppressed

N

Ž .Z a s V , m s 1, 2, . . . , N 1Ý mn n m
ns1

where

ik R1 e
Ž . Ž . Ž . Ž .Z s dsf r ? ds9 f r9 q =9 ? f r9 = 2H Hmn m n n2 Rks s9

and

4p i
iŽ . Ž . Ž .V s dsf r ? E r . 3Hm mkh s

� 4Here, a refers to the column containing the unknownn
coefficients of the surface current expansion

N

Ž . Ž . Ž .J r f a j r . 4Ý n n
ns1

Also, as usual, r and r9 denote the observation and source
iŽ .point locations, E r is the incident excitation plane wave at

ˆr, t is the vector tangent to the surface at r, h s 120p
denotes the free-space impedance, and k s 2prl is the
free-space wavenumber.

The key components in an FMM implementation are

v iterative solution of the MoM system of equations
w x� 4 � 4Z a s V

v w x� 4fast evaluation of the matrix]vector product Z a .

w Ž 1.5.Fast evaluation of the matrix]vector product using O N
Ž 2.xor fewer resources instead of O N is attained by approxi-

w x w xmating the pertinent Green’s function 1 . It can be shown 1
Žthat the CPU time per iteration or per matrix]vector prod-

. Ž 1.5. Ž 2.uct for FMM is O N instead of O N . However, it
should be understood that the above CPU estimates are
asymptotic in the sense that they represent values which are
approached for very large N. The actual efficiency of the
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implementation depends on the choice of various parameters.
These choices control the constant in front of the asymptotic
behavior of the CPU requirements. However, choices of the
FMM parameters for faster implementation inevitably lead to
errors in the matrix]vector product, inducing erroneous min-
ima for the iterative solver. This aspect may lead to unaccept-
able error since it may cause the solver to converge at one of

Žthese minima, especially when nonmonotonic solvers e.g.,
.CG, BiCG, or CGS are employed.

The specific integral equation formulation, be it the EFIE,
Ž .the magnetic-field integral equation MFIE , or the com-

Ž .bined-field integral equation CFIE , also affects the solution
convergence.

3. PRECONDITIONER

For large-scale simulations, possibly with geometrical surface
Ž .details e.g., antenna arrays on aircraft , the density of the

surface mesh cannot be expected to be uniform. Neverthe-
less, a nonuniform mesh is well known to produce ill-condi-
tioned MoM matrix equations. Also, different formulations of
the same electromagnetic problem are associated with dif-
ferent condition numbers. For example, the CFIE formula-
tion is known to give rise to much better conditioned systems
than the EFIE or MFIE. Further, as noted above, the FMM
implementation introduces erroneous minima in the solution
domain. The use of a preconditioner is therefore essential for
robust implementations of iterative solvers.

Although the diagonal preconditioner is simple and leads
to significant convergence improvements, it does so for diago-
nally dominant matrices. Block-diagonal preconditioners are
more robust, but require renumbering of the grid or matrix
rearranging so that the dominant matrix terms are clustered
around the diagonal. This can be done easily for 2-D prob-
lems, but is quite difficult, if at all possible, in three dimen-
sions. Alternatively, when the FMM is used to speed up the
iterative solution, we have the natural choice of using the
near-field portion of the MoM matrix for preconditioning.
These near-field elements are the largest in magnitude, and
constitute the unapproximated portion of the system matrix.

One preconditioning approach is to perform a direct LU
decomposition on the unapproximated part of the matrix.
However, depending on the sparsity pattern of the near-field
matrix, this may require a significant amount of fill ins. For
large-scale simulations, these fill ins may become a bottle-
neck in memory utilization. Alternatively, the fill-in require-
ment of direct LU can be resolved by performing the ILU
factorization. The ILU is the same as a direct LU algorithm,
but avoids fill ins of elements in the decomposed LU matri-
ces. This also results in less CPU utilization.

