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The ubiquity of scale-free patterns in ecological systems has raised the possibility that these systems operate near
criticality. Critical phenomena (CP) require the tuning of parameters and typically exhibit a narrow scaling region
in which power laws hold. Here we show that an individual-based predator-prey model exhibits scaling properties
similar to CP, generated by a percolation-like transition but with a broader scaling region. There are no drastic
changes in ecological quantities across this critical point and species coexist broadly in parameter space. The
implications of these findings for the stability of ecological systems “near” criticality is discussed. © 2003 Wiley
Periodicals, Inc.
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1. INTRODUCTION

he search for explanations of scale-free patterns in

nature, and the ubiquitous power laws that character-

ize them, has raised the possibility that ecological sys-
tems operate near criticality [1-4]. Explanations related to
criticality are of interest because they have implications for
the sensitivity of systems to external perturbations and for
the occurrence of large and unpredictable intermittent fluc-
tuations [5-8].
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“Critical phenomena” (CP) provide a well-known mech-
anism for generating power laws in systems with a large
number of interacting components at equilibrium [9]. Typ-
ically, CP are accompanied by a phase transition, in which
the global state of the system undergoes a drastic change
when one or more parameters are funed to a specific value,
known as the “critical point” [10]. For example, the spatial
spread of disease modeled as a contact process exhibits a
breakpoint at which the infected state becomes established
[2]. A number of power laws hold at or near the critical
point, which are used to characterize CP. These power laws
include the well-known relationship between a control pa-
rameter, which can be externally controlled (tuned), and an
order parameter, which is a variable reflecting the change in
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the state of the system across the critical point. The tuning
of CP, and the associated extreme sensitivity to changes in
parameter values, are difficult to account for in ecological
systems that are typically subject to frequent environmental
fluctuations. An alternative mechanism capable of generat-
ing power laws has been proposed in the phenomenon of
“self-organized criticality” (SOC) [11,12]. SOC, as the name
suggests, provides a self-organizing mechanism for gener-
ating power law scalings in an open system that is slowly
driven [12]. These scalings are robust to perturbations be-
cause the system takes itself to the critical state regardless of
parameter values. The temporal dynamics of the system
display, however, variations of all sizes including large and
unpredictable intermittent fluctuations [2,6,13]. For systems
so far found to exhibit SOC, the question of whether they
really differ from classical CP is a subject of current debate
[9,14], with efforts to map the former onto the latter in
particular cases [15,16]. The contention lies in the argument
that the slow driving needed by SOC may provide the ex-
ternal tuning for CP.

In this article, we propose another possible explanation
for robust power laws that hold broadly in parameter space.
With a spatial predator-prey model that is individual-based
and stochastic, we show that this explanation involves a
critical phase transition, but one at which there is no drastic
change in the biological variables of interest. Thus, both
populations persist broadly in parameter space and their
abundance changes continuously across the critical point.
This “hidden” transition is revealed, however, by a drastic
change in the size of prey clusters and in the associated
connectedness of the system. We specifically show that the
origin of the power laws is a transition with similarities and
differences to that of percolation. We focus in particular on
the exponent that is relevant to the width of the critical
region.

The implication of this type of behavior is that the scal-
ings typical of criticality are possible without either the
extreme sensitivity to perturbations typically associated
with other examples of CP in ecology, or the large intermit-
tent temporal fluctuations of SOC. These observations raise
the possibility of a greater temporal stability than that typ-
ically associated with patterns of criticality. We discuss the
relevance of these findings for other systems with antago-
nistic interactions, such as those for host-parasite and dis-
turbance-recovery dynamics and for systems that are not
necessarily closed. It may be noted here that there exist
lattice-based predator-prey models that exhibit a sharp
transition from uniform prey cover to a predator-prey co-
existence under explicit tuning [17]. Such models belong to
a class of CP known as “directed percolation,” which also
includes systems involving contact processes [9,14]. It is
also well known that all power laws are not critical, with
many alternative models to explain scalings [9]. They in-
clude mechanisms as diverse as the distribution of residual

lifetimes, superposition of distributions, random walks,
multiplicative noise with constraints, highly optimized tol-
erance etc. We are, however, interested here exclusively in
mechanisms involving the collective behavior of a large
number of interacting components as in CP and SOC, which
is relevant to the local interaction of individuals in ecolog-
ical systems.

