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SUMMARY

In many environmental studies spatial variability is viewed as the only source of uncertainty while measurement
errors tend to be ignored. This article presents an indicator kriging-based approach to account for measurement
errors in the modeling of uncertainty prevailing at unsampled locations. Probability field simulation is then used to
assess the probability that the average pollutant concentration within remediation units exceeds a regulatory
threshold, and probability maps are used to identify hazardous units that need to be remediated. This approach is
applied to two types of dioxin data (composite and single spoon samples) with different measurement errors which
were collected at the Piazza Road dioxin site, an EPA Superfund site located in Missouri. A validation study shows
that the proportion of contaminated soil cores provides a reasonable probability threshold to identify hazardous
remediation units. When a lower probability threshold is chosen, the total remediation costs are unreasonably high
while false negatives are unacceptably frequent for a higher probability threshold. The choice of this threshold
becomes critical as the sampling density decreases. Copyright # 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Delineation of contaminated areas usually proceeds in two steps: (i) pollutant concentrations are

mapped using interpolation techniques such as kriging, and (ii) a decision rule is applied to the

estimated concentrations; for example, the sites where the estimated concentration exceeds a

regulatory threshold are classified as hazardous. Most practitioners are aware that such estimates

are uncertain and that such uncertainty must be accounted for in the decision making process.

Geostatistical modeling of uncertainty has thus received increasing attention in the last few years

(Goovaerts, 2001), and techniques fall into two main classes: non-linear kriging and stochastic

simulation.
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Among non-linear kriging techniques, indicator kriging (Journel, 1983) is one of the most

commonly used. The approach models the uncertainty of unknown concentrations by a conditional

cumulative distribution function (ccdf ), which provides the probability that any regulatory threshold

value is not exceeded at an unvisited location. The technique is referred to as non-parametric because

neither a particular shape nor analytical expression is assumed for the ccdf. Instead, the ccdf value (i.e.

cumulative probability) is determined for a series of threshold values discretizing the range of attribute

values. For each threshold, the ccdf value is estimated by indicator kriging. The indicator coding is

generally hard in that indicators are either zero or one, which means that there is no uncertainty about

whether the threshold is exceeded or not at sampled locations. Measurement errors may, however, be

non-negligible, in particular when cheap recording devices are used, and this source of uncertainty

should be considered in addition to the uncertainty arisen from interpolation in space.

Another challenge is that the model of uncertainty provided by indicator kriging applies only to the

measurement support (size of soil cores), which is usually much smaller than the size of remediation

units and can be assimilated to a point with respect to the site area. Point ccdfs thus need to be

aggregated or ‘upscaled’ to derive the probability that the average concentration over the remediation

unit does not exceed particular thresholds (block ccdf). To account for this change of support, several

authors (Journel, 1992; Englund and Heravi, 1994; Goovaerts, 1997a; Kyriakidis, 1997) have used

stochastic simulation. The idea is to simulate the spatial distribution of pollutant concentrations across

the site. The simulated block value is then computed as the arithmetic average of simulated point

values within the remediation unit. Many realizations are generated and the block ccdf is numerically

approximated by the empirical distribution of simulated block values.

Uncertainty assessment is not a goal per se, but it is a preliminary step for decision making. A

common question, then, is at which level of risk or probability threshold should we decide to clean

a polluted area (Goovaerts, 1997b). When the probability is very high or very low, the risk-based

decision is quite straightforward. Decision making is much more difficult for units with intermediate

probabilities, say in the interval [0.3, 0.7]. Therefore, there is an inherent risk that a hazardous

area may be declared safe (false negative) or that a safe area may be classified as contaminated

(false positive). Such misclassifications should be carefully examined and minimized (Goovaerts

et al., 1997), especially false negative rates because of potentially harmful consequences for human

health.

The main objective of this article is to present a geostatistical methodology for incorporation of

measurement errors and change of support in uncertainty modeling. A combination of soft indicator

kriging and p-field simulation is used to numerically estimate block ccdfs through the generation of

multiple block values. The technique is illustrated with a large soil data set that includes 600 dioxin

concentrations measured in a 1858.60 m2 (20 000 ft2) site. The impact of the number of observations

(sampling intensity) and probability threshold on the site characterization and remediation decisions is

investigated by repeating the analysis for a series of probability values and random subsets of original

data of various sizes.

