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Abstract

Background Recombinant adenovirus can be administered invivo to
achieve transduction of a number of cell types including human synoviocytes.
Immunogenicity of adenoviruses has limited their utility as vectors for gene
delivery; however, specific mechanisms underlying the acute inflammatory
response to adenovirus are not well understood. Activation of a number of
signal transduction pathways occurs rapidly upon adenovirus binding to cell-
surface receptors. We investigated stimulated expression of mitogen-activated
protein kinases (MAPKs), cyclooxygenase-2 (COX-2) and prostaglandin E;
(PGE3) in human primary synovial fibroblasts to adenovirus expressing the E.
coli B-galactosidase gene.

Methods Cultured rheumatoid synoviocytes were exposed to transduction-
competent Ad/RSVlacZ recombinant adenovirus or transduction-incompetent
(psoralen/UV-irradiated) Ad/RSVlacZ. The effects on COX-2 expression,
PGE; levels and MAPK signaling in synoviocytes were assessed using a
combination of reverse-transcription polymerase chain reaction amplification
and immunoblotting.

Results Adenovirus treatment of synoviocytes increased levels of COX-
2 mRNA and protein as well as PGE,. Psoralen-treated transcriptionally
inactive adenovirus was equivalent to untreated adenovirus for early COX-2
induction suggesting that viral genes were not required. Adenovirus treatment
stimulated phosphorylation of ERK-1/-2, p38 MAPK, and JNK. Inhibition of
the ERK and p38 MAPK pathways inhibited COX-2 expression and PGE,
production.

Conclusions Taken together, these data demonstrate that a MAPK-
dependent increase in COX-2 results in local prostaglandin production. These
findings have clinical implications for use of adenovirus as vectors for in vivo
gene delivery. Copyright © 2004 John Wiley & Sons, Ltd.
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Introduction

Recombinant adenoviruses can be administered in vivo to achieve transduc-
tion of a number of cell types including synoviocytes, chondrocytes and
fibroblasts [1-5]. Recombinant adenoviruses have advantageous features
for in vivo administration including the ability to infect non-dividing cells
and high efficiencies of transgene expression [6—8]. It has been posited that
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transduction of synovial cells invivo with recombi-
nant adenoviruses to induce overexpression of anti-
inflammatory or immunomodulatory proteins may be an
innovative approach to the treatment of rheumatic dis-
eases. Several groups have reported pre-clinical animal
studies using in vivo administration of recombinant ade-
noviruses that represent models of intra-articular gene
therapy for rheumatic diseases [9—-15].

Immunogenicity is a significant limitation to the
in vivo administration of recombinant adenovirus. An
acute host immune response occurs rapidly follow-
ing parenteral administration of virus and, in the
case of intravascular injection, the sequelae can
be catastrophic [16]. The viral capsid and genome
(via expression of viral proteins) are both impor-
tant mediators of the immune response to adenovirus
[8,17-27].

The specific mechanisms underlying the acute inflam-
matory response to adenovirus infection are not com-
pletely understood. Activation of a number of signal
transduction pathways occurs rapidly upon adenovirus
binding to cell-surface receptors. Adenovirus capsids
interact with both the Coxsackie adenovirus receptor
(CAR) and the oyB3 and oyBs integrins via the fiber
knob protein and the penton protein RGD motifs, respec-
tively. Expression of CAR correlates with the ability
of adenovirus to infect target cells in a number of
cell systems [28-32]. CAR is composed of an extra-
cellular domain containing two disulfide-linked loops, a
hydrophobic transmembrane domain, and a cytoplasmic
domain. Functional analysis demonstrated that despite
conservation of the cytoplasmic domain, the extracel-
lular domain is sufficient to permit virus attachment
[29,33]. Since the cytoplasmic domain of CAR is not
required for virus entry, it is likely that other cell-surface
receptors are critical for signaling events stimulated by
adenovirus infection. The «, integrins have been shown
to facilitate internalization into cells [34]. Adenovirus
internalization and infection is inhibited by the pen-
ton base, soluble RGD peptides, and function-blocking
monoclonal antibodies directed against the oyf3 and
ayPBs integrins [34]. It was subsequently shown that
these cell-surface integrins, particularly oyf8s, are nec-
essary for efficient adenovirus-mediated gene transfer
[35-39].

