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Preface

The Department of Naval Architecture and Marine Engineering of The
University of Michigan conducts a vigorous program of research in problems
related to ship technology, for the sake both of advancing that technology
and of keeping our educational program in tune with the times. We present
here a report on our research effort, so that our alumni, our colleagues in
other institutions, and our friends may have some idea of the scope and
depth of the areas in which we are working.

The articles contained in this report were selected from a wide range of
possible subjects. We wanted to present some topics in enough detail so that
interested readers could obtain some real understanding of what the research
is all about. This intent precluded our publishing a comprehensive descrip-
tion of all of our research projects. The articles here are representative only.
In the future, we expect to describe other projects in a similar way, and we
hope thus to do justice to the topics that are ignored or glossed over in this
report.

We have attempted to prepare these articles so that each would be self-
contained and intelligible to a professional naval architect or marine engi-
neer. This goal has required that many important technical considerations be
discussed only in rather general terms. Readers who want more specific in-
formation will find references in the individual articles.

The single most important outlet for our technical work is the series of
reports published by the Department. This series was started in 1968, and
we have now published more than 150 issues. A complete list is included in
this report. (The series contains a number of didactic works, as well as some
translations and occasional reprints of selected papers.)

Doctoral and professional degree theses represent an important segment of
our research output. A list of all such theses since 1960 will be found in this
report. (Many are essentially identical to reports in the Department report
series. Most of the others can be obtained from University Microfilms in
Ann Arbor.)

Otherwise, our technical output appears in numerous standard journals
and in the transactions of various symposia. A list of recent such papers by
members of the Department is included in this report.

We welcome comments and constructive criticism of our research program
and of our reporting on that program. It should be recognized that we have
imperfect control over the topics of our research, since we are often con-
strained to investigate those problems for which we can find sponsors external
to the University. Nevertheless, we invite you to express your reactions to
this report and to our program in general.
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As department chairman, I personally add an invitation for you to com-
ment on all aspects of the program of the Department of Naval Architecture
and Marine Engineering. This report happens to concern our research, but
that is just one part of our program. Our primary effort is still devoted to
teaching naval architecture and marine engineering, and the justification for
our having a research program comes mostly from its contributions to our
educational program. We are dedicated to carrying on a balanced program
at all levels from freshman to post-doctoral. I shall thank every one of you
(personally if at all possible) for your advice and your support.

July 1974 T. Francis Ogilvie, Chairman
Ann Arbor Department of Naval Architecture
and Marine Engineering
College of Engineering
The University of Michigan
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The Fleets of Winter

Harry Benford

Seafaring men the world over revere their traditions and are loathe to
change their ways—often justifiably so. On our inland seas, however, a re-
markable upheaval is taking place, and the impetus for it is sheer economic
necessity.

The predominant commerce on the Great Lakes is the transport of iron ore
from the upper end of the lakes to the steel mills at the lower end of Lake
Michigan and around Lake Erie. In the past, the ore from the upper lakes
held a monopolistic position. Now, however, many of the mills can buy ore
from foreign mines at competitive prices. The foreign ores enjoy the advan-
tage of highly efficient transport in deep-draft ocean carriers. Typically, these
ships have drafts of 60 feet and deadweights of 160,000 long tons. On the
lakes, however, shallow harbors and channels limit the ore carriers to drafts
of 27 feet and deadweights of less than 60,000 long tons. Thus, although
geographic distance favors the domestic ores, the economies of scale favor
the larger foreign ships. The salt water ships, moreover, can prorate their
capital costs over a full year’s operation, whereas the lakers have traditional-
ly been limited to an eight-month season. It is that tradition that must now
give way if our domestic iron mines and Great Lakes commerce are to survive.

The seeds of change were planted in 1959 by Admiral Edward H. Thiele,
who was then the U.S. Coast Guard’s top officer in the Great Lakes region.
He pointed out that winter navigation should be possible on the lakes. I con-
tributed cost studies that predicted the economic feasibility of Admiral
Thiele’s proposal. Professor John Hazard of Michigan State University then
called attention to the macro-economic benefits of extending the season
through the St. Lawrence Seaway as well as on the lakes themselves.

All of this remained just talk until 1967 when the managers of the U.S.
Steel Corporation fleet undertook to keep some of their better ships operating
past the traditional mid-December deadline, until early January. Feeling their
way along with due caution, they have since operated a little later each year.
During the 1972-73 season, they continued until mid-February. With their
subsequent spring start-up in late March, U.S. Steel could claim that there
was no month in the past year when their ships were not in action.

The U.S. Steel experiments showed that Admiral Thiele was right: Ice is
not the insurmountable obstacle previously supposed, and year-round navi-
gation is indeed possible. True, there are ice-choked areas such as the St.
Mary’s River and the Straits of Mackinac. (See Fig. 1.) Even at the time
of maximum ice cover, however, over 80 per cent of the journey is in open,
ice-free water.
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Ficure 1 The Great Lakes
Iron ore is carried from western end of
Lake Superior to the lower lakes

U.S. Steel Corporation has concluded that the proper way to extend the
season is to run late (January and February) rather than to start early
(March). The greatest dangers come in the early starts, when the ice cover
breaks apart and drifts. Surprisingly, too, the slush-filled waters of spring
can stop a ship as efectively as solid ice. However, such difficult conditions
are isolated both in location and in time. Thus, although the spring break-up
poses temporary problems, they do not preclude the feasibility of year-round
navigation on the lakes. Whether the same will prove true on the St.
Lawrence Seaway remains to be seen, but there is reason for optimism.