2. THEORY

2.1. Soft indicator kriging

Consider the problem of modeling the uncertainty of the value of an attribute z (e.g. a dioxin

concentration) at an unsampled location u, where u is a vector of spatial coordinates. The information
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available consists of z-values at n locations u�; z(u�); � ¼ 1; 2; . . . ; n. A fraction of these values is

below the detection limit zd, and such censored data are here reset to half the limit zd in accordance

with previous studies of the data (Zirschky et al., 1985). The uncertainty at u is modeled by the

conditional cumulative distribution function (ccdf ) of the random variable (RV) Z(u):

Fðu; zjðnÞÞ ¼ ProbfZðuÞ � zjðnÞg ð1Þ

The function F(.) gives the probability that the unknown is no greater than any threshold z. Ccdfs are

modeled using a non-parametric (indicator) approach which estimates the probability (1) for a series

of K threshold values zk discretizing the range of variation of z:

Fðu; zkjðnÞÞ ¼ ProbfZðuÞ � zkjðnÞg k ¼ 1; . . . ;K

The indicator approach requires a prior coding of each observation zðu�Þ into a series of K values

indicating whether or not the threshold zk is exceeded. The error attached to a measurement at u� is

accounted for by replacing the single-valued datum z(u�) by a normal distribution with a standard

deviation sðu�Þ ¼ CV � z0ðu�Þ, where CV is the coefficient of variation of the analytical error (Journel,

1986). To incorporate any bias in the laboratory measurement the mean of the distribution is shifted by

an amount that is proportional to the observed value; that is, the new mean z0ðu�Þ is zðu�Þ � ð1 þ biasÞ.
Thus, the K indicators are given by

jðu�; zkÞ ¼ ProbfZðu�Þ � zkjðnÞg ¼ Gfzk � z0ðu�Þ=sðu�Þg ð2Þ

where G(.) is the standard normal cdf. The indicators jðu�; zkÞ have values between 0 and 1 (soft

indicators), which expresses the uncertainty about whether thresholds are exceeded at sampled

locations.

The ccdf value Fðu; zkjðnÞÞ at the unvisited u is estimated by a linear combination of soft indicator

transforms of neighboring z-data:

½Fðu; zkjðnÞÞ�� ¼
XnðuÞ

�¼1

��ðu; zkÞjðu�; zkÞ

where the weights ��ðu; zkÞ are solutions of a system of (n(u)þ 1) linear equations for each threshold

zk (ordinary indicator kriging, Goovaerts, 1997a). Ccdf values are then interpolated within classes of

thresholds ½zk; zk þ 1� and extrapolated beyond extreme thresholds z1 and zk. Several options are

available. Besides the subjective choice of an analytical interpolation model (e.g. linear, hyperbolic),

the shape of the ccdf within a threshold class or beyond extreme thresholds can be assumed similar to

the shape of the sample cdf, that is the marginal distribution of data. The technique, known as ‘linear

interpolation between tabulated bounds’, is described in detail in Goovaerts (1997a, pp. 327–328).

2.2. Probability field simulation

Indicator kriging provides a model of uncertainty over a support that corresponds to the size of the soil

core, which is usually much smaller than that of the remediation units (RU). A probabilistic

classification of RUs requires the derivation of the block ccdf FVðu; zjðnÞÞ that models the uncertainty
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about the average z-value over the RU or block V centered at u:

FVðu; zjðnÞÞ ¼ ProbfZVðuÞ � zjðnÞg ð3Þ

Different techniques are available for the derivation of the function (3) (e.g. see Goovaerts, 2001): (i)

multi-Gaussian block kriging which models the block ccdf using a normal distribution with mean and

variance estimated by simple block kriging of normal score transforms of the data; (ii) volume-

variance correction (VVC) of the point ccdf (1) which involves a decrease of the ccdf variance and a

gradual symmetrization of the block ccdf as the block size increases. In this article we used a more

versatile—yet computationally intensive—alternative provided by stochastic simulation. The block

ccdf is numerically approximated by the empirical cumulative distribution of many simulated block

values (Journel and Huijbregts, 1978, p. 511):