Viral entry and nuclear localization have been shown
to require the preservation of key signaling pathways
and the induction of cell changes that mimic those
seen in response to growth factors and integrins [40].
Viral endocytosis is dependent on phosphatidylinositol-
3-OH kinase (PI3-kinase) activity, the small GTPases
Racl and Cdc42, phosphorylation of p130 Crk-associated
substrate (p130°AS), and alterations in the actin cytoskele-
ton [41-43]. Activation of intracellular signaling path-
ways is also critical for the nuclear targeting of ade-
novirus. Adenovirus activates two distinct pathways,
protein kinase A and p38 mitogen-activated protein
kinase (MAPK), to facilitate transport to the nucleus
[44].
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The MAPK signaling pathways also play important
roles in regulating gene expression [45]. The MAPKs
include extracellular signal related kinases (ERK)-1 and
-2, c¢-Jun N-terminal kinase (JNK), and p38. ERKs are
typically activated by mitogens such as growth factors
and hormones, while JNK and p38 are stimulated
by stress stimuli including pro-inflammatory cytokines.
Receptor-associated GTP transfer proteins (GTPases)
trigger a cascade of protein kinases beginning with
MAP kinase kinase kinases (MAPKKK), which activate
MAP kinase kinases (MAPKK) by serine and threonine
phosphorylation. MAPKKs are dual-specificity kinases that
phosphorylate MAPKs on threonine and tyrosine residues.
Once activated, MAPKs can directly phosphorylate
transcription factors or transcriptional co-regulators or
phosphorylate downstream kinases that also regulate
transcription and mRNA stability.

Among the genes activated via MAPK signaling
pathways is the inducible form of cyclooxygenase (COX),
COX-2, by stimulating transcription and increasing mRNA
stability [46-52]. COX is the pivotal enzyme responsible
for conversion of arachidonic acid to prostaglandins.
There are two isoforms of COX, COX-1 and COX-2. COX-1
is constitutively expressed in most cell types while the
basal expression of COX-2 is highly restricted. COX-2
is rapidly up-regulated by many different inflammatory,
mitogenic, and stress stimuli [53]. In most inflammatory
settings including arthritis, prostaglandin Ey (PGE,) is the
most abundant product of the COX pathway [54]. PGE;
has pleitropic activities mediated by binding to G-protein-
linked cell-surface receptors [55]. Injection of PGE,
recapitulates the cardinal signs of acute inflammation via
vasodilation with plasma extravasation and sensitization
of nociceptors [56]. In addition to the role of PGE;
in mediating classical inflammation, prostaglandins are
important modulators of the innate immune system
[571.

The MAPK signaling pathways are thought to be
involved in induced expression of some inflammatory
mediators by adenovirus infection. For example, Bruder
and Kovesdi reported that adenovirus infection stimulated
activation of the Raf/MAPK pathway leading to rapid
induction of IL-8 expression in HeLa cells [6]. The
phosphorylation of MAPK and Raf occurred within
10-20 min and heat inactivation of the virus eliminated
MAPK pathway activation.

We hypothesized that adenovirus infection of synovio-
cytes could directly induce expression of inflammatory
mediators including COX-2-derived PGE,. In order to
evaluate this hypothesis, we studied induction of signal
transduction pathways and inflammatory mediator pro-
duction in primary human synoviocytes from patients
with rheumatoid arthritis (RA) after exposure to ade-
novirus expressing the gene for E. coli B-galactosidase.
We now demonstrate that adenovirus infection induces
expression of COX-2 and increases PGE, production. Fur-
thermore, increased expression of these mediators is a
result of activation of MAPK signaling pathways.

J Gene Med 2005; 7: 288-296.
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Materials and methods

Synoviocyte culture

Synovial tissues were obtained from patients with RA at
the time of joint replacement surgery as approved by
the institutional review board. Tissues were dissociated
by mincing and then incubating in 4 mg/ml type
I collagenase in Dulbecco’s modified Eagle’s medium
(DMEM) for 4h at 37°C in an atmosphere containing
5% CO5 [58]. Dissociated cells were cultured in DMEM
supplemented with 10% human AB serum (Biowhittaker,
Walkersville, MD, USA), 10% fetal bovine serum
(Life Technologies, Grand Island, NY, USA), penicillin
(100 units/ml), and streptomycin (100 pug/ml). Primary
synoviocytes were used between the 3rd and 8th passages.