The continuing success of the U.S. Steel fleet quickly attracted the atten-
tion of midwestern industrial leaders such as Dow Chemical and Huron
Cement. Traffic managers saw the marketing benefits of year-round navigation
on the lakes and the Seaway; this led some of them to organize a consortium
dedicated to encouraging that development. The users group soon won the
backing of the Michigan State Chamber of Commerce and of the Great Lakes
Commission. Since the cooperation of several federal agencies was required,
these industrial leaders convinced Congress to support a multi-year winter
demonstration program that is still underway. The program involves the U.S.
Army Corps of Engineers, the U.S. Coast Guard, the National Oceanic and
Atmospheric Agency, the Environmental Protection Agency, the Maritime
Administration, and others. Comparable Canadian agencies are also in the
act.
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The interest of the Maritime Administration focuses on the technical and
economic problems of the ships of commerce. For its part, then, the Maritime
Administration is sponsoring experimental research in icebreaking character-
istics, both in this country and abroad. It is also sponsoring a continuing
techno-economic study here in The University of Michigan’s Department of
Naval Architecture and Marine Engineering.

Our responsibility is to provide the analytical tools that will help the govern-
ment predict the economic benefits of winter navigation. To this end we have
developed a comprehensive procedure for estimating the profitability of a
ship (whether proposed or in existence) operating in season extensions of
various lengths, on different trade routes (still all intra-lake), and with
various levels of government support in icebreaker assistance, aids to navi-
gation, and so forth. This has required parametric analyses of structural hull
requirements, ship weights, building costs, operating costs, ice conditions,
round-trip times, and annual transport capability. The necessary volume of
calculation is such that computer assistance is mandatory. A large share of our
work, then, has been to develop a computer program suited to the University’s
IBM 360/67 computer system. Most of this programming has been done by
a team of graduate students under the guidance of Professor Horst Nowacki,
co-director (with me) of the project.

Preliminary applications of our computerized analysis have illuminated
the importance of breaking away from traditional, narrow concepts in ship
design. If we look at a single ship, for example, we find relatively modest
advantages in winter navigation, as indicated in Fig. 2. If we look at an

COST OF SERVICE

Dollars
per Long 8 —Month | o.59
Ton 10.5—Month ] o.e60
NET PRESENT VALUE
Millions 8 — Month | 5.60
of Dollars 10.5— Month ] 7.35

Ficure 2 Economic Gains from Extended Season
Figures indicate economic benefits for a single ship

entire fleet, on the other hand, we find that the extended season offers
appreciable gains in profitability. This is because the longer season allows
the shipowner to maximize the use of his most productive ships, placing
less reliance on his older, less efficient units.
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An even greater advantage accrues to the steel mill. The old eight-month
operating season required enormous stockpiles of iron ore, coal, and lime-
stone, so that the mills could continue production throughout the year.
Stockpiles mean money tied up in operating capital, which must bear interest
charges based on the corporation’s cost of capital. Our calculations show
that the mills’ annual inventory savings (made possible by the extended
season) are at least twice as great as the savings attainable by the fleets. The
savings for just one steel mill would be measured in millions of dollars per
year.

With the continuing encouragement of the Maritime Administration, we
pay close attention to the needs of industry. We keep in close contact with
shipowners, shipyards, and design offices around the lakes. Our reports,
which are freely disseminated, are written with that audience in mind. More-
over, we are now prepared to bring a portable computer terminal to the
office of any interested party and demonstrate the use of the program. In fact,
the program can provide valuable benefits in ship design regardless of
whether winter operations are even intended. We are now working with the
shipowners to find the most economical way to service steel mills located on
restricted waterways unreachable by the newer and more efficient 1000-foot
carriers. We are also providing liaison with environmental groups that are
understandably concerned about possible harmful effects of disturbing the
natural ice cover.

Our project team, now in its third year of action, has completed most of the
computer work related to Great Lakes bulk carriers and it is starting to
study problems involving the St. Lawrence Seaway. Looking ahead, we
believe that we can and should broaden our scope of action to encompass
complete source-to-destination transport systems. We shall maintain our
interest in ice navigation, but we shall not confine ourselves to it. As one
step toward increasing our versatility, we have already entered the area of
rail transport economics, and we have published what we believe to be the
definitive treatise on unit train economics (Ref. 1). More generally, we are
developing a comprehensive transport research team with special expertise
in the problems of the Midwest.

Encouraged at least in part by our economic projections, Great Lakes ship-
owners are now embarked on a vigorous shipbuilding activity. They are con-
vinced that the extended saeson will make their investments profitable. The
shipbuilders are obviously benefiting, and so are the ships’ crews, who face
shorter periods of unemployment (but who understandably want some form
of relief from uninterrupted shipboard duty). Likewise, the iron miners of
the Lake Superior region enjoy a new advantage in their competition with
foreign ores, while the steel mills can exploit major savings in inventory
costs. Most of all, however, the public can look forward to less inflation in
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costs of consumer products. The University’s research into winter navigation
represents one research investment that is producing highly satisfactory re-
turns to the investor: the American taxpayer.

* * * * *

The reports on the most recent phase of the Department’s project on the
extended operating season are listed below as References 2-6. They can be
obtained from the Department, as explained in the Appendix, which lists all
Department reports.

REFERENCES
1. Sward, John D., “Unitrain Operating Methods and Costs,” Report No.

145, Department of Naval Architecture and Marine Engineering, The Uni-
versity of Michigan (1973).

The following reports constitute a five volume series entitled “Great Lakes
Winter Navigation—Technical and Economic Analyses,” published by De-
partment of Naval Architecture and Marine Engineering, The University of
Michigan:

2. Vol. I: “Methods of Evaluation,” Horst Nowacki, Harry Benford and
Anthony Atkins, Report No. 151, (1973).

3. Vol. II: “Computer Program—Documentation and User Instructions,”
Steve Callis, Pabitra Majumdar, Horst Nowacki, Benedict J. Stallone
and Peter M. Swift, Report No. 152, (1974).

