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SUMMARY

Engines equipped with a means to actuate air flow at the intake valve can achieve superior fuel economy
performance in steady state. This paper shows how modern nonlinear design techniques can be used to
control such an engine over a wide range of dynamic conditions. The problem is challenging due to the
nonlinearities and delays inherent in the engine model, and the constraint on the air flow actuator. The
controller is designed on the basis of a mean-value model, which is derived from a detailed intake stroke
model. The control solution has two novel features. Firstly, a recovery scheme for integrator wind-up due
to input constraints is directly integrated into the nonlinear control design. The second novel feature is that
the control Lyapunov function methodology is applied to a discrete-time model. The performance of the
controller is evaluated and compared with a conventionally controlled engine through simulation on the
detailed engine model. Copyright # 2003 John Wiley & Sons, Ltd.

KEY WORDS: engines; discrete-time systems; nonlinear systems; Lyapunov methods

1. INTRODUCTION

In the design of an engine controller, one must optimize and make trade-offs between fuel
economy, drivability (torque management) and emissions. Since an automobile must meet
stringent federal emissions regulations in order to be sold, emissions control often is the most
important factor. The customer, however, will consider fuel economy and torque response in
making a selection.

The three way catalytic converter is the current technology for meeting emissions regulations.
When operated near the stoichiometric point, emission conversion efficiencies of 98% for
hydrocarbons, carbon monoxide and oxides of nitrogen can be achieved. However, as seen in
Figure 1, deviations of �0:2 air–fuel ratio ðA=F Þ will cause the conversion efficiency of at least

Published online 3 January 2003 Received 12 October 2001
Copyright # 2003 John Wiley & Sons, Ltd. Accepted 7 March 2002

*Correspondence to: Dr. Jun-Mo Kang, General Motors R&D, Mail Code 480-106-390 30500 Mound Road, PO Box
9055, Warren, MI 48090-9055, USA.
yE-mail: jun-mo.kang@gm.com
zE-mail: grizzle@umich.edu

Contract/grant number: ECS-9631237.
Contract/grant sponsor: NSF GOALI;
Contract/grant sponsor: Ford Motor Company



one of the emission components to drastically decrease. Thus an important control objective is
to maintain the air–fuel ratio near stoichiometry.

In a standard spark ignition engine, the primary actuator is the fuel injector, which is typically
located at the intake port. The mass flow rate of air entering the intake manifold is measured
with a hot wire anemometer, and the fuel injected into the engine is adjusted to achieve a
stoichiometric mixture; this is clearly a feedforward control action. In order to compensate for
inevitable errors in air–fuel ratio, the air–fuel ratio is measured in the exhaust stream with an
exhaust gas oxygen (EGO) sensor, and a PI feedback control loop is then used to achieve zero
steady-state error for constant throttle position and engine speed.

Extensive research has been done to improve A=F control performance of the system. Part of
this research has focused on accurate estimation of transient air flow, thereby improving the
accuracy of the feedforward controller. Another possibility is to control the air flow into the
intake manifold with an electronic throttle [1, 2], or the air flow into the cylinders. This latter
actuation can be achieved by adjusting the cam timing of the intake valves [3], by implementing
independent electro-hydraulically controlled intake valves [4], by secondary (or port) throttles
[5], or by using secondary valves in series with conventional intake valves [6]. The common
element of these actuators is that they allow control of the air flow into the cylinders by adjusting
the effective area of the intake valves. Three of these methods, namely variable intake cam timing,
variable intake valve control, and series secondary valves can also be used to improve fuel
economy. This is because, by controlling the breathing process of the engine, it is possible to raise
the average manifold pressure, and thereby reduce pumping losses in the engine [4, 6].

The local aspects of joint air and fuel control have been studied in References [5, 7] by
designing a linear controller based around a specific operating point. The torque (drivability)
and A=F responses were superior or equal to that of a conventional engine (with fuel PI control)
for small step changes in the primary throttle position. The major problem encountered with the
linear analysis was that the resulting closed-loop system went unstable for large changes in the
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Figure 1. Steady-state conversion efficiency of TWC.
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primary throttle position. This can be traced to two causes: the nonlinearities in the engine
model and saturation in the air flow actuator.

This paper will attempt to address these issues by developing a more global control strategy.
This design has two novel features. Firstly, an integrator anti-wind-up scheme is directly
integrated into the nonlinear control design. The basic idea is to inject an extra reference signal
to stabilize the integrator whenever the control inputs saturate, thereby avoiding integrator
wind-up. The second novel feature is the application of the control Lyapunov functions (clf)
methodology to a discrete-time model [8].

An overview of the engine model used in this study is presented in the next section. Control
objectives are summarized in Section 3. The nonlinear control design is carried out in Section 4.
A performance analysis via simulation is presented in Section 5. The controller design will be
performed on a mean-value model, whereas its performance will be evaluated via simulation on
a more detailed model which captures the air flow dynamics during an intake event.