Adenoviral vector preparation

Replication-defective adenoviral vectors (type 5) were
deleted of sequences spanning E1A, E1B (map units
1-9), and a portion of the E3 region (map units 83-85),
impairing the ability of this virus to replicate or transform
nonpermissive cells [5,59]. In the vector Ad/RSVLacZ,
the long terminal repeat of the Rous sarcoma virus
drives transcription of the E. coli B-galactosidase (LacZ)
gene with an SV40 polyadenylation sequence cloned
downstream from the reporter [5].

High titer recombinant adenovirus was prepared by
amplification in the permissive 293 cell line using estab-
lished methods [60]. Virus was purified from cell lysates
twice by cesium chloride gradient ultracentrifugation
followed by desalting on Sephadex G-50 columns with
phosphate-buffered saline (PBS). Titers were determined
by ODago, and were ~1 x 10'3 particles/ml + 1 log (1.0
OD unit = 1.0 x 102 particles/ml). The viral prepara-
tions were analyzed for their ability to form plaques on
confluent 293 cell monolayers [61]. Approximately 1 in
100 virus particles were infection-competent.

Inactivation of Ad/RSVLacZ

Ultraviolet (UV) light treatment in the presence of 8-
methoxypsoralen was used to inactivate Ad/RSVLacZ
[22]. 8-Methoxypsoralen (8-MP, Sigma Chemical Co., St.
Louis, MO, USA) was dissolved in dimethyl sulfoxide at
33 mg/ml and added to the high titer viral suspension to
yield a final concentration of 330 pug/ml. The adenovirus
with 8-MP was placed into a transparent container (Slide-
A-Lyzer 10K dialysis cassette, Pierce, Rockford, IL, USA),
exposed to UVA band light generated by a fluorescent tube
at a distance of 1 cm above the virus. The UVA exposure
was performed at 4°C for a period of 30 min, resulting
in an UVA dose of greater than 150 J/cm?. The container
was rotated periodically to maintain adequate cooling
and ensure even exposure of the particles. The virus was
then dialyzed extensively against Tris-EDTA buffer, pH
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8.0, to remove unincorporated psoralen. Confirmation of
adenoviral genome inactivation was determined in 293
cells in a series of limiting dilution infections followed by
X-gal staining 48 h following infection.

Synoviocyte infection

Synoviocytes (5 x 10*/well) were plated in 6-well plates
the day prior to infection. Complete media was removed
and cells were washed with PBS. Ad/RSVLacZ was added
in 400 ul RPMI at a concentration of 10* transfection-
competent virus particles per cell. Addition of virus was
T =0 for timed samples. Complete media to a final
volume of 2 ml was added at 2 h after infection for longer
incubations. MAPK inhibitors were added 10 min prior to
addition of virus.

Reverse-transcription polymerase
chain reaction (RT-PCR)

Total RNA was prepared by using Tri-Reagent (Molecular
Research Center, Cincinnati, OH, USA). cDNA was
prepared by reverse transcription as previously described
[62]. PCR reactions were performed in 50 pul containing
5 ul ¢cDNA (diluted 1:10 after reverse transcription of
5 ug total RNA), 10 mM Tris HCI (pH 8.3), 50 mM KCl,
2 mM MgCl,, 50 uM dNTPs, 0.5 ul [«32P]dCTP (3,000
Ci/mmol, Amersham), and 0.025 ul Taq polymerase
(Perkin-Elmer-Cetus, Norwalk, CT, USA). Oligonucleotide
primers (100 ng) were included in the reaction with
sequences as follows: COX-2 sense 5'-TTC AAA TGA GAT
TGT GGG AAA ATT GCT-3' and antisense 5-AGA TCA
TCT CTG CCT GAG TAT CTT-3’; IL-8 sense 5'-AAA CAT
ATG ACT TCC AAG CTG GCC G-3' and antisense 5'-AAT
GGA TCC TTA TGA ATT CTC AGC CCT C-3’; G3PDH
sense 5'-CCA CCC ATG GCA AAT TCC ATG GCA-3’ and
antisense 5'-TCT AGA CGG CAG GTC AGG TCC ACC-3'.
Cycling conditions were as follows: denaturing at 95 °C
for 1 min, annealing at 60°C for 1 min, and extension
at 72°C for 1 min for 25 cycles for G3PDH; denaturing
at 95°C for 1 min, annealing at 65°C for 1 min, and
extension at 72°C for 1 min for 35 cycles for COX-2 and
IL-8.