FVðu; zjðnÞÞ �
1

L

XL

l¼1

i
ðlÞ
V ðu; zÞ

where i
ðlÞ
V ðu; zÞ ¼ 1 if z

ðlÞ
V ðuÞ � z, and zero otherwise. Each simulated block value z

ðlÞ
V ðuÞ is obtained

by averaging a set of z-values simulated at the J points u0j discretizing the block VðuÞ:

z
ðlÞ
V ðuÞ ¼ 1

J

XJ

j¼1

zðlÞðu0jÞ l ¼ 1; . . . ;L

Attractive features of the simulation approach include: (i) non-linear averaging functions (e.g.

geometric or harmonic mean) can be considered; (ii) no assumption is made regarding the impact

of the change of support on the shape and variance of the block ccdf; (iii) once the grid of point values

has been simulated ccdfs for various block sizes and shapes can be derived at little computational cost.

The practical implementation of this approach relies on the fast generation of many simulated

fields. Among the available geostatistical simulation techniques, p-field simulation (Srivastava, 1992;

Froidevaux, 1993) is one of the most straightforward and less CPU demanding. The basic idea is to

sample the set of ccdfs using a set of autocorrelated probability values fpðlÞðu0jÞ; j ¼ 1; . . . ;Ng, known

as probability or p-field, so that the histogram and semivariogram of the resulting set of simulated

values fzðlÞðu0jÞ; j ¼ 1; . . . ;Ng are close to target ones (i.e. sample histogram and model fitted to

sample semivariogram):

zðlÞðu0jÞ ¼ F�1ðu0j; pðlÞðu0jÞjðnÞÞ j ¼ 1; . . . ;N

The probability field is generated as a non-conditional realization of a random function PðuÞ with a

uniform marginal cdf, and the covariance CPðhÞ is assumed equal to the covariance CXðhÞ of the

uniform transform of the original variable Z:

ProbfPðuÞ � pg ¼ p 8p 2 ½0; 1�
CPðhÞ ¼ CXðhÞ ¼ EfXðuÞ � Xðuþ hÞg � ½EfXðuÞg�2

where XðuÞ ¼ FðZðuÞÞ 2 ½0; 1� is the uniform transform of ZðuÞ. The p-field does not need to be

conditional since at any datum location u� the ccdf is a unit-step function centered on the datum value
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zðu�Þ. Thus, whatever the simulated p-field value pðlÞðu�Þ at that location,

F�1ðu�; pðlÞðu�ÞjðnÞÞ ¼ zðlÞðu�Þ ¼ zðu�Þ 8pðlÞðu�Þ 2 ½0; 1�

Multiple realizations over large grids can be generated reasonably fast because ccdfs need to be

modeled only once, and only multiple non-conditional p-fields need to be generated. Until recently the

main shortcoming was the lack of a theoretical basis for the generation of p-fields. Journel (1995),

however, proved that, under conditions of ergodicity and on average over a large number L of

realizations, the z-histogram and the covariance of the z-uniform scores are reproduced by the set of

simulated z-values.

2.3. Selection of remediation units

Whether block V is safe or hazardous can be determined by application of different criteria (Goovaerts,

1997b) to the block ccdf FVðu; zjðnÞÞ. A straightforward approach consists of classifying as

contaminated all remediation units where the probability of exceeding the regulatory threshold zc is

greater than a critical probability threshold pc:

RU u is hazardous if ProbfZVðuÞ > zcg ¼ 1 � FVðu; zcjðnÞÞ > pc ð4Þ

A first option for selecting pc consists of negotiating with regulatory authorities to define the meaning

of an ‘acceptably low’ probability for the site under study; for example, both Johnson (1996) and

Buxton et al. (1997) reported a negotiated probability threshold of 0.2. Garcia and Froidevaux (1997)

used two probability thresholds to delineate safe areas ( pc � 0:2), hazardous areas ( pc > 0:8), and

uncertain or unclassified areas ( 0:2 < pc � 0:8) where further investigation should be conducted.