4. Vol. III: “Parametric Studies,” Horst Nowacki, Report No. 153, (1974).

5. Vol. IV: “Strengthening of Steel Plates Using Ferrocement and Rein-
forced Concrete,” Movses J. Kaldjian, William H. Townsend, Lawrence
F. Kahn and Kiang Ning Huang, Report No. 154, (1974).

6. Vol. V: “Ice Strengthening of Ship Hulls Using Steel, Ferrocement or

Reinforced Concrete,” Movses J. Kaldjian and Kiang Ning Huang,
Report No. 155, (1974).






Ice-Reinforcing of Ship Hulls

Movses J. Kaldjian

Synopsis. A techno-economic study of the operating season extension in
the Great Lakes bulk trades necessitated finding systematically the extra
weight required in ice-strengthened Great Lakes vessels. This led to the
development of a design method and a computer program by which the ice
reinforcements, using steel, ferrocement, or reinforced concrete, and their
respective weight and cost can be calculated for a wide range of parametric
variation.

Introduction; Scope. Extension of the navigation season on the Great Lakes,
among other things, brings the ship in contact with ice and the problems asso-
ciated with it. The chief concern of the structural designer is to make sure
that the ship scantlings are strong enough so that it can stand the additional
forces produced because of the ice pressure.

Since ice conditions are never the same and are seldom predictable, it is
not very realistic to model a uniform ice field and establish design ice pres-
sures from it, although such a study will no doubt give some valuable infor-
mation.

The approach to ice strengthening depends on the operating intentions of
the ship owner. When ice conditions get to be bad, a ship can always slow
down, then stop—preferably in fast ice—and wait for ice breaker assistance.
This situation requires strengthening the ship sufficiently to enable it to sur-
vive without damage the ice pressures that are generated around its ice belt.
On the other hand, if the ship owner is anxious to keep his ship moving in
bad ice conditions, in order for it to reach its destination as quickly as possi-
ble, the captain may resort occasionally to ramming the ship through ice
ridges. To accomplish the latter without damaging the ship requires heavier
structural reinforcing than in the previous case. There are economic trade-
offs between the two extremes mentioned, and the ship owner must consider
these before he decides how much to ice-strengthen his ship.

The weather conditions of the Great Lakes are similar to those of the
Baltic Sea, the Gulf of Finland, and the Bay of Bothnia. The sizes of these
bodies of water are comparable too. Finnish experience in winter navigation
is drawn upon as background for the present study. The Finnish Ice Rules*
are based on information obtained from Lloyd’s Register of ships that were
actually damaged by ice. The Ice Rules specify the pressure developed be-

* The American Bureau of Shipping! adopted the Finnish Ice Rules verbatim in 1972.

7



8 Ice-Reinforcing of Ship Hulls

tween the ice belt of the hull and the ice itself as a function of the displace-
ment and shaft horsepower of the ship. Four ice classes are defined, each with
different ice pressure requirements. In addition, the ice belt of a vessel is
divided into three regions, forward, midship, and aft, with varying require-
ments. The forward region experiences the greatest pressure and the aft
region the least.

A computer program has been prepared at The University of Michigan
which can assign a different ice class to each region along the ice belt of a
vessel and calculate the scantlings, weights, and costs accordingly. Such a
hybrid arrangement may in some instances prove practical and economically
advantageous to the ship owner. The purposes of this computer program are:

1) To calculate scantling and locations of reinforcing members and to
obtain the additional weight and cost of steel necessary to reinforce an exist-
ing or proposed ore carrier or other vessel for any desired ice class as defined

by the Ice Rules;

2) To determine the required reinforcement of ore carriers or other ves-
sels using ferrocement or reinforced concrete as an alternative design, and
to compute the relative merits of steel design with ferrocement and reinforced
concrete for weight and cost;

3) To check the registered ice class of a ship using the actual ship data.
(The additional reinforcement is calculated, and a zero or a negative answer
indicates the correctness of the design.)

The program is geared to handle transversely and/or longitudinally framed
vessels. Reinforcing weights and costs are calculated, first, by using Ice Rules
shaft horsepower and, second, by using the specified (actual) shaft horse-
power. The latter approach is believed to be more realistic, and we recom-
mend its use for the ore carriers on the Great Lakes.

Description of the Program. The following main steps describe the work-
ing of the program.

(1) It starts with the frame spacings, and, using the Ice Rules, calculates
the required hull steel plate thickness, t,, in the ice belt.

(2) If the existing thickness, t., is less than t,, it adds an intermediate
frame.

(3) Steps (1) and (2) are repeated until t, is equal to or less than t.. (Note:
In a new ship design, the latter criterion may be modified, for it may
conceivably be more economical or lighter to use thicker plates and
fewer frames.)

(4) With the new frame spacing, the required modulus, S,, of the frame
is obtained from the Ice Rules.
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(5) Then, from a list of angle and channel sections, starting with the
lightest section and making use of effective plate width, it calculates
the actual section modulus, S,.

(6) If S, is smaller than S,, it picks the next heavier section from the
list and recalculates S,. This step is repeated until S, is equal to or
greater than S,.

(7) Next, it obtains from the Ice Rules the required section modulus and
the required shear area for the stringer, and it compares them with the
actual section modulus and shear area calculated from the actual
stringer cross-section and plate effective width. If the required values
are greater than the actual values, one inch wide plate of existing hull
plate thickness is added to the stringer flange and web incrementally
until the design section modulus and the shear area are equal to or
greater than the values required.

(8) Likewise for the transverse web frame, the required section modulus
and shear area are obtained from the Ice Rules. The design section
modulus and shear area are obtained following the steps described
for stringer design in (7).