Immunoblotting

Protein for COX-2 immunoblotting was collected in 1X
PBS (pH 7.4), 5mM EDTA (pH 8.0), 1% NP-40, 0.1%
SDS, 0.5% deoxycholic acid, 1 mM phenylmethylsulfonyl
fluoride, 10 ug/ml aprotinin, and 10 pg/ml leupeptin
and incubated on ice for 10 min. Cells were sonicated
at 30% power for 30s. Protein concentrations were
measured with the BioRad-DC kit (Hercules, CA, USA).
Proteins (20 pug) were separated on a 10% Tris-glycine
gel (Novex, San Diego, CA, USA) and transferred
to an activated nylon membrane (PVDF-Plus, Micron
Separations, Westborough, MA, USA). Equal protein

J Gene Med 2005; 7: 288-296.
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loading was confirmed by staining with Ponceau S red
(Sigma, Milwaukee, WI, USA). Membranes were blocked
with 3% (weight/volume) Carnation nonfat dry milk in
Tris-buffered saline (TBST, 150 mM NaCl, 20 mM Tris
HCL, pH 7.6, and 0.1% TWEEN-20). Rabbit polyclonal
antibody to human COX-2 (Cayman Chemical, Ann
Arbor, MI, USA) was added in fresh blocking solution
(1:1000) and incubated for 1 h at room temperature.
Membranes were washed three times in TBST, incubated
for 1h with horseradish peroxidase-conjugated anti-
rabbit immunoglobulin diluted 1:5000 in TBST, then
washed as above. The enhanced chemiluminescence
(ECL) system (Amersham, Arlington Heights, IL, USA)
was used for detection. Membranes were stripped and
re-probed with an antibody to 8-actin (Sigma).

For analysis of phospho-ERK, phospho-p38 MAPK,
phospho-JNK and unphosphorylated MAPK, cells were
harvested in 50 mM Hepes (pH 7.4), 150 mM NacCl, 1 mM
EGTA, 10 mM Na4P,07, 100 mM NaF, 1% Triton X-100,
10% glycerol, 0.5% deoxycholic acid, 0.1% SDS, 50 mM
B-glycerophosphate, 3 mM sodium vanadate (added
fresh) and 10 ug/ml aprotinin (added fresh). Rabbit
polyclonal anti-phospho-ERK1/2 (Promega, Madison, W1,
USA), anti-phospho-p38 (Cell Signaling, Beverly, MA,
USA), anti-phospho-JNK2 (Promega) antibodies directed
against the unphosphorylated forms of ERK1/2, p38, and
JNK (Santa Cruz Biotechnology, Santa Cruz, CA, USA)
were used at a dilution of 1:1000. Procedures were
otherwise the same as described above.

Enzyme-linked immunoassay (EIA)

PGE; was measured by EIA using a kit (Cayman Chemical,
Ann Arbor, MI, USA) according to the manufacturer’s
instructions.

Statistical analysis

Autoradiographs were scanned and analyzed using NIH
Image. Statistical comparisons were made using Student’s
t-test.

Results

Ad/RSVLacZ infection rapidly increases
expression of inflammatory mediators
in RA synoviocytes

Increased expression of COX-2 mRNA and protein was
observed after infection with Ad/RSVLacZ (Figures 1
and 2). Elevated COX-2 transcripts were seen by 1 h after
infection, and were maximal by 4 h. COX-2 protein levels
were increased by 4 h and reached maximal levels by 8 h
after infection with Ad/RSVLacZ. The time-course of COX-
2 up-regulation was similar to that seen after treatment
with pro-inflammatory cytokines such as IL-18 [62]. In
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291

0o 1 2 4 8

16 (hrs)

-— COX-2

-— G3PDH

Figure 1. Ad/RSVLacZ infection of synoviocytes stimulates
increased COX-2 mRNA. Synoviocytes were exposed to 10%
infection-competent virus particles per cell and mRNA was
harvested at the indicated times. RT-PCR demonstrates increased
COX-2 mRNA by 1h after virus exposure, reaches maximum
levels by 4h, and is sustained for at least 16 h. mRNA for
G3PDH is unchanged by the treatment. The experiment was
performed three times using three different primary cell lines
isolated from three different patients yielding similar results
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Figure 2. Ad/RSVLacZ infection of synoviocytes leads to
up-regulated expression of COX-2 protein. Synoviocytes infected
with 10* infection-competent virus particles per cell were
cultured for variable times and the experiment was repeated
three times using synoviocytes from three different patients.
Immunoblotting was performed for COX-2, then membranes
were reprobed for f-actin. COX-2 was normalized to $-actin and
the relative expression is shown. We demonstrate a significant
increase in levels of COX-2 protein maximal at 8 h post-exposure
to Ad/RSVLacZ (*P < 0.01)

addition to COX-2, we evaluated induction of IL-8 mRNA.
Similar to previous reports, IL-8 transcript levels were
maximal by 8 h and returned to baseline overnight (data
not shown) [6].