Using a jackknife approach, Goovaerts (1997a) found that the proportion of wrongly classified

locations was minimum for a probability threshold close to the marginal probability of contamination,

which designates as contaminated all places where the local risk of contamination exceeds the average

risk of contamination over the study area. A similar approach is used here to investigate how the choice

of pc influences the proportion of RUs that are misclassified, that is wrongly declared contaminated

(false positives) or wrongly declared safe (false negatives).

3. MATERIAL AND METHODS

The study area is a U.S. EPA Superfund site called Piazza Road located in Rosati, Missouri. In 1971,

dioxin was introduced along with a waste oil serving as a dust suppressant; later the site was found to

be contaminated (Ryti et al., 1992; Ryti, 1993; Englund and Heravi, 1994; Abt et al., 1999). Policy in

EPA Region 7 has set the acceptable risk due to residual dioxin at less than one additional cancer in

one million population, which corresponds to a concentration of 1 mg/kg in a residential exposure

scenario. In the original study (Ryti, 1993) the site, which is 30.48� 60.96 m, was stratified into four

exposure units (EU) taken as average residential lots of 464.52 m2 (15.24� 30.48 m). The remedial

strategy was to subdivide each EU into smaller remediation units (RU) so that only hot spots of dioxin

would be removed, until the average dioxin concentration within an EU is less than 1 mg/kg. If the true

concentration after remediation exceeds the action level of 1 mg/kg, a false negative would occur, and it

cannot happen in more than 5% of EUs to meet EPA Region 7 requirements.
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Ryti’s study found that the most cost-effective remediation scheme was achieved by stratifying the

site into 50 RUs of size 10 m� 6.10 m. For illustration purposes, in this article exposure units will

be identified to remediation units. Thus, the action level of 1 mg/kg as well as the maximum rate of

false negatives (5%) will be applied to each of the 50 RUs.

Two sets of samples were collected: (i) 200 pairs of tablespoon soil samples were taken 0.30 m on

either side of the nodes of a 3.05 m square grid, and (ii) 50 locations were randomly selected in each of

the four EUs and a composite sample was formed from nine tablespoon samples collected within a

0.30 m sampling frame (Ryti, 1993). The sole isomer of dioxin at the site is 2, 3, 7, 8 tetrachloro-

dibenzo-para-dioxin. The laboratory technical procedure (HRGC/MS/MS or HRGC/LRMS) has a

high analytical precision (4.5%), a low bias (�2.6%), and a detection limit of 0.3 mg/kg. Readings

below the detection limit are reset to half the limit, 0.15 mg/kg, in accordance with previous studies

(Zirschky et al., 1985). For the purpose of this study, measurement errors include laboratory

(analytical) errors and errors resulting from incomplete mixing of the field samples. The coefficient

of variation (CV) for sampling errors ranges from 11% for composite samples to 15% for single spoon

samples which were not homogenized, and these two rates were used for the soft indicator coding (2)

of the 200 and 400 concentration data, respectively. Figure 1 (top graphs) illustrates the use of the

Figure 1. Examples of hard and soft indicator coding for both single spoon samples and composite samples. Point ccdf (located
in the block #1) generated using soft indicator kriging and two block ccdfs that are numerically approximated by the empirical

distributions of 100 simulated block values. Dashed lines depict results obtained when measurement errors are ignored
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coefficient of variation to derive a probability distribution for composite and single spoon samples.

When measurement errors are ignored, the distribution is a step function depicted by the dashed line in

Figure 1.

Figure 2 shows the locations and cumulative distribution of 600 dioxin concentrations. The

distribution is highly positively skewed (median¼ 1.17 mg/kg<mean¼ 4.94 mg/kg). Of the observa-

tions 27 per cent are below the detection limit, while the threshold of 1 mg/kg is exceeded at 53 per cent

of the locations. High concentrations are located mainly in the left lower area of the site due to the

accumulation of dioxin by water erosion (Ryti, 1993). A previous study (Saito and Goovaerts, 2000)

showed larger spatial connectivity along the N-S direction which is consistent with the direction of the

stream channel located in this pilot.