2. ENGINE MODEL

2.1. Breathing process model for un-actuated air flow

The intake manifold representation considered here follows [9]. It is a continuous, nonlinear,
1:6 L; four-cylinder model. Assuming constant intake manifold temperature, the intake
breathing process of the conventional engine, based upon the ideal gas law and the conservation
of mass,* can be described by

dpm

dt
¼

RTm
Vm

Wf �
X4
i¼1

Wci

" #
ð1Þ

dpci

dt
¼

1

Vci
RTcWci � ’VV cipci

� �
; i ¼ 1; . . . ; 4 ð2Þ

where, pm is the intake manifold pressure and pci is the pressure in the ith cylinder, Wf and Wci

are the mass air flow rate into the manifold and that pumped out of the manifold into the ith
cylinder, respectively. Vm and Vci are the volume of the intake manifold and that of the ith
cylinder, R is the specific gas constant, Tm is the intake manifold temperature, and Tc is the
cylinder wall temperature during the intake event. The ith cylinder volume is approximated as a
function of crank-angle:y

Vci ðyÞ ¼
Vd
2

1� cos y�
720

4
ði� 1Þ

� �� �
þ Vcl ð3Þ

y ¼
Z t

0

N
60

360 dt
� �

mod 7208 ð4Þ

where Vd is the maximum cylinder displaced volume, Vcl is the cylinder clearance volume, y is
crank-angle in degrees, and N is the engine speed in RPM. The quantity pci in (2) is initialized to
the exhaust pressure ð110 kPaÞ at the intake valve open timing (IVO), assuming that cylinder
pressure reaches equilibrium at exhaust manifold pressure before intake valve opens. The mass

*See Appendix B for specific parameter values and units used in the study.
ySee Reference [10] for exact representation.
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air flow into the manifold, Wf; is approximated as a function of upstream pressure ðp0Þ and the
downstream pressure, which is manifold pressure. Upstream pressure is assumed to be
atmospheric (i.e. p0 ¼ 100 kPaÞ:

Wf ¼ 1000� AfðfÞdðpm;p0Þ ð5Þ

AfðfÞ ¼ 1:268� 10�4ð�0:2215� 2:275fþ 0:23f2Þ ð6Þ

dðpm;p0Þ ¼
1 if pm4p0=2

2=p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pmp0 � p2

m

p
if pm > p0=2

(
ð7Þ

where AfðfÞ is the effective area of the throttle body, as a function of primary throttle angle ðfÞ
in degrees. The mass air flow into the ith cylinder, Wci ; is expressed asz

Wci ¼ 1000� AvðLviÞdðpci ;pmÞ ð8Þ

where Av is the effective area of an intake valve, which is modelled as a linear function of valve
lift (mm), Lvi ;

AvðLvi Þ ¼ aLvi ð9Þ

The scale factor a is identified as 0.0175 in Reference [9] for the experimental engine under
consideration.

The valve lift motion is characterized by open timing (IVO), maximum lift (IVL), and open
duration (IVD). For a conventional engine, the valve lift is a sinusoidal function of these
parameters and crank-angle during an intake event [9]:

LviðyÞ ¼ IVL sin2
180

IVD
ðy� 90ði� 1Þ � IVOÞ

� �
ð10Þ

In this study, the valve specifications in Reference [9] are used: IVO ¼ �88; IVL ¼ 8:1 mm; and
IVD ¼ 2348:

2.2. Mean-valued breathing process model

The above model describes the evolution of the various pressures and mass flow rates of the
breathing process within an engine event. In general, for control design purposes, it is preferable
to adopt a phenomenological, mean-valued model by averaging pressures and mass flow rates
over an engine event [3, 11]. This typically results in a simpler model and one where the time
scales are better adapted to those of the actuation processes. For these reasons, the mass air flow
rate into the cylinder, (8), is first averaged based on simulation results, and then, via regression,
represented as a function of manifold pressure and engine speed N as

Wcðpm;N Þ ¼ � 1:7474� 10�3 þ 5:6837� 10�6pm � 1:6529� 10�3N

þ 1:5666� 10�7Npm ð11Þ

For validation, Figure 3 compares the averaged mass air flow rate Wci with constant manifold
pressure and engine speed against the regression model (11).

zThe model is valid as long as the air momentum is insignificant, which becomes visible at very high engine speed.
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2.3. Cylinder air charge control

To account for air flow actuation, the mass flow rate into the cylinder is modified as follows

Wa ¼ bWc ð12Þ

where b represents the normalized linear scale factor of mass air flow rate, and is limited
between* 0.1 and 1. This results in the mean-value breathing process model

dpm

dt
¼

RTm
Vm

ðWf � bWcÞ ð13Þ

Depending on the air charge actuation scheme used, more or less manipulation may be
necessary to put the model in this form. This will be discussed shortly. However, each scheme
has the qualitative feature of being able to increase or decrease the air admitted into the
cylinder, over a certain range.

On a practical basis, the choice of the particular air charge actuation scheme will be based on
many factors. For example, in view of fuel economy, control of the cylinder air charge via intake
valve open timing or intake valve open duration reduces pumping losses by allowing increased
intake port pressure, which is essentially equivalent to intake manifold pressure [4]. On the other
hand, secondary throttles choke the air flow at the intake ports, thereby decreasing the intake
port pressure, which results in increased pumping losses [10]. Other issues such as reliability and
cost must also be considered. From the control point of view taken in this paper, the primary
difference between the various schemes lies in the speed of response of the associated actuator
dynamics. The analysis carried out in this paper is valid for any actuation scheme that can be
modelled by (12) with an actuator response that is essentially instantaneous with respect to the
time duration of an engine event. For definiteness, this paper assumes a hydraulically actuated
cam, whose valve motion profile is depicted in Figure 2.

The key concept is to control the air flow by independently adjusting three parameters IVO,
IVL, and IVD of the intake valve motion. The cylinder air charge, mai ðgÞ; is then determined as

IVD

IVO

IVL

θ

Figure 2. Profile of hydraulically actuated valve.