Finally, our results have implications for the relationship
between connectedness and sensitivity to perturbations in
ecological systems. The adaptive cycle metaphor of Holling
and colleagues [18] describes the temporal changes in the
potential to accumulate resources, such as nutrients or bio-
mass, of ecosystems as a function of connectedness. These
changes are primarily viewed in a temporal context and
explained through the coexistence of multiple steady states.
When space is considered, the possible analogy to SOC has
been discussed [18]. There is a need for a better understand-
ing of the different ways in which connectedness and resil-
ience are related in the dynamics of biological systems with
distributed interactions. Key determinants of this relation-
ship most likely regard the relative temporal scales of these
interactions, in space or in other types of networks.

2. THE MODEL

Space in the model is implemented as a 2D lattice in which
each site is either occupied by a prey, a predator, or is empty
[19,20]. These three states allow us to incorporate the two
basic processes of local antagonistic interactions, namely
the spread of disturbance (by the predator) and the re-
growth or recovery (by the prey). All processes are local with
the range limited to its four nearest neighbor sites. Thus, the
model is an extension of a boolean contact process [22,23]
in which each site has three possible states.

A prey samples a neighboring site at random and if
empty, gives birth onto it at a rate «;. A predator hunts for
prey by inspecting all of its neighbors at a rate 1. If preys are
found, the predator chooses one at random, eats it, moves
onto this site, and produces an offspring with probability a,
which occupies the original site. If preys are not found, the
predator starves and dies with probability 6. There is dis-
persive movement through random mixing: neighboring
sites exchange states at a constant rate. Thus, the model
incorporates demographic stochasticity: events such as
birth, death, and movement are all Poisson processes with
associated probabilistic rates. All simulations are run with
periodic boundary conditions.

Simulations have shown that the system converges to a
stationary state in which predator and prey coexist for a
broad range of parameters: 0 < a;, a,, 8 < 1. It approaches
the two “absorbing” states of uniform prey cover (p=1, h =
0) and total extinction (p, h = 0) at the extreme parameter
values @, = 0, 8 > 0 and «, ~ 1, 8 =~ 0, respectively [21].
There are three global stationary states: an “active state” of
coexistence of all three local states (0 < p + h < 1), and the
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Prey cluster distribution n(s) versus s on a log-log scale, for four
values of e = a,/(a, + §6), 0.082, 0.1, 0.4 and 0.7 (continuous,
dashed, dashed-dotted, and dotted lines, respectively). Least-square
estimates of the respective slopes give the scaling exponents y =
1.81, 1.93, 2.14, and 2.39. (L = 1000 and a, = 0.5).

two absorbing states mentioned above. In the coexistence
regime a number of power laws have been previously de-
scribed for the spatial distribution of the prey [21,25]. In
particular, the size distribution of prey clusters exhibits a
power law decay for a broad range of parameter values
(Figure 1). The range of this scaling decreases for parame-
ters leading to low density of the prey, as expected for
clusters that achieve smaller maximum sizes. We return to
these patterns later.

To investigate the origin of these patterns, we demon-
strate in the following sections that the system exhibits two
continuous phase transitions: one between the active state
of coexistence and the absorbing state of uniform prey
cover; the other, a percolation-like transition, well within
the domain of the active state. The former transition is
biologically trivial in the sense that full occupancy of space
by the prey, and the corresponding extinction of the pred-
ator, are expected at the lowest possible growth and/or high
mortality of the predator. Nevertheless, its existence allows
us to establish a critical relationship between a control and
an order parameter in the system. The rest of the article
focuses on the second transition and on its consequences
for the existence of robust scaling properties in the spatial

3. ACTIVE-ABSORBING STATE TRANSITION

The first transition we address is an “active-absorbing tran-
sition” (AAT) in which the system goes from the active state
of prey-predator coexistence (0 < p, h < 1) to the absorbing
state of full space occupancy by the prey (p =1, h = 0). It
is possible to map this transition to the critical point of an
order-control parameter relationship, by suitably defining
an order parameter m and a control parameter ¢. The order
parameter m is typically defined such that m = 0 for the
control parameter on one side of the critical point ¢, and
m > 0 on the other side of this point. The order-control
relationship for a continuous phase transition is then de-
scribed by a power law

m « (8 - Scl)ﬁ: (1)

with an exponent B, which holds only when ¢ is “tuned”
very close to g, [10].