Transcription of adenoviral genes is
not required for induction of
inflammatory mediators

To determine if induction of inflammatory mediators
was dependent on transcription of adenoviral genes, we
compared induction of COX-2 by Ad/RSVLacZ before
and after treatment with psoralen. Treatment with
psoralen rendered the adenoviral DNA non-functional
with respect to transcription while cell-surface binding
and internalization were preserved. As shown in Figure 3,
increased COX-2 protein was observed by 4 h and reached
a similar maximal level of expression by 8 h in both
untreated and psoralen-treated adenovirus. At 24 h,

J Gene Med 2005; 7: 288-296.
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Figure 3. Transcriptional inactivation of Ad/RSVLacZ does not
block early up-regulation of COX-2 expression. Synoviocytes
were exposed to transcriptionally active adenovirus (A) or ade-
novirus inactivated by prior treatment with 8-methoxypsoralen
and exposure to ultraviolet A band light (B). Increased COX-2
protein was seen by 4 and 8 h in both conditions. At 24 h,
COX-2 expression was sustained only when active adenovirus
were used for infection. Equal protein loading was confirmed
by staining with Ponceau S red. The experiment was performed
three times using primary cells isolated from three different
patients cell lines which all yielded similar results

cultures treated with adenovirus not treated with psoralen
demonstrated increased COX-2 protein. These results
could reflect instability of the inactivated virus or that
COX-2 expression may be dependent on transcription and

L. ). Crofford et al.

expression of viral genes whereas early COX-2 expression
requires only cell-surface binding and/or internalization.

Ad/RSVLacZ infection increases
phosphorylation of MAPK

We evaluated potential signal transduction pathways for
activation by Ad/RSVLacZ. We found that ERK and
JNK were rapidly phosphorylated in RA synoviocytes
after exposure to Ad/RSVLacZ, with increases that
were statistically significant: P < 0.005 and P = 0.005,
respectively (Figure 4). P38 MAPK was also increased,
but changes were not statistically significant. Maximum
intensity was seen at 5-15 min after treatment.

Up-regulation of COX-2 is mediated by
MAPK

Induction of COX-2 by Ad/RSVLacZ was blocked by pre-
treatment with PD98059, an inhibitor of the MAPKK
MEK-1/2 which activates ERK, and SB203580, which
blocks activity of p38 MAPK (Figure 5). COX-2 levels
were reduced by 66% by PD98059, 60% by SB2-3580, and

0 5 15 30 60 120 mins
- " <+— p-JNK-1
— <+— p-JNK-2
— <— JNK-1
N W — ——
Average Ratio 0 0.352* 0.611* 0.027 0.012 0
n=3
. - ‘.
<+— p-p38
" e - e
T ———
Average Ratio 0 0312  0.180 0 0 0
n=3
L) -_ p-ERK-1

Average Ratio
n=3

0.21 1.517*  1.704**

0.906 0.364 0.048

Figure 4. Adenovirus infection of synoviocytes increases phosphorylation of MAPK. Synoviocytes were infected with 10*
infection-competent adenovirus particles per cell. Proteins were harvested at the indicated times. The phosphorylated forms
of JNK, p38, and ERK were all transiently increased at 5-15 min after exposure to adenovirus, whereas there was no change in
the unphosphorylated forms. The experiment was performed using primary cells isolated from three different patients with all
experiments giving similar results. The ratio of phosphorylated/unphosphorylated forms were determined for each experiment.
The average ratio for all three experiments is reported with significant changes for JNK and ERK (*P = 0.05, **P < 0.05)