*The lower bound of b should be determined to avoid misfire owing to lack of oxygen in the mixture.
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a function of these parameters via

mai ¼
60

360

Z IVOþIVD

IVO

Wci

1

N
dy ¼

60

360

Z IVOþIVD

IVO

¼

AvðLviðIVL; yÞÞdðpci ;pmÞ
1

N
dy ð14Þ

For simplicity in this study, IVO and IVL are fixed at top dead centre and 8 mm; respectively,
leaving IVD as the unique control parameter. As an example, Figure 4 shows a typical mass air
flow rate curve as a function of IVD, with respect to crank-angle. Then IVDb; which is defined
to be the intake valve open timing which approximately achieves

mai ¼
60

360

Z IVOþIVDb

IVO

AvðLvi ðyÞÞ dðpci ;pmÞ
1

N
dy � bWcT ð15Þ

where T is the time taken for the piston to travel from top dead centre (TDC) to bottom dead
centre (BDC), can be determined through simulation, and mapped as a function of engine speed
and intake manifold pressure.

2.4. Mean-value feedgas and torque model

The discrete-event nature of the combustion process introduces transport delays, which are
dependent on engine speed. This motivates discretizing the overall model synchronously with
engine events [12, 13]. That is, the independent variable is transformed from time to crank-angle,
and the model is then discretized at a constant rate in the crank-angle domain. Here, the model
is discretized with period p radians in crank-angle, which corresponds to one engine event
(elapsed time of revolution for the intake stroke, for example). This procedure introduces speed-
dependent terms in the dynamics, but it permits standard stability analysis to be applied.
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The calculation delay in the injection of fuel and the transport delays are included in the
model. The dynamics of the EGO sensor is modeled by a first-order difference equation; in the
time domain, its time constant is 0:20 s:

The steady state engine torque is affected by many parameters such as ignition delay, EGR
and so on. The general relations between these parameters and engine torque are derived from
experimental data and curve fitting methods. Unfortunately, a torque model for the engine in
consideration [9] is not available at this moment, and for this reason, that of Reference [11] is
adopted in the model

Tb ¼ � 181:3þ 379:36ma þ 21:91ðA=F Þ � 0:85ðA=F Þ2 þ 0:26ss � 0:0028s2s

þ 0:0027N � 0:00000107N 2 þ 0:000048Nss þ 2:55ssma

� 0:05s2sma þ 2:36ssme ð16Þ

where ma is the mass air charge (g/intake event), A=F the air–fuel ratio, N the engine
speed (RPM), me the EGR (g/intake event) and ss degrees of spark advance before top dead
centre.

Since the focus of this work is on utilizing innovative air actuation, conventional variables
such as EGR and spark advance are assumed to be constant for simplicity. The above model
was identified [11] at air–fuel ratios between 13.6 and 15.6, engine speeds between 800 and
6000 RPM; intake manifold pressures between 35 and 100 kPa; and torque from 14 to 135 Nm:

The complete block diagram of the feedgas and torque model is shown in Figure 5, and that
of the overall engine model is shown in Figure 6.
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3. CONTROL PROBLEM DESCRIPTION

The major objectives of the control design are:

1. exploit the air flow actuation capability to achieve higher manifold pressure, thereby
reducing pumping losses and improving fuel economy;

2. achieve a torque response that is as similar as possible to a conventional engine so that
there is no perceptible loss in drivability;

3. minimize air–fuel ratio excursions from stoichiometry to maximize the simultaneous
conversion efficiency of the catalyst, thereby minimizing overall emissions.

The control inputs are effective valve area factor, b; and (amount of) fuel injection, Fc: It is
assumed that the air–fuel ratio is measured by a linear EGO sensor placed in the exhaust stream,
just ahead of the catalyst. In addition, it is assumed that some means of measuring torque is
available.*

As stated, the problem has two-inputs, two-measured outputs and three performance
objectives. This imbalance is treated by ‘squaring down’ the performance objectives. At
stoichiometry, torque depends primarily on mass air flow. At low primary throttle angle, a static

1
Z 2

Wa
 

1
Z 2

1
Z 2

T b

T

Torque

N

30

T

Fc

delay
Injection

1
Z(g/s)

N
30(g/s)

N (RPM)

Fuel EGO
sensor A/F

Figure 5. Feedgas and torque model.
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DynamicsFuel injection

Figure 6. The block diagram of overall engine model.

*Currently, several major automotive suppliers are developing sensors for direct measurement of engine torque; for the
use of such sensors in high-performance applications, see Reference [14].

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:399–420

J.-M. KANG AND J. W. GRIZZLE406



mass air flow model is constructed so as to closely match the steady-state torque of the joint-air-
and-fuel-controlled engine to that of the conventional engine, while maintaining the intake
manifold pressure greater than 50 kPa; in steady state. This also guarantees control authority
over cylinder mass air flow rate [5]; see Figure 7. In this regime, the parameter b is near 0.5–0.6.
At high primary throttle angles, the manifold pressure is already high in a conventional engine,
and hence, the static mass air flow model is simply designed to closely match the steady-state
torque of the conventional engine. The static mass air flow model, and hence the static torque
model as well, is a function of the primary throttle angle and engine speed.