To identify the control parameter ¢ for our system, we
introduce the probability = of isolation of a predator, de-
fined as the probability that a randomly chosen predator
has no prey in its neighborhood. It has been shown that =
satisfies the relationship

m=(1-p), (2)

where p is the prey density and the exponent g is the
“modified” neighborhood size of a predator [24,25]. Under
mean-field assumptions, when individuals are well-mixed
and interact at mean densities, Eq. 2 holds trivially with g =
4, the original neighborhood size. The “modified” value of g
corrects for the decrease in the predation rate at the aggre-
gated population level due to the spatial heterogeneity in
the distribution of individuals [25]. The mean-field birth
and death of predators can be written as «a,h(1 — 7) and
Shm, respectively. With these expressions, the dynamics of
the predator’s density h are given by the following equation,

dh
qrs ah(1 — 7)) — dhw. (3)
Thus, at stationarity (dh/dt = 0), the probability of isolation
of the predator also satisfies

(&%)

= m (4)

This expression allows us to rewrite here Eq. 2 in the form

. . . . .. [
distributions of individuals. m=(e—ey)P e= , (5)
a, + &
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(a) Order parameter m = 1 — p as a function of the control parameter ¢ on a log-log scale. The open circles are obtained by simulating the model in
a grid of size L = 500 and with «; = 0.5. The points are averages over 1000 snapshots, each 20 timesteps apart (after transients are discarded). The
straight line segments in the two intervals ¢ = 0.0002 and = 0.01 correspond to least-square fits of Eq. 5, with respective slope estimates 8 = 1.013
and 0.365. (b) The same curve is shown with a linear scale. The continuous line corresponds to the fit with 8 = 0.365. (c) m-¢ plots for three «, values
equal to 0.2, 0.5, and 0.8 (+, O, and =, respectively). (d) m-¢ plots for three grid sizes L = 50, 200 and 500 (+, X, and O, respectively; a; = 0.5).

0.8

0.6

0.4

0.2

0.6 #°

0.4 g
o

0.2 (@)

0 0.2 0.4 0.6 0.8
€

with m =1 — p, e,; = 0, and B = 1/gq. Equation 5 provides
a critical scaling relation similar to Eq. 1 with 1 — p as the
order parameter and «,/(a, + ) as the control parameter.
For the absorbing state, m = 0, which occurs for a, = 0, § >
0, and therefore for ¢ = 0 = ¢,. In the coexistence regime,
m > 0, which holds for 0 < «,, § < 1, that is for the whole
range of possible nontrivial values of the growth and sur-
vival of the predator given by e, < & < 1.

The above argument gives an analytical basis for the
existence of an active-absorbing state transition in the sys-
tem at the point £, = 0. Next we numerically verify Eq. 5 by
estimating the equilibrium prey density p as ¢ is varied from
0 to 1 (by changing «, and 8) in a grid of size L = 500. Figure
2(a) shows m as a function of ¢ on a log-log scale, with the

prey growth rate «; = 0.5. Two distinct linear regimes are
clearly visible for ¢ = 0.0002 and ¢ = 0.01. Least-square
estimates of their respective slopes yield the exponents 8 =
1.013 and 0.365, respectively. The second estimate corre-
sponds closely to the value of g = 2.75 previously obtained
in numerical estimates of the modified neighborhood size
[25]. This value was used to correct the mean-field preda-
tion rate to approximate the large scale dynamics of popu-
lation densities [25]. Furthermore, this agreement holds for
almost the whole range of possible values of ¢, away from
the trivial case of ¢ =~ 0. This agreement is clear from Figure
2(b), which replots m as a function of £ on a linear scale and
compares it with the analytical expectation for B(=1/2.75 =
0.364).
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Figure 2(c) shows the m-¢ curves for three different val-
ues of the prey’s growth rate. The plots appear insensitive to
changes in «; for almost the whole range of . Figure 2(d)
shows the same curves for three different grid sizes L =
50,200, and 500 and for the original value of «; = 0.5. The
curves exhibit remarkable agreement independent of sys-
tem size [17]. The existence of this second scaling region
away from zero and within the domain of coexistence mo-
tivates our search for a second critical point.