(9) Ferrocement and reinforced concrete design begins with step (1). If
t. is greater than t., the required bending moment M, is obtained from
M, = tif./6, where f, is the yield stress of hull steel plate. The bending
moment of the composite section (steel plate with ferrocement or steel
plate with reinforced concrete)? is made equal to M,, and, from it, the
required depth of concrete is obtained.

(10) Steps (1) through (9) are repeated for all of the ice regions along
the ice belt of the vessel and the weight and cost due to the added struc-
tural reinforcements are accumulated and printed out®.

Results and Conclusions. Steel, ferrocement, and reinforced concrete weights
and costs to ice-strengthen four Great Lakes ore carriers are presented in
Table 1. Steel design is by far the lightest of the three. On the other hand,
reinforced concrete and ferrocement designs are much less expensive. If a ship
is volume controlled, reinforced concrete and ferrocement designs are found
to be much more economical to construct than steel ; otherwise, allowance must
be made for lost ore or cargo capacity in the overall transportation economics.

For large ore carriers of the type presented in Table 1, variation in shaft
horsepower has no bearing at all on the design ice pressures and hence on
the added weight calculations.

Computer time on the IBM 360/67 to calculate the added weight and cost
for one ice class is about four seconds of CPU (central processing unit) time.

Added steel weight calculations obtained from this program compare very
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well with other work done in this area, and they are being recommended
along with ferrocement and reinforced concrete for preliminary design to the
shipowner who is interested in ice-strengthening his vessel in part or in full.

REFERENCES

1. American Bureau of Shipping Rules for Building and Classing Steel
Vessels, 1972.
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3. Kaldjian, M. J., & Huang, K. N., “Ice Strengthening of Ship Hull Using
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Slender-Ship Theory

T. Francis Ogilvie

In the solution of ship hydrodynamics problems, several idealizations are
generally made, simply because the exactly posed problems are too difficult
to be solved. For example, in predicting wave resistance, ship motions, and
wave loads by theoretical methods, one neglects the effects of viscosity. The
results are never entirely satisfactory, but, without such simplifications, one
can make no progress at all in the development of useful theory.

The ship hydrodynamicist eagerly seeks any valid means of simplifying
his problems. One obvious aspect of the geometry of a ship that ought to be
useful is the way in which the size and shape of the cross-sections change
gradually along the length of the hull. Of course, this observation is not
usually valid near the bow and the stern, but it is valid over most of the hull
length, and so there should be some way to introduce it to good effect in the
mathematical theory of ship hydrodynamics.

Aerodynamicists have faced similar problems for a long time. Fifty years
ago, Munk (1924)° formulated a slender-body theory for the flow around
“airships,” using precisely such a geometrical simplification. Of course, he
did not have to contend with the presence of an air-water interface (the free
surface), but there are some useful analogies between airships and ordinary
ships. His idea was developed to a sophisticated level in the 1940’s and
1950’s, for application to problems of delta-winged aircraft and missiles.

During the past fifteen years, the aerodynamical theory of the slender-
body has been applied to ship problems extensively. In this article, I shall
describe briefly 1) the genesis of the basic aerodynamic theory, 2) the formal
application of this theory to problems of steady ship motion (with generally
disappointing results), and 3) the development of the needed modifications
to account for the influence of the air-water interface on the flow around a
slender ship. In conclusion, I shall discuss briefly how these ideas are being
applied to problems of ships in waves; it will be seen that the so-called “strip
theory” of ship motions is a special case of slender-body theory.

Slender-Body Theory in Aerodynamics. Suppose that the body under con-
sideration is “slender,” that is, its transverse dimensions are small compared
with its length. The body is moving steadily with speed U in the direction of
the negative x axis, and the fluid is at rest far away. There is no free surface.
We can view all of this on various scales:

1) If we are extremely far away, we can detect only that there is a moving
disturbance. The streamlines may have the instantaneous appearance indicated
in Figure 1, if the viewer is at rest with respect to the fluid at infinity. The

13



14 Slender-Ship Theory

velocity of

body

Ficure 1 Far, Far View of Streamlines
Due to Body Moving Steadily to Left

sketch shows the streamlines at the instant when the body is located at the
origin of the coordinate system. Any moving body could cause such a dis-
turbance pattern; the body does not have to be slender.

2) If we are very close alongside the moving body, we see the fluid being
pushed aside by the advancing body, as depicted in Figure 2. Since the fluid
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Ficure 2 Close-Up View of Body and Fluid
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is assumed to be inviscid, it can slip with respect to the body surface, and so
its motion occurs almost entirely in the transverse direction. The forward
speed U is rather large, and the fluid velocity v is quite small in comparison.
Furthermore the component of v along the x axis, say vy, is much smaller
than the magnitude of v itself. Thus, the velocity components in this nearby
region can be arranged in a hierarchy:

i) body speed, U;
ii) magnitude of fluid velocity, v;
iii) longitudinal component of v, i.e., v.

Each is much larger than the next. If ¢ is a measure of the ratio beam/
length of the body, one might expect that v,/v and v/U are comparable to
¢ in magnitude. Note that v is almost equal to the transverse component of
velocity, say v,, in magnitude.