The control problem is now defined as in Figure 8: the objective is to design a controller that
achieves zero steady-state error in commanded torque and stoichiometric air–fuel ratio for
constant primary throttle position, while avoiding integrator wind-up. The commanded torque
is taken to be a low pass filtered version of the static torque model. The time constant of a first-
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order low-pass filter, tr; is to be determined to trade off drivability (speed of torque response)
with emissions (deviations in air–fuel ratio from stoichiometry).

4. NONLINEAR FEEDBACK CONTROL DESIGN

This section follows a recent approach to the design of nonlinear controllers, namely control
Lyapunov functions* (clf). In particular, a Hammerstein-like equivalent model of the feedgas
and torque model is introduced and a nonlinear feedback controller is developed based on a
positive semi-definite clf. This allows a systematic design procedure for a state feedback
controller, and an observer for implementing the state feedback controller. First, a simple state
feedback controller is designed based on the intake manifold dynamics plus the nonlinear
portion of the Hammerstein-like model, and then the controller is extended to include the linear
subsystem. Finally, an asymptotic observer is designed, and stability of the resulting closed-loop
system is discussed.

One of the novelties in this work is the use of control Lyapunov functions on a discrete-time
system model. Most of the work in this area has focused on continuous-time models.

4.1. State feedback control

The feedgas and torque model of Figure 5 includes delays and nonlinearities (air–fuel division
and torque generation). In the sense of input–output equivalence, it can be rearranged to an
equivalent Hammerstein model with a delayed input, as shown in Figure 9. The feedgas and
torque model is then a delay plus a static nonlinearity followed by a decoupled linear subsystem.

Wa
 

N
30

1
Z 2

1
Z 4

T b

EGO
sensor A/F

Linear subsystem

s   (k)2

s   (k)1
T

N
30

Torque

Fuel
Fc 1

Z(g/s)

(g/s)

N (RPM)

Static nonlinearity

Injection
delay

T

Figure 9. Equivalent feedgas and torque model.

*The term is being used in an extended sense because the candidate Lyapunov function will not be positive definite.
Consequently, universal formulas for stabilizing feedbacks, such as Sontag’s formula, [15], are not applicable.
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To fix the main ideas of the clf design, a controller is first designed for an engine model
consisting of the intake manifold dynamics followed by the injection delay and static
nonlinearity of the feedgas and torque model (the linear subsystem will be initially ignored). The
control signals are effective valve area factor, b; and z; which is the inverse (amount of) fuel flow
rate (s/g). To aid in the feedback design, the torque generation equation (16) is linearized around
stoichiometry. Since b is limited by 0.1 and 1, and the fuel injection rate is practically
constrained (from 0.01 to 20 g=s), discrete state equations are given by

pmðk þ 1Þ ¼pmðkÞ þ
RTm
Vm

T ðWfðpmðkÞ;N Þ � sat10:1 ðbÞWcðpmðkÞ;N ÞÞ ð17aÞ

x1ðk þ 1Þ ¼ sat1000:05ðzÞ ð17bÞ

TbðkÞ ¼ 410:86TWcðpmðkÞ;N Þsat10:1ðbÞ � 2:98ðx1ðkÞWcðpmðkÞ;N Þsat10:1ðbÞ � A=FsÞ

þ cðN Þ ð17cÞ

A=F ðkÞ ¼ x1ðkÞWcðpmðkÞ;N Þsat10:1ðbÞ ð17dÞ

where x1 is the delayed fuel injection, T the intake event duration, A=Fs the stoichiometric air–fuel
ratio and cðN Þ ¼ �37:44þ 0:00414N � 0:00000107N 2. The saturation function is defined as

satabðuÞ ¼

a if u5a

u if b5u5a

b if b5u

8>><
>>:

Figure 10 shows that the approximation error between (16) and the linearized torque is less than
1 Nm for air–fuel ratios between 13.6 and 15.6, where the torque model was identified in
Reference [11].
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Figure 10. Torque deviation from nominal torque given mass air charge and engine speed.
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Due to the constraints on the inputs, an integrator anti-wind-up scheme needs to be
integrated into the controller design. The key idea used here is to actively adjust the reference
signals in order to stabilize the integrators. The difference equations of the integrators are
modified to include reference adjustment as follows:

q1ðk þ 1Þ ¼ q1ðkÞ þ T ðTbðkÞ � r � r1ðkÞÞ ð18Þ

q2ðk þ 1Þ ¼ q2ðkÞ þ T ðA=F ðkÞ � A=Fs � r2ðkÞÞ ð19Þ

where r is the reference torque (Nm), as a function of primary throttle angle (f) and engine
speed (N ) and r1; r2 the reference signal adjustments that are to be determined.

Since q1ðk þ 1Þ and q2ðk þ 1Þ have common terms, it is natural to choose a candidate
Lyapunov function as

VL1 ¼ V 2
1 ¼ ðq1 þ 2:98q2Þ

2 ð20Þ

so that these two states are bounded relative to one another; that is, if one of them is bounded,
then so is the other. In the next step, another candidate Lyapunov function with parameter k is
chosen to force one of the integrator states, q2; to be bounded relative to the state x1:

VL2 ¼ V 2
2 ¼ ðkq2 þ x1Þ

2 ð21Þ

Thus, because pm is always bounded, if it can later be proven that any one of x1; q1 or q2 is
bounded, then all of the states are bounded.