4. THE PERCOLATION-LIKE TRANSITION

We show next that the system exhibits a percolation-like
transition (PLT) associated with a second critical point ¢,
within the domain of predator-prey coexistence. Unlike
AAT, the presence of this point is not indicated by an obvi-
ous transition in the biological state of the system, because
both prey and predator coexist on either side of PLT. How-
ever, a rapid build-up of spatial correlation for the prey
occurs close to ¢, leading to the formation of a spanning
prey cluster similar to that of percolation [26]. A “cluster” is
defined as a group of similar sites (here prey sites) con-
nected by at least one of the four nearest neighbors, and a
“spanning cluster” refers to one that spans the grid end-to-
end.

Figure 3 shows the location of the critical point ¢, across
which the spanning prey cluster appears in a grid of size L =
1000. P,, is plotted as a function of the control parameter &,
where P, is given by the fraction of 200 snapshots that
contain at least one spanning prey cluster [Figure 3(a)]. This
curve approximates a step function of the type

1 fore=egg,,
0 fore>eg,

P.(e) = {

as expected for a percolation-type transition. If we define
the critical point ¢, as the value of the control parameter for
which P,(e,) = 0.5, we obtain e, = 0.082. Furthermore,
this value of ¢ corresponds to an equilibrium prey density
p. = 0.575 close to the percolation threshold density of 0.592
[26]. Figure 3(b) shows P, as a function of p, which approx-
imates again a step-function across p.. We also plot s,,, the
size of the spanning prey cluster normalized by the size of
the grid. By definition s, = 0 for p < p. and s, > 0 for
P = pe

Having established a PLT in the system with an associ-
ated critical point ¢, and corresponding p,, we address next
how this transition governs the various spatial patterns that
the model exhibits. We concentrate on the right-hand side
of this transition, away from the trivial extreme of low . As
¢ decreases below ¢, (or equivalently p increases above p,),
s, rises steadily and the spanning prey cluster, as expected,
begins to fill up the entire grid. On the opposite side, the
window e, = ¢ = 1 comprises the bulk of the permissible

0.6 fﬂ“f S

0.4

0.2

(@) P, as a function of &, obtained by averaging over 200 snapshots,
each 20 timesteps apart, after discarding 20000 transients (L =
1000 and oy = 0.5). (b) P., .. as a function of prey density p. The
g-scale is restricted to [0, 0.3] for better zooming of the region. (See
text for definitions).

range of ¢ values giving rise to coexistence. In this window,
a rich variety of interesting patterns occur.

4.1. Correlation Length

The correlation structure of a system provides an important
characterization of its spatial patterns. The correlation func-
tion or pair-connectivity C(r) for the prey is defined as the
probability that two prey sites a distance r apart from each
other belong to the same prey cluster [26]. Contributions of
only the finite clusters are considered in estimating this
function (spanning clusters are excluded for ¢ < ¢,,), so that
C(n) exhibits the expected decay pattern with increasing r on
both sides of criticality. The correlation function C(r) has
the following general dependence on 7,

C(r) = r®exp (%), (6)

where ¢ is the correlation length, defined as the average
distance between two prey sites belonging to the same
cluster [26]. At criticality (e,,), £ diverges in an infinite sys-
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Log-log plots of the correlation function C(r) as a function of distance
rfor prey sites, and for four values of ¢ = 0.082, 0.1, 0.4 and 0.7 (.,
O, +, and =, respectively; L = 500 and «; = 0.5). For comparison,
the straight line at the top illustrates a slope & = 0.263 corresponding
to the least-square fit for the critical value of € = 0.082 (see text for
details).

tem because of the appearance of large clusters of the order
of the system size, and Eq. 6 reduces to a pure power law

C(r) « r 2. (7)

In finite systems, a finite-size cutoff is present. The corre-
lation length ¢ is finite and decreases in magnitude as ¢
moves away from ¢, on either side, thereby making the
exponential term in Eq. 6 dominate over the power law.
Figure 4 illustrates these patterns for our model. C(r) is
plotted as a function of r on a log-log scale for ¢, = 0.082,
0.1, 0.4 and 0.7. The plot at criticality shows a linear regime
for r = 30, whose slope is 8 = 0.263. The scaling deteriorates
progressively for higher e, resulting in increasingly steeper
exponential decays as predicted by Eq. 6. To examine the
speed of the decay as we move away from the critical point,
we consider next an exponent describing how correlation
length varies with distance from this point.