3.1. ILU Preconditioner for FMM. We employed the ILU
w xalgorithm from 12 . The pseudocode is repeated below for

completeness:

for i = 2, . . . , n, do:
for k = 1, . . . , i 1 and for (i,k) in NZ(Z)

do:
compute z s z rzik ik kk
for j = k + 1, . . . , n and for (i, j) in

NZ(Z) do:
compute z s z y z zi j i j ik k j

end do
end do

end do

Here, NZ(Z) is the sparsity pattern of the near-field matrix Z,
and the conventional LU decomposition algorithm is only
applied to the nonzero entries of the matrix. Hence, memory
utilization is not affected, and moreover, the sparsity pattern
of the stored ILU matrix is identical to that of the original
matrix. Thus, further memory savings are attained using ILU
decomposition.

4. PERFORMANCE OF THE PRECONDITIONED
CGS SOLVER

To evaluate the performance of the ILU preconditioner, we
Ž .considered a perfectly electrically conducting PEC ogive

Ž .geometry depicted in Fig. 1 . For this study, the ILU precon-
ditioner was implemented in the matrix systems based on the
EFIE, MFIE, and CFIE formulations. As described above,
the FMM near-field matrix is used as a preconditioner in the
context of the CGS iterative solver. The size of the matrix
system was 480, and refers to a 10 in = 2 in = 2 in ogive with
its long axis coincident with the x-axis. All calculations were
carried out at 5.91 GHz. This is indeed a very small system,
and serves the purpose of validating the preconditioning
scheme. Also, the ogive was chosen due to its irregular grid at
the tips. A uniformly meshed sphere does not serve as a good
test example due to its well-conditioned system.

Figure 2 shows the residual error as a function of iteration
number for the EFIE matrix. It is seen that, due to the
irregular mesh around the sharp tips of the ogive, the CGS
solver does not converge in fewer than 50 iterations without
preconditioning. However, when the ILU preconditioner is
introduced, convergence is dramatically improved, requiring
only Nr50 iterations to achieve an error of 10y5.

Figure 1 Ogive geometry and the simulation setup

Figure 2 Performance of ILU in conjunction with EFIE formula-
tion
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Figure 3 Performance of ILU in conjunction with MFIE formula-
tion

Ž .Figure 4 Performance of ILU in conjunction with CFIE a s 0.5
formulation

Nonpreconditioned and preconditioned solution data for
the MFIE matrix are given in Figure 3. Since the MFIE
formulation produces better conditioned systems, the resid-
ual error behavior of the MFIE is better than that of the
EFIE. Nevertheless, convergence without preconditioning is
very slow. When the ILU preconditioner is included, conver-
gence is reached down to a residual of 10y5 in about Nr150
iterations. Figure 4 gives the corresponding convergence
curves for the CFIE matrix. Since the CFIE system is better

Ž .conditioned than the EFIE and the MFIE , convergence is
now achieved, even without preconditioning. The use of ILU
simply reduces the number of iterations from Nr25 down to
Nr150 to reach a residual error of 10y5.

Table 1 summarizes the performance of the ILU precon-
ditioner for a larger problem. Much like the ogive, the
scatterer in this simulation has sharp edges and tips, as well
as smooth sections. Also, the mesh is quite distorted and
nonuniform around these edges. Nevertheless, the perfor-
mance of the ILU preconditioner is quite impressive. Specif-

Ž .ically, ILU improved the convergence of the CFIE a s 0.5
matrix down to Nr10,000, leading to a solution time of only 5
min for a 53,000-unknown system on an eight-processor SGI
Origin 2000.

Based on the above performance evaluations, we can
conclude that the ILU preconditioner can be used1 to im-
prove the performance of iterative solvers in FMM imple-
mentations without increasing the memory utilization for the
preconditioner matrix.
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1The code used in this, FMM-SWITCH, is based on the SWITCH code
developed by Northrop Grumman Corporation.

TABLE 1 Performance of ILU for a Large-Scale Complex Target with Sharp Edges and Tips on an Eight-Processor SGI Origin 2000

Matrix Preconditioned Time
Number Fill LU per

Ž . Ž . Ž .of Time min Time min Number Residual Solution min
Ž . Ž . Ž .Unknowns Eight Processors One Processor of Iterations Error Eight Processors

53,000 77 81 5 0.001 5
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