Conditional distributions (ccdf ) were derived using ordinary soft indicator kriging and eight

threshold values corresponding to the detection limit and the seven deciles of the sample distribution

that are larger than 0.3 mg/kg. The resolution of the discrete ccdf was increased by a linear

Figure 2. Dioxin data at Piazza Road, MO, and cumulative distribution of dioxin concentrations (mg/kg)
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interpolation between tabulated bounds provided by the sample histogram (Deutsch and Journel,

1998). Intuitively, accounting for measurement errors through soft indicator coding should lead to

wider ccdfs (more uncertainty) than a classical hard coding when extrapolated in space, which is

illustrated in Figure 1 (left bottom graph). Experimental soft indicator semivariograms and visually

fitted models are displayed in Figure 3, indicating a better spatial connectivity (larger range) of low

concentrations. All models consist of two components, a nugget effect and an anisotropic spherical

model with a larger range along the E-W direction. One hundred probability fields were generated at

the nodes of a 1.22-m spacing grid using sequential Gaussian simulation (Deutsch and Journel, 1998)

and the semivariogram of uniform transforms shown in Figure 3 (bottom right). These p-fields were

used to sample the sets of ccdfs, yielding 100 realizations of the spatial distribution of dioxin

concentration values. Figure 4 (top graphs) shows the first realization of simulated punctual values and

the block values that are computed as the arithmetical averages of the 25 values falling within each

RU. The procedure is repeated 100 times, yielding a distribution of 100 block values whose mean and

variance are mapped in Figure 4 (middle graphs). The probability map at the bottom of the figure

represents the proportion of simulated block values that exceed 1 mg/kg. This map is then used for

Figure 3. Experimental soft indicator semivariograms (thresholds: 0.3mg/kg, median, and 9th decile of the sample histogram)
and the semivariogram of uniform transforms, with the geometric anisotropy models fitted
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Figure 4. First realization of the spatial distribution of dioxin concentrations generated using p-field simulation conditionally to
300 dioxin data, and the resulting map of block averaged concentrations. One hundred realizations were generated and the mean,
variance and proportion of simulated block values that exceed the regulatory threshold of 1 mg/kg are mapped. A block is

classified as hazardous if the probability is larger than 0.65
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delineation of RUs that are hazardous on the basis of criterion (4). In this example, the probability

threshold pc is set to 0.65 (see explanations in following section).

To investigate the impact of the choice of the probability threshold and sampling intensity on

remediation decision, the following procedure was used:

1. Select a random subset of N data values with 50 � N � 550 (prediction set). For each sample size,

100 different random subsets were selected to account for sampling fluctuations.

2. For each random subset and sample size:

(a) Model the ccdf of the nodes of a 1.22-m spacing grid using soft indicator kriging.

(b) Derive the distribution of block simulated values for each remediation unit using p-field

simulation, and classify each unit as safe or hazardous on the basis of a series of probability

thresholds ranging from 0.05 to 0.95.

(c) Compute the proportion of RUs to be remediated (remediation action rate), and the proportion

of RUs that are wrongly declared contaminated (false positive) or safe (false negative). The

actual RU concentration is taken as a weighted average of all observations within that unit:

paired observations received half the weights of randomly located composite samples.

(d) Compute the sum of sampling costs ($156 per sample) and remediation costs. In accordance

with a previous investigation (Ryti, 1993), remediation costs are modeled as a function of only

the number of units to be remediated ($7280 per RU); this cost covers the removal, storage and

incineration of the top 10.16 cm of the entire unit. Health costs which result from false

negatives are unknown and not considered here.