Copyright © 2004 John Wiley & Sons, Ltd.
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Figure 5. Up-regulation of COX-2 is blocked by inhibitors of MAPK. Synoviocytes were treated with adenovirus in the presence
or absence of pre-treatment for 10 min with the MEK-1/2 inhibitor PD98059 (25 pM), the p38 MAPK inhibitor SB203580 (3 pM),
or both. Proteins were harvested after 8 h and analyzed for COX-2 expression by immunoblotting. Both inhibitors blocked COX-2
up-regulation. Equal protein loading was confirmed by staining with Ponceau S red. The experiment was performed three times
using primary synovial cells from three different patients with similar results
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Figure 6. Inhibitors of MAPK block the adenovirus-stimulated
increase of PGE;. Synoviocytes were exposed to adenovirus in
the presence or absence of the MEK-1/2 inhibitor PD98059
(25 pM), the p38 MAPK inhibitor SB203580 (3 wM), or both,
applied 10 min prior to treatment. Adenovirus exposure signifi-
cantly increased PGE; levels (*P < 0.001). Induced PGE; levels
were reduced below baseline by either PD98059 (**P < 0.0001),
SB203580 (**P < 0.0001), or both (**P < 0.0001). There was no
additive effect for the combination. The results represent two
experiments each tested for PGE; in duplicate

70% by the combination. In parallel with decreased COX-
2 protein levels, PGE, production was also significantly
reduced by pre-treatment with PD98059 and SB20358
(P < 0.0001) (Figure 6). These data indicate that up-
regulation of COX-2 and increased PGE, are dependent,
at least in part, on activation of MAPK.

Discussion

We demonstrated that Ad/RSVLacZ treatment of RA
synoviocytes induces expression of COX-2 and subsequent
generation of the key inflammatory mediator PGE,.
Because similar early patterns of COX-2 induction
were observed with the administration of adenovirus-
containing transcriptionally inactivated genomes to
synoviocytes, we conclude that early induction of COX-
2 does not require transcription of adenoviral genes.
Adenoviral entry into cells is mediated by signaling
pathways activated by binding the «, integrins and
requires MAPK pathway activation. Viral binding to
synoviocytes results in activation of the MAPK family

Copyright © 2004 John Wiley & Sons, Ltd.

members, p42 ERK-1, p44 ERK-2, p38 MAPK, and JNK2.
We speculate that binding of adenovirus to the oy integrins
is the critical factor for activation of the MAPKs that up-
regulated COX-2. Preservation of the MAPK signaling
pathways was necessary for activation of COX-2, and
blockade of either the ERK or p38 pathways results
in markedly diminished COX-2 expression and PGE;
production. Similar to other stimuli for MAPK activation,
stimulation by adenovirus binding occurs very rapidly but
has sustained effects. It is likely that the MAPK cascade is
important for production of a critical cellular protein and
that blockade of the early signaling cascade is sufficient
to block the program involved in generation of COX-2.

It has previously been reported by Hirschowitz et al.
that a first-generation (AE1l, AE3) adenoviral vector
encoding a green fluorescent protein (GFP), prostate-
specific antigen, or and a null vector induces COX-
2 and PGE; in non-small-cell lung cancer cells [63].
These cells constitutively express COX-2 and relatively
high levels of PGE,. High levels of COX-2 in some
malignant cells are thought important for cellular
invasion, induction of angiogenesis, altered apoptosis, and
increased immunologic resistance [64]. Hirschowitz and
colleagues reported that the COX-2 protein was induced
at 48 h post-infection time points and that blockade
of ERK prevented the increase in PGE,. In contrast
to our results, they found that UV/psoralen-inactivated
adenoviral vector did not increase PGE; levels. Differences
between those data and the present report include
differences in vector, the cell type examined, and the
time points examined. Of interest, Zhang et al. reported
that GFP itself can induce COX-2 and PGE,. Those authors
reported that the increase in COX-2 and PGE; is mediated
by up-regulation of HSP70 and independent of MAPK and
phosphatidylinositol-3-kinase signaling cascades [65].
The increase in PGE, was sufficient to induce vasodilation.