A composite, quadratic, positive semi-definite Lyapunov function is then given by

VLðxÞ ¼ VL1ðxÞ þ VL2ðxÞ ¼ V 2
1 ðxÞ þ V 2

2 ðxÞ50 where x ¼ ðpm; x1; q1; q2Þ ð22Þ

The difference equation can be computed to be

DVLðxðkÞÞ ¼ ðV 2
1 ðxðk þ 1ÞÞ � V 2

1 ðxðkÞÞÞ þ ðV 2
2 ðxðk þ 1ÞÞ � V 2

2 ðxðkÞÞÞ

¼ ðV1ðxðk þ 1ÞÞ � V1ðxðkÞÞÞðV1ðxðk þ 1ÞÞ þ V1ðxðkÞÞÞ

þ ðV2ðxðk þ 1ÞÞ � V2ðxðkÞÞÞðV2ðxðk þ 1ÞÞ þ V2ðxðkÞÞÞ ð23Þ

where

V1ðxðk þ 1ÞÞ � V1ðxðkÞÞ ¼ T ð410:86TWcðpmðkÞ;N Þsat10:1ðbÞ � 2:98r2ðkÞ

þ cðN Þ � r � r1ðkÞÞ ð24Þ

V2ðxðk þ 1ÞÞ � V2ðxðkÞÞ ¼ kT ðx1ðkÞWcðpmðkÞ;N Þsat10:1ðbÞ � A=Fs � r2ðkÞÞ

þ sat1000:05ðzÞ � x1ðkÞ ð25Þ

The control signals are designed as

bðxÞ ¼
1

410:86TWcðpm;N Þ
�cðN Þ þ r �

c1
T
V1ðxÞ

� �
ð26Þ

zðxÞ ¼ �kT ðx1Wcðpm;N Þsat10:1ðbðxÞÞ � A=FsÞ þ x1 � c2V2ðxÞ ð27Þ
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so that

V1ðxðk þ 1ÞÞ � V1ðxðkÞÞ ¼ �c1V1ðxðkÞÞ ð28Þ

V2ðxðk þ 1ÞÞ � V2ðxðkÞÞ ¼ �c2V2ðxðkÞÞ ð29Þ

With 05c152 and 05c252; this achieves DVLðxÞ negative semi-definite if the control signals are
within the constraints

DVLðxÞ ¼ �c1ð2� c1ÞV 2
1 ðxÞ � c2ð2� c2ÞV 2

2 ðxÞ40 ð30Þ

If the control signals exceed their constraints, r1 and r2 become active and are designed as

r1 ¼ 410:86TWcðpm;N Þsat10:1ðbÞ � 2:98r2 þ cðN Þ � r þ
c1
T
V1ðxÞ ð31Þ

r2 ¼ x1Wcðpm;N Þsat10:1ðbÞ � A=Fs þ
1

kT
ðsat1000:05ðzÞ � x1 þ c2V2ðxÞÞ ð32Þ

so that (30) is consistently preserved regardless of the input constraints. Note that if the control
signals satisfy their constraints, r1 and r2 are zero and do not affect the integrators. The goal
now is to understand what (30) implies about the stability of the closed-loop system. When
DVL � 0; V1 � V2 � 0 from (30) and the control signals become

bDVL¼0 ¼
1

410:86TWcðpm;N Þ
ð�cðN Þ þ rÞ ð33Þ

zDVL¼0 ¼ ð1� kTWcðpm;N Þsat10:1ðbDVL¼0ÞÞx1 þ kTA=Fs ð34Þ

Then, given constant primary throttle angle and constant engine speed, the discretized, mean-
value breathing dynamics (13) is asymptotically stable in the sense of Lyapunov with control
signal (33) if the sampling rate is sufficiently fast. To show this, mass air flow rate Wf and
sat10:1ðbDVL¼0Þ � Wc are shown in Figure 11, along with the equilibrium intake manifold pressure,
denoted as ps: The discrete breathing dynamics can be expressed as

peðk þ 1Þ ¼peðkÞ þ
RTm
Vm

T ðWfðpeðkÞ þ psÞ � sat10:1ðbDVL¼0ÞWcðpeðkÞ þ psÞÞ

¼peðkÞ þ f ðpeðkÞÞ ð35Þ

where peðkÞ ¼ pmðkÞ � ps: A candidate positive definite Lyapunov function for pe is

VpðpeÞ ¼ p2
e > 0 ð36Þ

whose difference equation is

DVpðpeðkÞÞ ¼ ðpeðk þ 1Þ � peðkÞÞðpeðk þ 1Þ þ peðkÞÞ

¼ f ðpeðkÞÞð2pe þ f ðpeðkÞÞÞ ð37Þ

Since f ðpeÞ is a static nonlinearity lying in the second and fourth quadrants, and j2pej > jf ðpeÞj if
the sampling rate is sufficiently fast,* it can be shown that 2pe þ f ðpeÞ lies in the first and third

*The sampling period used here of one revolution of the crankshaft can be easily decreased, if necessary [16].
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quadrants. Thus DVpðpeÞ is negative definite, which proves asymptotic stability of pm in the
sense of Lyapunov.

With control signals (33) and (34), the state x1 evolves as

x1ðk þ 1Þ ¼ sat1000:05ðð1� kTWcðpmðkÞ;N Þsat10:1ðbDVL¼0ÞÞx1ðkÞ þ kTA=FsÞ ð38Þ

The parameter k is now chosen so that

j1� kTWcðpm;N Þsat10:1ðbDVL¼0Þj51 ð39Þ

in order that x1 be asymptotically stable in the sense of Lyapunov. Since V1 � V2 � 0 in the
manifold W ¼ fxjDVLðxÞ ¼ 0g; (20) and (21) imply asymptotic stability in the sense of Lyapunov
of the integrator states. Then by Reference [8], the closed-loop system is stable in the sense of
Lyapunov, since it is asymptotically stable in the manifold Z ¼ fxjVLðxÞ ¼ 0g; which is equal to
W : This also proves asymptotic stability since all states are bounded and approach W by
LaSalle’s Theorem [17].