3) For a sufficiently slender body, there is an intermediate viewpoint in
which it is evident that the disturbance originates from a region of finite
length along the x axis, although details of the body shape are not recogniza-
ble. One might suppose, from this viewpoint, that the disturbance actually
arises from some singular behavior on the x axis, as suggested in Figure 3,
where L is the body length.

dy

u

\ velocity of body

Ficure 3 Moderately Far-Away View of Streamlines
Due to Body Moving Steadily to Left

The first of these three viewpoints is hardly useful (it can be included
in the third), but the other two definitely are, especially when they are
properly interpreted as complementary views of the same phenomenon. In
Figure 3, at moderate distance from the disturbance, the flow is distinctly
three-dimensional, but, if we look very near the axis, where the disturbance
originates, the flow appears to be almost two-dimensional, that is, entirely
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in the transverse planes. In Figure 2, the flow everywhere is apparently
nearly two-dimensional; nearby, it depends on all of the detail of the body
shape, but far away one may expect that much of the detail has no effect.
We have here a tremendous simplification: The details of the body shape
need to be considered only in the relatively simple two-dimensional problems
corresponding to Figure 2; three-dimensional effects are not ignored, how-
ever, but they are considered only in the context of Figure 3, where the details
of the body shape are not critical.

The basic problem of slender-body theory in aerodynamics is to solve the
“near-field” problem of Figure 2 and to ensure that that solution is consistent
with the viewpoint of Figure 3, the latter generally being called the “far-
field” solution. Standard techniques exist for doing this; see, for example,
Ogilvie (1970) for a discussion of techniques and for further references.

The worst trouble usually arises near the body ends, where the basic
assumption is invalid, and much of slender-body theory is concerned with
fixing up the theory in this respect. Such difficulties are fairly well under-
stood in the problems of aerodynamics.

The applicability of slender-body theory to bodies of ship shape can be
seen in Figure 4. This figure is adapted from Huang & Von Kerczek (1972).
It shows the body plan of the underwater part of a Series 60 (Cp = 0.60)
hull, superposed on which are the streamlines calculated under the condition
that the free surface is replaced by a rigid wall. (The same streamlines would
be obtained if a double body were constructed by adding to the hull its
mirror image with respect to the undisturbed free surface, then tested in a
wind tunnel.) The streamlines here have the appearance that would be seen
by an observer moving with the ship in steady motion, that is, there is an
apparent streaming flow past the hull. The slender-body-theory calculations
are compared with “exact” calculations based on a genuine three-dimension-
al method of solution. The agreement is certainly not perfect, but the way in
which the streamlines curl around the bilge and then come back up near
the stern is rather faithfully predicted by the slender-body theory.

Formal Development of Slender-Ship Theory. These ideas can be intro-
duced into ship hydrodynamics problems in a straightforward way. There
are extra conditions to be satisfied at the location of the free surface, but the
basic assumptions can be applied formally to simplify the extra conditions.

In the far field of the ship problem, corresponding to Figure 3 for the
aerodynamic problem, the solution will indicate the existence of a typical
ship wave system behind the ship, but the precise size and location of the
waves cannot be found from the solution of the far-field problem alone, since
the nature of the disturbance is only vaguely described in the far field. In the
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neighborhood of the line from which the disturbance appears to originate,
the far-field solution degenerates into two simple parts, one representing a
transverse wave, just like that seen directly downstream far behind the ship,
the second representing an apparently two-dimensional flow in the transverse
cross-sections. The latter contains some unknown parameters, which must be
determined in such a way that the solution matches with the corresponding
near-field solution. In the near field, the theory indicates that the free surface
acts effectively like a rigid wall, and so the fluid motion ought to be approxi-
mately the same as in one half of the double-body problem described pre-
viously, e.g., as in Figure 4. The motion is practically two-dimensional (ex-
cept for the steady stream moving past), and it can be predicted readily
from the body shape by standard methods of fluid mechanics. When this
has been done, the information previously lacking in the far field becomes
available, that is, the precise nature of the disturbance will have been deter-
mined, from which the wave pattern can be described accurately.

This procedure yields some results that are qualitatively interesting, but
from a quantitative point of view they are grossly invalid. Figure 5 shows
one way in which the disparity between this theory and experiments is too
great: The solid curve in the figure shows a prediction of wave shape along-
side a ship model, and the points represent the same quantity as obtained from
actual observation in the towing tank. The actual wave is only about half of
what is predicted. If such an error also exists in the far-field waves, the wave
resistance predicted will be about four times the true value. In fact, this
theory actually predicts an infinite wave resistance for this hull form!

In Figure 5, the broken line shows the predicted dynamic pressure on the
hull along the plane of symmetry in the corresponding double-body problem.
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In the nondimensional representation used here, the true pressure curve rises
to the value unity at the body ends, and the slender-body-theory value rises
to infinity. On the scale of this figure, one cannot distinguish between two
such curves, since they both go off scale near the ends. One is apt to slough
off this disagreement with the observation that slender-body theory never
gives good predictions near the ends of a body anyway. Unfortunately, in the
ship problem, any singular behavior at the free surface may lead to completely
untenable results. That is what happens here. The predicted infinite value
of wave resistance is the most obvious manifestation.

Thus it appears that the formal application of slender-body theory to the
ship problem leads to some results that are completely invalid, even though
one can compute some other quantities that do not appear to be outrageous in
their behavior. Part of the trouble is due to “end effects,” the original demon
in slender-body theory, and part is due to the formal transfer from aerody-
namics of certain assumptions that do not remain valid in the ship problem.

Modified Slender-Ship Theory. When a body moves through an unbounded
fluid, there is just about as much disturbance ahead of the body as behind it.
This is suggested in the sketch of Figure 1, which is symmetrical fore and
aft. But, in the presence of a free surface, this is not true at all. Everyone has
observed the characteristic wave pattern caused by a moving ship, in which
the fluid motion is practically negligible outside of a wedge-shaped region
behind the ship. The water ahead of the bow is not set into motion until the
bow is extremely close, at which time the water is suddenly accelerated so
that it can pass around the advancing ship.