4. RESULTS AND DISCUSSION

Figure 5 (top left graph) shows, on average over 100 random subsets, the proportion of remediation

units where the probability of exceeding the regulatory dioxin concentration is larger than three widely

different thresholds: 0.05, 0.65 and 0.95. For the same probability thresholds, the average proportions

of false negatives and false positives are plotted at the bottom of Figure 5. The lack of overlap of

95 per cent confidence intervals depicted by thin lines indicates that the three probability thresholds

lead to significantly different results. At the 0.05 probability threshold there are no false negatives

regardless of the sampling intensity, while false positives are frequent. Consequently, remediation

action rates are high (true rate¼ 58 per cent) as well as total costs. Minimum cost for the probability

threshold of 0.05 is achieved for 110 observations, which is much larger than the 60 obtained by

indicator kriging (Saito and Goovaerts, 2000). For the probability threshold of 0.95, the rate of false

negatives is above 5 per cent, which is the EPA acceptable rate for residential areas (Ryti, 1993). This

choice which leaves the site hazardous to human health is thus unacceptable despite smaller total costs.

An intermediate threshold, such as pc ¼ 0:65, leads to a combination of consistent remediation action

rates and low misclassification rates.

In an attempt to identify the optimal probability threshold, the procedure was repeated for a series

of pc values and on average over all sampling intensities; see Figure 6 (solid line). As expected, the

remediation action rate steadily decreases as the probability threshold increases, and quickly drops

beyond 0.9. The misclassification rate, which is computed as the sum of the rates of false negatives and

false positives, reaches a minimum value of 1 per cent at pc ¼ 0:65. This value is reasonably close to

the marginal probability of contamination (proportion of observations that exceed 1 mg/kg), which is

0.53. The discrepancy can be explained by the change of support: the probabilistic classification
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applies to remediation units, while the sample statistics are computed from soil cores. Thus, in absence

of further information, the marginal probability of contamination could be used as the threshold.

Figure 6 (bottom graphs) shows the impact of the probability threshold for each type of misclassifica-

tion error. As pc increases, the proportion of RUs classified as hazardous decreases, which lowers the

risk of wrongly classifying RUs as hazardous (false positives). A similar reasoning can be made for the

proportion of RUs classified as safe and the rate of false negatives. Note that for most probability

thresholds the rate of false negatives is below the acceptable level (5 per cent) set by EPA.

Besides average values, Figure 6 (dashed lines) displays results obtained for three different

sampling intensities (50, 300 and 550 observations). As in Figure 5 these curves represent results

averaged over 100 random subsets of the same size to attenuate sampling fluctuations. Increasing the

number of data lowers the misclassification rates, in particular from 50 to 300 data. When data are

sparse, the impact of the choice of pc is more pronounced.

Figure 5. Impact of the sampling intensity on the remediation action rate, the total cost (samplingþ remediation), and the rates
of false negatives and false positives. Three different probability thresholds are considered: pc ¼ 0:05, 0.65 and 0.95. Thin lines

represent the limits of the 95% confidence interval inferred from 100 random subsets for each sampling intensity
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5. CONCLUSIONS

Geostatistics allows the incorporation of measurement errors in site characterization through a soft

indicator coding of measurements at each sampled location. Indicator kriging is then used to

interpolate these local probability distributions in space, leading to wider probability distributions

at unvisited locations. Once the uncertainty arising from both measurement and spatial interpolation

errors has been modeled, p-field simulation leads to a fast aggregation of punctual ccdfs to derive the

probability that the average concentration over a remediation unit does not exceed any particular

threshold. The last step is the use of that probabilistic assessment in decision-making, such as the

delineation of hazardous areas. The case study confirms that the choice of a probability threshold

should be site-dependent and that the marginal probability of contamination is a reasonable choice if

Figure 6. Impact of the probability threshold on the remediation action rate and on the proportions of wrongly classified
remediation units (false negatives and false positives). Dashed lines depict results obtained for three different sampling

intensities (50, 300 and 550 observations), while the solid line represents the average over all sample sizes
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the observations are representative of the site, both in terms of the uniform spatial repartition of

samples and of the measurement support. In the presence of data clustering or preferential sampling,

declustering procedures (Deutsch and Journel, 1998) could be used to infer a histogram that is more

representative of the distribution of concentrations within the entire site. More research should be

devoted to the incorporation of the size of remediation units in the choice of a probability threshold.
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