Remark

Suppose that in steady state, the inverse amount of fuel injection, z; is not saturated
(i.e. it is within its allowed constraints). Then from (27) and (32), r2 � 0: Thus, the steady-state
air–fuel ratio will be at the stoichiometric value. Moreover, if b is also within its constraints in
steady state, (26) and (31) imply that r1 � 0; and thus the steady-state torque will be the desired
value. In other words, if the actuators are not saturated in steady state, the steady-state error is
zero.
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Figure 11. Mass air flow rate at a primary throttle angle of 208; and an engine speed of 3500 RPM:
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The above idea can be easily extended to the full order model. The complete state equations of
the feedgas and torque model shown in Figure 9 are given by

pmðk þ 1Þ ¼ pmðkÞ þ
RTm
Vm

T ðWfðpmðkÞ;N Þ � sat10:1ðbÞWcðpmðkÞ;N ÞÞ ð40aÞ

x1ðk þ 1Þ ¼ sat1000:05ðzÞ ð40bÞ

x2ðk þ 1Þ ¼ x1ðkÞWcðpmðkÞ;N Þsat10:1ðbÞ ð40cÞ

x3ðk þ 1Þ ¼ x2ðkÞ ð40dÞ

x4ðk þ 1Þ ¼ x3ðkÞ ð40eÞ

x5ðk þ 1Þ ¼ x4ðkÞ ð40fÞ

x6ðk þ 1Þ ¼ 1�
T
ts

� �
x6ðkÞ þ

T
ts
x5ðkÞ ð40gÞ

x7ðk þ 1Þ ¼ 410:86TWcðpmðkÞ;N Þsat10:1ðbÞ

� 2:98ðx1ðkÞWcðpmðkÞ;N Þsat10:1ðbÞ � A=FsÞ þ cðN Þ ð40hÞ

x8ðk þ 1Þ ¼ x7ðkÞ ð40iÞ

TbðkÞ ¼ x8ðkÞ ð40jÞ

A=F ðkÞ ¼ x6ðkÞ ð40kÞ

q1ðk þ 1Þ ¼ q1ðkÞ þ T ðTbðkÞ � r � r1ðkÞÞ ð40lÞ

q2ðk þ 1Þ ¼ q2ðkÞ þ T ðA=F ðkÞ � A=Fs � r2ðkÞÞ ð40mÞ

where ts is the time constant of the EGO sensor. As a next step, VL1 and VL2 in (20) and(21) are
simply extended and replaced with

VL1 ¼ V 2
1 ¼ ðq1 þ 2:98ðq2 þ T ðx2 þ x3 þ x4 þ x5Þ þ tsx6Þ þ T ðx7 þ x8ÞÞ

2 ð41Þ

VL2 ¼ V 2
2 ¼ ðkðq2 þ T ðx2 þ x3 þ x4 þ x5Þ þ tsx6Þ þ x1Þ

2 ð42Þ

Then with the positive semi-definite Lyapunov function

VLðxÞ ¼ VL1ðxÞ þ VL2ðxÞ ¼ V 2
1 ðxÞ þ V 2

2 ðxÞ50 where x ¼ ðpm; x1; . . . ; x8; q1; q2Þ ð43Þ

difference equations (23), (24) and (25) are preserved, and accordingly, the same argument can
be repeated to show asymptotic stability of pm and x1 in the manifold W ¼ fxjDVLðxÞ ¼ 0g;
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which is equal to Z ¼ fxjVLðxÞ ¼ 0g: It follows therefore that s1ðkÞ and s2ðkÞ; defined in Figure 9,
both converge to constants. Since the linear subsystem of the model in Figure 9 is asymptotically
stable, this guarantees that x2ðkÞ; . . . ; x8ðkÞ converge to constants. Hence, by (41) and (42), the
integrator states converge as well. Thus the system is asymptotically stable in the manifold Z;
and this proves stability in the sense of Lypaunov of the closed-loop system by Reference [8].
This then proves asymptotic stability in the sense of Lyapunov of the closed-loop system since
all the states are bounded and approach W by LaSalle’s Theorem [17].

4.2. Observer-based feedback implementation

Since not all of the states are directly measurable, an observer is required in order to implement
the feedback of Section 4.1. It is assumed that intake manifold pressure is measured by a MAP
sensor. Since x1 is simply a computation delay and is known, a Kalman filter is designed for the
linear subsystem of Figure 9. The filter gain, L; is chosen to achieve an asymptotically stable
error dynamics

xeðk þ 1Þ ¼ ðA� LCÞxeðkÞ ð44Þ

where xe ¼ x� #xx: Then for any positive definite matrix M ; there exists a unique positive definite
matrix Q [18] such that

ðA� LCÞTQðA� LCÞ � Q ¼ �M ð45Þ

For the observer-based controller, (41) and (42) are now replaced with

VL1 ¼ V 2
1 ¼ ðq1 þ 2:98ðq2 þ T ð #xx2 þ #xx3 þ #xx4 þ #xx5Þ þ ts #xx6Þ þ T ð #xx7 þ #xx8ÞÞ