In a small region around the ship bow, the fluid motion is determined
primarily by i) the hull geometry near the bow, ii) the inertial characteris-
tics of the water, and iii) the constant-pressure property of the free surface.
Gravity has little effect locally. This picture is incompatible with the formal
slender-ship theory described previously. There, as I pointed out, the free
surface acts very much like a rigid wall in the near field, which can happen
only if gravity somehow dominates the picture near the body.

In order to modify the formal theory so that the bow flow would be more
accurately described, it has been necessary to change the basic assumptions
concerning relative rates of change in longitudinal and transverse directions.
Ogilvie (1972) showed one way of doing this so that the near-field flow is still
primarily two-dimensional (just as in ordinary slender-body theory), while
the longitudinal rate of change is increased enough so that a realistic descrip-
tion of the flow around a ship bow can be obtained.

One simple case was worked out analytically and checked experimentally.
It turned out that, for a simple wedge-shaped bow, the entire problem could
be made nondimensional and a single universal curve could be obtained for
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the shape of the bow wave along the side of the wedge. This curve is shown
in Figure 6. A photograph of the bow wave in a typical test is shown in Figure
7. Several dozen such tests were made with two wedge angles, a variety of
drafts, and several speeds. The results show fairly good agreement with
predictions, as reported by Ogilvie (1972).

In Figure 6, the predicted wave shape behaves like 2/X for large X, where
X is a nondimensional coordinate measured downstream from the wedge
apex. The curve corresponding to 2/X has been extended down to small
values of X by the broken line. The latter represents precisely the wave shape
that is predicted by the formal slender-ship theory, as shown in Figure 5.
Thus the infinite wave height predicted so erroneously by the earlier theory
has been removed in this new analysis, and it is reasonable to expect that
the infinite wave resistance predicted previously will have been eliminated
too, although the analysis is not yet complete in that respect.

Obtaining the complete solution for ships of arbitrary form is not so easy
now as it was in the earlier slender-ship theory, but computer programs are
being produced for this purpose. The case of the thin wedge was studied
first because it was the single obvious case in which a solution could be
obtained very easily, and so it was an ideal case to be worked out for initial
verification in the experiments. However, the theory is in no way limited to
thin bodies, and so the completed computer programs should be useful in pre-
dicting the flow around ships which are not adequately represented by, say,
the classical “thin-ship” representation.

Besides the special case of the thin wedge, another case has been worked
out in some detail, namely, the “flat ship.” This is described in a recent re-
port by Tuck (1973). Other cases are also being investigated, including a
surface-effect ship (two hulls separated by a region on which a pressure
field is applied) and an asymmetrical ship (which is approximately equiva-
lent to a ship in a steady turn).

Motions of a Slender Ship. Ten years ago, the formal slender-body theory
was applied to problems of oscillating ships and of ships in ambient waves.
The theory was generally as sterile as in the steady-motion problem. It turned
out again that the free-surface condition in the near field was replaced by a
rigid-wall condition. A consequence is that wave damping and added-mass
effects are very difficult to determine, if indeed the theory gives such effects
at all. The complete computations have never been completely carried out.

Still, most ships are slender, and one may expect to be able to take advan-
tage of this fact in deriving a theory which is less complicated than a full,
accurate, and impossibly complicated three-dimensional theory. In effect, this
had already been done almost twenty years ago by Professor B. V. Korvin-
Kroukovsky at Stevens Institute of Technology. He used a straightforward
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physical argument in much the same spirit as Munk’s original work on air-
ships, and he obtained what has come to be called the “strip theory” of ship
motions. The most notable accomplishment of his investigation was that the
boundary-value problems to be solved were all two-dimensional, just as in
slender-body theory. However, he did not use formal perturbation schemes
in setting up his problem, and so he did not become locked in with the rigid-
wall condition in place of a proper free-surface condition.

It was not until 1969 that the connection between Professor Korvin-
Kroukovsky’s strip theory and slender-body theory was adequately enunciated.
Ogilvie & Tuck (1969) showed that strip theory is a special case of slender-
body theory if, in the latter, one assumes that all surface waves in the prob-
lem are of moderate length compared with the ship beam. The previously
mentioned formal slender-body theory carried an implication that all waves
are so long that they cannot be detected directly on a scale of measurement
appropriate to the scale for the ship beam and draft. That implication
was really an extra assumption beyond the basic set of assumptions of aero-
dynamic slender-body theory, but it was not generally recognized ten years
ago that it was a rather stringent additional condition which could specialize
the resulting slender-body theory to the extent that useful results could no
longer be obtained. What has generally been called the “slender-body theory”
of ship motions is thus a special case of slender-body theory; Professor
Korvin-Kroukovsky’s strip theory is essentially another special case.

The results of systematically developing the slender-ship theory of ship mo-
tions have not been drastically different from what was already known from
strip theory. However, some results obtained by Faltinsen (1971) could not
possibly have been derived by the heuristic approach. One particular predic-
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tion of his is worth noting, and it is shown in Figure 8. The amplitude of
the pressure oscillation on the surface of a spheroid in head waves is shown.
For the case represented here, the waves have a length equal to half the
body length; the data are all given along a line drawn on the body close to
the keel line. The curve marked “Froude-Krylov” shows what the pressure
amplitude would be along this line if the body were not present. Faltinsen’s
theory is also indicated, along with experimental data points taken in the
towing tank at the University of California at Berkeley, kindly provided to
us by Dr. Choung Mook Lee. The amplitude of the wave is apparently re-
duced steadily along the length of the body because of the presence of the
body, and Faltinsen’s predictions show this fairly well. His predictions are
quite erroneous at the bow, as so frequently happens in slender-body theory.
Nevertheless, the longitudinal decay of amplitude had never before been
predicted theoretically except in a very qualitative way, and so this figure
represents a real accomplishment of slender-body theory. The prediction is
important in the design of very large ships, in which rather short waves
may cause large bending moments, even though the resulting motions are
not important.