The correlation length ¢ for percolation exhibits the fol-
lowing relationship close to the critical point,

Ex|p—pd™ (8)

and a nonrigorous argument, supported by numerical esti-
mates, gives v = 4/3 [26]. We compute ¢ for our system
using the formula [26]:

. 2 r>C(r)
T s an

and plot it against the equilibrium prey density p. Figure
5(a) shows these plots for four different grid sizes L = 128,
256, 512, and 1024. All curves exhibit a peak near the critical
density p. = 0.575, and the peak decreases with L as ex-
pected. If the differences are due only to finite-size effects,
it should be possible to collapse all curves onto a single one
by rescaling ¢ as follows:

&p, L) — L “E(L"(p — po),

with finite-size scaling exponents a and b. As Figure 5(b)
demonstrates, such a rescaling is indeed possible for a = —1
and b = 1.

A comparison with the results for percolation can help
determine how fast or slow ¢ diverges at criticality in our
model relative to percolation. From Egs. 8 and 6, it is easy to
see that the exponent v, which determines the rate of diver-
gence of ¢ at criticality, also determines the importance of
the exponential term relative to the power law dependence
for C(r) away from criticality. The lower the value of v, the
wider the region |p — pJ and thus |¢ — &,|, over which ¢
remains appreciably large. Thus, a lower v value effectively
“broadens” the region over which the C(r) scaling holds. For
the purpose of comparison, we estimate the £ — p values for
random-site percolation with the same four grid sizes L and
show the corresponding collapsed plots in Figure 5(c). They
peak at p = 0.592 as expected, and the finite-size scaling
exponents are a = —1 and b = 0.9. Clearly, the divergence
for percolation is sharper than that for our system. We
quantify this observation by estimating the exponent v for
both. Figure 5(d) shows, on a log-log scale, the rescaled &
versus |p — p, plots for the spatial predator-prey system and
for percolation (p < p,). The straight lines are least-square
fits, with estimates v = 0.93 * 0.02 for the predator-prey
model and v = 1.20 * 0.003 for percolation (which agrees
reasonably well with 4/3). The significantly lower v for our
model implies a more robust correlation scaling away from
criticality. We have also compared Figure 4 against perco-
lation plots with similar density differences (not shown),
confirming this observation. We return below to another
scaling characterizing the spatial patterns in the system,
that of the cluster size distributions.

4.2. Prey Cluster Distribution
The cluster size distribution for percolation exhibits a power
law decay at criticality of the form

n(s) = s77, 9)

where n(s) denotes the number of clusters of a given size s,
and the exponent y(=2.05) is known as the Fisher exponent
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(@) Correlation length ¢ as a function of equilibrium prey density p for grid sizes L = 128, 256, 512, and 1024 (dotted, dashed-dotted, dashed, and
continuous lines, respectively; a; = 0.5). (b) The same curves collapsed on rescaled axes [Axes’ ranges in (c) and (b) are kept the same for comparison].
(c) Rescaled curves for site percolation using the same four grid sizes. (d) Rescaled L = 1024 plots for the model (+) and percolation (O) on a log-log
scale, for p < p,. The straight lines are least-square fits, giving estimates for the exponent v of 0.93 and 1.20, respectively (see text for details).

[26]. Away from criticality this scaling rapidly gives way to
an exponential decay pattern similar to that of the correla-
tion function C(r).

We return here to Figure 1, which shows the prey cluster
distribution in our model for different values of the control
parameter e. All four plots exhibit a linear regime indicative
of a power law, with a scaling range that decreases for &
above ¢,. This decrease is due to the fact that as ¢ increases,
the density of prey p decreases, and prey clusters become
fewer and smaller, giving rise to an exponential cutoff. (The
respective ¢ values correspond to p = 0.575(=p,), 0.543,
0.280, and 0.122). Least-square estimates of the scaling ex-
ponents yield y = 1.81, 1.93, 2.14, and 2.39, respectively,
indicating a steeper decay as one moves away from critical-
ity. The values remain, however, within a narrow range

given the wide change in prey density (see also, [21]). A
comparison with percolation using the same density differ-
ences confirms that the power-law scaling in our model
holds for a much broader range of p (not shown). This
pattern is consistent with the build-up of correlations from
local interactions and the related wider critical region de-
scribed in the previous section. These observations for cor-
relation length and size distributions also hold for a wide
range of reproductive rates of the prey «; (not shown).