The synoviocytes used in these experiments were
derived from patients with rheumatoid arthritis. Although
many of the characteristics of these cells are controlled
by the invivo milieu, these cells do retain some
phenotypic characteristics in culture. For example,
rheumatoid synoviocytes exhibit anchorage-independent
growth in early passage and can destroy articular
cartilage [66,67]. In synoviocytes, COX-2 expression is
stimulated by pro-inflammatory cytokines including IL-18

J Gene Med 2005; 7: 288-296.
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and TNF-¢ [62,68-70]. The mechanisms leading to
increased COX-2 expression by IL-1 include activation
of NF-«B [62,71], translocation of c¢/EBP [72], and
activation of MAPK-dependent transcription factors. The
data presented here suggest that infection with an
adenoviral vector can also increase expression of COX-
2. We showed that up-regulated COX-2 expression was
associated with increased PGE; production after exposure
to Ad/RSVLacZ in vitro. In support of these findings,
Caromody et al. demonstrated an increase in COX-2
staining in calvarial tissues that was enhanced in animals
receiving AdLacZ [73]. Of interest, AdLacZ also stimulated
osteoclastogenesis in their experiments, known to be
enhanced in the presence of PGE,.

In vivo, PGE, induces vasodilation, plasma extravasa-
tion, and sensitization of nociceptors [58]. In the context
of adenovirus-based gene therapy administered locally
for treatment of arthritis, stimulation of this pathway
may not be of major clinical significance although it is
difficult to predict the effects on joint tissues. However,
similar regulatory pathways may be operative in vascular
endothelial cells where regulation of COX-2 expression
is similar to synovial cells. After intravascular adminis-
tration, increased COX-2 expression and prostaglandin
production may alter vascular tone and promote vascular
leak syndromes.

Several gene therapy strategies have been employed
using adenoviral-vector-based delivery of prostaglandin
biosynthetic enzymes in vivo. The COX-1 gene alone or in
a bicistronic construct with prostacyclin synthase resulted
in augmented COX-1 and prostacyclin levels and reduced
cerebrovascular infarct after intraventricular infusion
[74]. They were unable to demonstrate increased COX-2
expression after adenovirus treatment. Another report
demonstrated that adenovirally mediated expression
of the inducible nitric oxide synthase proceeds by
increased COX-2 as an obligatory downstream effector of
cardioprotection after ischemia-reperfusion injury [75].
In that study, Ad5/LacZ control vector did not result in
increased prostaglandin production in myocardial tissues,
though it was unclear if there was an increase in COX-2
protein compared to an uninfected control.

IL-8 is a chemokine associated with infiltration of
neutrophils and stimulation of angiogenesis in RA
synovial tissues [76,77]. Previous data demonstrated
increased IL-8 mRNA expression by active and inactive
AdLacZ by 20 min after infection in HeLa cells [6]. We
confirmed those data in primary human synoviocytes.
In HelLa cells, IL-8 was not affected by cyclohexamide
or heat inactivation of the virus, suggesting a direct
effect of adenovirus binding. Furthermore, blocking
activation of the Raf/MAPK pathway with forskolin
resulted in inhibition of IL-8 production. Up-regulation
of IL-8 and other cytokines and chemokines could
contribute significantly to the net inflammatory response
to adenovirus infection [6].

It was also shown that infection with adenovirus
stimulates translocation of NF-«B to the nucleus [78,79].
Activation of NF-«¢B could act to stimulate expression of

Copyright © 2004 John Wiley & Sons, Ltd.
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pro-inflammatory genes with NF-«B-responsive elements
in their promoter regions [79]. A number of viruses
activate NF-«B and have evolved mechanisms to utilize
various properties of NF-«B to facilitate gene expression,
replication, and evasion of immune responses [80,81].
Biphasic expression of NF-«B in the liver was seen after
infusion of adenovirus in mice [78]. Early expression
is not likely related to expression of adenoviral genes
since activation occurred within 15 min after adenoviral
infusion and was seen when viral E1, E2, E3 and L1-
L4 regions were deleted [78]. However, later expression
occurring 3 days after infusion is likely dependent on
adenoviral genes since deletion of the above viral regions
resulted in loss of NF-«B and expression of cytokines
such as TNF-o [78]. We cannot exclude activation of
NF-«B as a contributing factor to up-regulation of COX-
2 in synovial cells following adenoviral infection [62].
Hirschowitz et al. found that NF-«B activity was not
required for increased PGE; levels in non-small-cell lung
cancer cells [63].

Understanding the nature of the inflammatory reaction
triggered directly by the process of adenovirus infection
has important implications for the design and utilization
of adenoviral-based vectors for human gene therapy. In
addition to the possible use of recombinant adenovirus
as a local or regional drug delivery system, a better
understanding of the immune inflammatory activation
phenomenon associated with contact of adenovirus with
synovial cells may provide insight into synoviocyte-
mediated events that may be involved in triggering
viral-associated arthritis or other reactive arthridities.
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