Continuing Studies in Slender-Body Theory. Several aspects of ship hydro-
dynamics are being further investigated by means of slender-body theory in
the research program of the Department of Naval Architecture and Marine
Engineering of The University of Michigan. The importance of the bow wave
in ship turning has already been studied in a dissertation by Hirata (1972).
Further studies of maneuvering problems are continuing. The motion of a
ship in shallow water has also been studied intensively, largely by Dr. Ernest
O. Tuck (The University of Adelaide, Australia), who was Visiting Professor
of Fluid Mechanics in the Department in 1972-73; his work has been extended
by Professor Robert F. Beck, under whose direction experiments have been
conducted for the determination of the range of validity of the shallow-water
theory. In the near future, several problems will be studied both theoretically
and experimentally in connection with the maneuvering and control of deep-
draft ships in restricted waterways.
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Capsizing of Deck-Loaded Barges in

Irregular Beam Seas

Eric D. Snyder

Introduction. Deck cargo barges are required by the United States Coast
Guard to meet a dynamic stability requirement of 15 foot-degrees of area
under the righting-arm curve up to the maximum righting arm. This criterion
was established by Rahola in 1939 in his doctoral thesis." He arrived at this
criterion after doing a statistical study of vessel casualties. However, the
vessels he studied were self-propelled displacement forms, and his findings
may not apply to deck cargo barges with their high beam/depth ratios and
low freeboard.

Because of their geometry, deck cargo barges must be loaded so that their
metacentric height (GM) is fairly large, in order to meet the dynamic stabil-
ity criterion. This in turn leads to short periods of roll and high angular
accelerations. These high angular accelerations can cause shifting or loss of
cargo from the breaking of cargo lashings. If the dynamic stability criterion
could be lowered, the roll motions would be eased. This is desirable if the
vessel could still sail safely.

Under authorization from the United States Coast Guard, The University of
Michigan undertook an experimental program to investigate the dynamic
stability needed by deck cargo barges to resist capsizing in irregular beam
seas. Although some tests were conducted to investigate the effects of various
deck cargoes, for the most part the tests were conducted on a model with a
flush deck, i.e., no cargo, but with loading to simulate the center of gravity
of a vessel with deck cargo. This article concentrates on the tests conducted
on the flush-decked model. Further information can be found in the two
reports issued to the Coast Guard.??®

Test Program. Because of the great variety in deck-cargo-barge hull forms
and the large number of loading conditions which might be investigated,
the test program was of necessity limited in scope. One hull form representa-
tive of current design practice on the northwest coast of the United States
was selected as the test model. The behavior of the model to irregular beam
seas was investigated at several different loading conditions. The loading
condition was given by displacement (A), represented by the draft/depth
ratio (T/D) and the vertical center of gravity location (KG). For a given
hull form, these two parameters uniquely determine the dynamic stability
(D.S.). The lines of the test model are shown in Figure 1, and its geometric
particulars are given in Table 1. The various loading conditions for the tests
are given in Table 2.

25
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TABLE 1
Model and Ship Geometric Particulars

Ship Type: Deck Cargo Barge

Scale Ratio:
LOA

B

D

T/D = 0.70:
LWL

T/D = 0.75:
LWL

T/D = 0.80:
LWL
\%
A
T/D = 0.90:
LWL

\%
A

Phase I
Model

A = 32.

6.750 ft
1.750 ft
0.500 ft

6.598 ft
3.618 ft3
225.3 1ibs

6.650 ft
3.906 ft3
2432 1lbs

6.682 ft
4.194 ft3
2612 lbs

6.750 ft
4.789 fi3
298.2 1bs

Phase II
Model

A =42

5.143 ft
1.333 it
0.381 ft

5.027 ft
1.600 ft3
99.6  lbs

5.067 ft
1.728 ft3
107.6  lbs

5.091 ft
1.855 ft3
115.5 lbs

5.143 ft
2.118 fi3
1319  1lbs

NOTE: Model displacements are in fresh water at 70°F.

Eric D. Snyder

Ship

216.00 ft
56.00 ft
16.00 ft

211.13 ft
118,541.  ft3

27

3,387. LTSW

212.80 ft
128,008.  ft3

3,657. LTSW

213.82 ft
137,433,  ft3

3,927. LTSW

216.00 ft
156,918.  fi3

4,483. LTSW
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TABLE 2
Test Conditions
Cond. D.S. KG GM
No. T/D (ft deg) (ft) (ft) K/B
A 070 4.00 28.51 3.03 0.50
B 0.70 6.00 27.01 4.53
C 0.70 8.00 25.84 5.70
D 0.70 10.00 24.75 6.79 0.40
s E 0.75 5.00 2472 5.32
£ F 0.75 5.50 24.32 5.72
G 0.75 5.75 24.13 591 0.37
H 0.75 6.00 23.95 6.0
J 0.75 7.50 23.01 7.03
K 0.75 10.00 21.60 8.44 0.37
L 0.75 12.50 2053 9.51 0.34
1 0.70 3.95 28.56 2.98 0.421
2 0.70 5.95 27.07 4.47 0.408
3 0.70 8.20 25.67 5.87 0.396
. 0.90 415 16.65 10.44 0.389
o 0.90 6.45 14.44 12.65 0.349
2 0.90 4.95 15.79 11.30 0.364
7 0.80 3.87 2273 6.25 0.430
8 0.80 5.88 20.88 8.10 0.397
9 0.80 8.00 19.43 9.55 0.384
NOTES:

Dimensions are for the full scale barge.
K = Roll radius of gyration. Measured in air.