9. CONCLUSIONS

In summary, our individual-based spatial predator-prey
model exhibits a set of scaling properties characteristic of
systems near criticality. A percolation-type transition, at
which finite clusters of the prey give rise to a spanning

© 2003 Wiley Periodicals, Inc.
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cluster, explains the origin of these power laws in the sys-
tem. One significant difference with percolation is, however,
the broader parameter region for which the scalings hold.
This difference is consistent with a lower value of the scaling
exponent relating the correlation length to the equilibrium
density of the prey. It follows that critical phenomena of the
type described here are a viable explanation for power laws
in nature: scaling regions need not be confined to too small
aregion of parameter space. The patterns are reminiscent of
the “broad phase transition” observed in the percolative
spread of epidemics when susceptibility is random [28], and
in the 2D XY spin system which is critical over the entire low
temperature region [29,30]. Scaling behavior of the cluster
size distribution in a narrow temperature range away from,
but close to, the critical point has been described for sim-
ulations of the Ising model [31]. In three dimensions, these
simulations have also shown the existence of a percolation-
type transition below the critical point.

In our model there is no drastic change in population
abundances at criticality and the species coexist on either
side of this transition. Indeed, coexistence occurs for the
whole range of possible values of the control parameter and
is insensitive to the existence of this critical point. A drastic
change occurs, instead, in the geometry of the system and in
particular in its connectedness. These results underscore
that the existence of power-law scalings need not imply the
high sensitivity to external perturbations typically associ-
ated with CP. The critical point is, however, not far from
another transition at which the predator does go extinct.
Whether this proximity between the two critical points is
generally the case remains to be determined.

As noted before, Self Organized Criticality requires a slow
and sustained external driving that is not present in our
predator-prey system. It may be argued that this property
would limit the relevance of the predator-prey model since
ecological systems are typically open. We conjecture, how-
ever, that the power-law phenomena reported here are not
restricted to closed systems. Indeed we expect that similar
scalings may apply to other spatio-temporal models with
local antagonistic interactions, particularly those whose
well-mixed counterparts exhibit decaying or sustained os-
cillations in time as in the predator-prey model. Previous

studies already indicate that a spatial model for the local
spread of disturbance and recovery in a mussel bed, which
incorporates a steady input of external new disturbances,
exhibits very similar spatial properties and a percolation-
type transition [21,32]. Interestingly, the rate of this input is
not necessarily slow compared to the intrinsic time scales of
the system. Thus, both the disturbance-recovery and the
predator-prey model lack the separation of time scales
present in forest-fire and epidemic models that exhibit SOC
[6,7,33,34]. This difference is closely related to the lack of
large intermittent fluctuations in the temporal dynamics of
the predator-prey system. Population densities of the pred-
ator and prey measured at the spatial scale of the whole grid
exhibit small fluctuations around an apparent steady-state
[24]. It remains to be determined whether quantities other
than population densities, in particular those associated
with the clusters in the system, display temporal character-
istics similar to those of SOC.

Finally, the implications of connectedness for ecosystem
stability, in the specific sense of resilience by Holling [18], need
to be better understood. One definition refers to the magni-
tude of external perturbations that can be sustained before an
important change occurs in the variables and processes that
control behavior. As shown here, connectedness alone is not
sufficient to understand resilience. The view of ecosystem
dynamics as an adaptive cycle is based primarily on temporal
considerations [18] (but see [35]). Limited analogies to SOC
have been drawn in a spatial context [18]. Extensions of this
view to the spatial dimension should consider the different
types of critical systems that are now possible for the spatio-
temporal dynamics of disturbance and recovery. Perhaps a
better understanding will follow from a classification of sys-
tems with distributed interactions, based on the relative tem-
poral scales of their underlying processes.
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