2 ð46Þ

VL2 ¼ V 2
2 ¼ ðkðq2 þ T ð #xx2 þ #xx3 þ #xx4 þ #xx5Þ þ ts #xx6Þ þ x1Þ

2 ð47Þ

In order to analyse the closed-loop stability properties, a candidate positive semi-definite
Lyapunov function is chosen as

VeðxÞ ¼ xTeQxe50 where x ¼ ðpm; x1; . . . ; x8; q1; q2; #xx2; . . . ; #xx8Þ ð48Þ

so that the difference equation, DVeðxðkÞÞ; is negative semi-definite:

DVeðxðkÞÞ ¼ Veðxðk þ 1ÞÞ � VeðxðkÞÞ ¼ xTe ðk þ 1ÞQxeðk þ 1Þ � xTe ðkÞQxeðkÞ

¼ xTe ðkÞððA� LCÞTQðA� LCÞ � QÞxeðkÞ ¼ �xTe ðkÞMxeðkÞ40 ð49Þ

In the manifold Ze ¼ fxjVeðxÞ ¼ 0g; the closed-loop system is asymptotically stable in the sense
of Lyapunov, as proven in the previous subsection. This proves stability around equilibria by
Reference [8]. Then by LaSalle’s Theorem [17], the states approach the largest positively
invariant set contained in We ¼ fxjDVeðxÞ ¼ 0g: Since We ¼ Ze from (48) and (49), it follows that
the closed-loop system is asymptotically stable in the sense of Lyapunov.
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5. PERFORMANCE ANALYSIS

5.1. Parameter design

This subsection presents a way to select the parameters k; c1 and c2: In the nominal case, that is,
if the effective valve area b is well within its constraint, condition (39) becomes

j1� kTWcðpm;N Þ � bDVL¼0j ¼ 1� k
�cðN Þ þ r
410:86

����
����51 ð50Þ

and, since the static reference torque r is a function of primary throttle angle and engine speed, k
is scheduled as

1� kðf;N Þ
�cðN Þ þ rðf;N Þ

410:86
¼ 0:1 ð51Þ

in order to maintain condition (39). This will allow a consistent fuel convergence rate over the
various operating points when DVL is close to zero. As a next step, c1 and c2 are designed to
shape the sensitivity function of the system’s linearization about equilibria. For this purpose, the
engine model and the observer-based controller are linearized at a nominal operating point, and
c1 and c2 are tuned to minimize the cost

Jc ¼
Xn
k¼1

ew � sðSkÞ ð52Þ

where, sðSkÞ is the maximum singular value of the input sensitivity function, sampled at discrete
points between 0 and one-half of the Nyquist frequency ðp=T Þ; n is the number of sample points,
and w is a weight which was chosen to be 10. In this way, the sensitivity function is shaped to be
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Figure 12. Singular values of input sensitivity functions at engine speed 1500 RPM; MAF represents mass
air flow rate into the cylinder.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:399–420

DYNAMIC CONTROL OF SI ENGINE 415



below 1 over the specified frequency range, while the closed-loop bandwidth increases as much
as possible.

As an example, at a constant engine speed of 1500 RPM; primary throttle angle equal to 258
and effective valve area factor equal to 0.7, c1 and c2 were both tuned to 0.048. Figure 12 shows
the maximum singular values of the sensitivity function at different primary throttle angles that
are obtained with this method. It is seen that the sensitivity functions are nearly below 1, but
degrade as manifold pressure decreases. This is because the air charge actuator begins to lose
authority over the air flow as manifold pressure decreases to 50 kPa [5,3].

5.2. Simulations

The performance of the controller designed above was first evaluated through the mean-value
model. The time constant, tr; of the torque reference model was set to 0.05. The stoichiometric
air–fuel ratio, A=Fs; is set to 14.6, and the engine speed was held constant at 1500 RPM:

The torque and A=F responses were compared to the conventional engine, with fuel managed
by a standard feedforward plus PI controller. The feedforward signal was generated in the usual
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Figure 13. Simulation results with mean-value model at constant engine speed 1500 RPM: Solid line
represents engine with joint air and fuel control and the dashed line the conventional engine with a
feedforward plus PI controller. The results demonstrate higher intake manifold pressure achieved at low
loads (hence, better fuel economy through reduced pumping losses), while achieving A=F and torque

responses comparable to a conventional engine.
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way, and the PI gain was chosen so that A=F excursions are minimized. The results, displayed in
Figure 13, show that the engine with joint air and fuel control achieves similar torque response
to the conventional engine. At 2 seconds, a þ3:58 step change was given at a primary throttle
angle 19:58; and it is seen that the effective valve area slowly increases to smooth the air flow
change caused by the driver, resulting in superior A=F performance over the conventional
engine. At 5 and 10 seconds, þ12:58 and �168 step changes were given. With the throttle step
increase, the effective valve area factor reaches its maximum constrained value. In each case, for
the engine with joint air and fuel control, the A=F response has a faster convergence rate to
stoichiometry than that of the conventional engine. However, there is a slightly larger
undershoot at tip-out. Figure 13 also displays the intake manifold pressure. The possibility of
controlling the cylinder air charge process has resulted in the ability to maintain a higher
manifold pressure than that of the conventional engine, yielding a potential reduction of
pumping losses at low primary throttle angles.

In the second simulation, shown in Figure 14, the performance of the controller was evaluated
on the more detailed intake stroke model in Section 2. In addition, the fuel puddle dynamics
developed in Reference [19] is included in the fuel path after the injection delay, and the engine
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Figure 14. Simulation results with the detailed intake stroke model, fuel puddle dynamics and varying
engine speed. Solid line represents engine with joint air and fuel control and the dashed line the
conventional engine with a feedforward plus PI controller. Note that the variation in manifold pressure

during an intake event is captured in this simulation.
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speed was allowed to vary through a rotational dynamics model. Instead of an MAP sensor,
an MAF sensor is used to measure the mass air flow rate into throttle body, and the algorithm
in Reference [16] is employed to estimate the intake manifold pressure; see Appendix A for
details.

In this simulation, the physical variable IVD is plotted instead of the virtual control variable,
b; the effective valve area factor, b; exceeds the constraint from 1.6 to 3:5 seconds: It is seen that
the controller achieves a torque response similar to that of the conventional engine, but superior
A=F performance and higher intake manifold pressure.

6. CONCLUSIONS

In this paper, a discrete-time, nonlinear controller was developed for joint air and fuel
management in a SI engine with variable valve timing. A mean-value model was derived from a
detailed intake stroke model, and used for the control design. The control law was based on a
conceptually simple control Lyapunov function, and includes a recovery scheme for integrator
anti-wind-up. The performance of the closed-loop system was evaluated via simulation on the
detailed intake stroke model. It was seen that joint air and fuel management in a SI
engine has the potential to achieve a faster A=F convergence rate to stoichiometry and lower
pumping losses than a conventionally controlled engine, with a torque response that is similar to
that of a conventionally controlled engine. This implies that improved fuel economy and
emissions performance can be obtained through joint air and fuel control without losing
drivability.
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APPENDIX A: INTAKE MANIFOLD PRESSURE ESTIMATE VIA MAF SENSOR

The algorithm in Reference [16], which estimates the intake manifold pressure from direct
measurement of Wf from the MAF sensor (hot-wire anemometer), is briefly summarized here.
The sensor dynamics is approximated as a first-order lag with time constant tm ð¼ 0:13 sÞ:

mðk þ 1Þ ¼ 1�
T
tm

� �
mðkÞ þ

T
tm

WfðpmðkÞ;N Þ ðA1Þ

where m represents the sensor’s output (in g/s). The estimate of intake manifold pressure,
#ppm; is

#ppmðk þ 1Þ ¼ #ppmðkÞ þ
RTm
Vm

T ðWfðpmðkÞ;N Þ � sat10:1ðbÞWcð #ppmðkÞ;N ÞÞ

¼ #ppmðkÞ þ
RTm
Vm

T
tm
T
mðk þ 1Þ �

tm
T

� 1
� ��

mðkÞ � sat10:1ðbÞWcð #ppmðkÞ;N Þ
	

ðA2Þ
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To remove the mðk þ 1Þ term, a new variable w is defined as

wðkÞ ¼ #ppmðkÞ �
RTm
Vm

tmmðkÞ ðA3Þ

This yields

wðk þ 1Þ ¼ wðkÞ þ
RTm
Vm

T ðmðkÞ � sat10:1ðbÞWcð #ppmðkÞ;N ÞÞ ðA4Þ

#ppmðkÞ ¼ wðkÞ þ
RTm
Vm

tmmðkÞ ðA5Þ

APPENDIX B: NOMENCLATURE

A=F air–fuel ratio
A=Fs stoichiometric air–fuel ratio ð¼ 14:64Þ
Av effective area of intake valve ðm2Þ
Af effective area of throttle body ðm2Þ
Fc fuel injection rate (g/s)
IVD intake valve open duration (degrees)
IVL intake valve lift (mm)
IVO intake valve open timing (degrees)
J engine inertia ð¼ 0:34 Nm s2=radÞ
Lvi intake valve lift of ith cylinder (mm)
N engine speed (RPM)
R specific gas constant ð¼ 0:287 J=gKÞ
Sk sampled sensitivity function
T time taken for intake event (s)
Tb break torque (Nm)
Tc cylinder wall temperature during intake event ð¼ 370 KÞ
Tm intake manifold temperature ð¼ 316 KÞ
Vci volume of ith cylinder ðm3Þ
Vcl cylinder clearance volume ð¼ 4� 10�5 m3Þ
Vd cylinder displacement volume ð¼ 4� 10�4 m3Þ
Vm volume of intake manifold ð¼ 0:0025 m3Þ
Wa mass air flow rate into cylinder of air flow actuated engine (g/s)
Wc mass air flow rate into cylinder of conventional engine (g/s)
Wci mass air flow rate into ith cylinder (g/s)
Wf mass air flow rate into intake manifold (g/s)
ma averaged mass air charge (g/intake event)
mai mass air charge in ith cylinder (g/intake event)
pci pressure in ith cylinder (Pa)
pm intake manifold pressure (Pa)
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p0 atmospheric pressure ð100 kPaÞ
r reference torque (Nm)
t time (s)
b effective area factor of intake valve
z inverted fuel injection rate (s/g), 1=Fc
y crank-angle (degrees)
f primary throttle angle (degrees)
tm time constant of MAF sensor ð¼ 0:13 sÞ
tr time constant of reference torque ð¼ 0:05 sÞ
ts time constant of EGO sensor ð¼ 0:20 sÞ
k; c1; c2 control parameters
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