Testing took place in two phases. In Phase I, a wide range of dynamic
stability was investigated for two T/D ratios. The purpose was to gain a
preliminary, general understanding of the problem. Phase II concentrated
on a narrower range of dynamic stability, but more T/D ratios were investi-
gated within this range. In Phase II, the range of test conditions was selected
after an analysis of the data from the Phase I testing.

In both phases of testing, the test procedure was essentially the same. The
model was placed across the towing tank and restrained from drifting by two
light spring lines attached to the bow and the stern on the centerline. The
model was then subjected to irregular beam seas and the time history of the
incident wave train was measured. These records were later analyzed by a
real-time spectrum analyzer (SAICOR Model 24) to yield their spectral
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density curves. From the spectral density curves, the significant wave height
could be determined by the following formula:

T, = 4.0 \/m, ,
where
T, = significant wave height, and
m, = area under the spectral density curve.

In Phase I, the model was judged safe from capsizing if it survived in che
irregular sea for about 15 minutes ship time. In Phase II, the model was
required to survive nearly 22 minutes ship time.

The primary purpose of this project was to determine the amount of dy-
namic stability needed by deck cargo barges to resist capsizing. Therefore,
at each test condition the model was subjected to larger and larger significant-
height waves until it capsized, if this were possible within the capabilites of the
wavemaker.

The irregular waves generated during this test program had spectral density
curves derived from recommendations of the Seakeeping Committee of the
12th International Towing Tank Conference.* The formula for this spectrum is

173 Li,
S(w) = TiTexp (— 691/Ti,*)
where
S(w) = spectral density,

T, = characteristic period,
Ty, = significant wave height,
w = radian frequency.

These spectral density curves depend upon two parameters, the significant
wave height and the characteristic period of the random wave. For purposes
of this test program, the characteristic period was kept constant during each
phase of testing and only the significant wave height varied. Generally speak-
ing, this meant that the shape of the wave spectrum remained constant during
each phase of testing but the size or scale of the wave spectrum changed. For
Phase I, the characteristic period of the wave spectrum was 9.8 seconds ship
scale, and for Phase II the characteristic period was 10.0 seconds ship scale.

There were, however, some differences in the nature of the test program
between Phase I and Phase II. A smaller model was used in Phase II. This
was done in hopes of achieving larger waves relative to the model size. Also,
the method of generating irregular waves was different in the two phases of
the program. In Phase I, an irregular wave with the desired spectral density
was generated by adding together twelve sine waves of distinct frequency
and appropriate amplitude, with random phase. Thus the waves generated
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during Phase 1 were not truly random. In Phase II, more nearly random
waves were generated by applying digital filtering techniques to a string of
Gaussian distributed random numbers. This procedure was done “off line”” and

Results: Measured Significant Wave Height in Ship Feet

T/D = 0.70
D.S.(ft deg)
Cond. No.

T/D = 0.75
D.S.(ft deg)
Cond. No.

T/D = 0.80
D.S.(ft deg)
Cond No.

T/D = 0.90
D.S. (it deg)
Cond No.

TABLE 3

4.00 6.00 8.00 10.00 3.95 5.95 8.20
A B C D 1 2 3
20.3 22.5 20.8 258 17.69* 13.93 16.87
21.6 23.5 24.3 18.92 17.96 17.02
25.6 26.0 25.3 23.02 18.48* 19.16*
26.4 23.46* 19.06* 21.80*
23.60* 20.80* 24.28*
20.83*
22.22*
5.00 5.50 5.75 6.00 7.50 10.00 12.50
E F G H J K L
253 * 25.4* 15.1 23.67 17.2 16.7 19.7
31.78 21.78 17.7 22.2 23.2
23.3 22.6 25.0 28.0
24.3 22.8 26.7 30.1
26.3 278
26.6
3.87 5.88 8.00
7 8 9
16.30* 17.46 18.23*
17.37 17.52* 19.47
19.71 19.05* 21.05
19.95*
22.11*
22.69*
4.15 4.95 6.45
4 6 5
15.85* 24.07 13.23
17.00 28.29* 21.42
19.15* 24.31
19.59*
19.95*

* Indicates that the model capsized.
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resulted in a magnetic tape containing a random voltage signal, which pro-
vided the input to the wavemaker, yielding the desired irregular wave. Be-
cause the input tape was prepared digitally, only discrete frequencies appear
in the final wave. In this respect the wave was similar to that used in Phase I.
However, in Phase II, 512 frequencies were combined to form the irregular
wave rather than twelve.

Results. The principal objective in this program was to determine how
large a wave would capsize the test model, as a function of loading, expressed
in terms of both displacement and dynamic stability. Unfortunately, the re-
sults of the tests do not indicate that there is a “capsize threshold.” Rather,
only broad general trends are indicated. The results are given in Table 3 and
shown graphically in Figure 2.
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Intuitively, one would expect a relatively small wave to be sufficient to
capsize the model if the dynamic stability is small and if the displacement is
large (so that the freeboard is small). This, however, is indicated only gen-
erally by the data. It does appear that a larger amount of dynamic stability
and increased freeboard improves the vessel’s survivability, but there is no
evidence of a critical amount of dynamic stability which could serve as a
stablity criterion. This may be due to the random nature of the incident wave.

Presumably, there is some finite set of conditions which must necessarily
be met to cause a vessel at a given loading to capsize. In random waves, these
necessary conditions occur probabilistically and to a certain extent indepen-
dently of the significant height of the wave. Thus the conditions necessary
for capsizing can occur in two separate waves of different significant height.
To be sure, these conditions probably depend upon the size and/or steepness
of the wave, and the likelihood of encountering these conditions increases
with increasing significant wave height. Thus the likelihood of capsizing in-
creases with increased signficant wave height, but there can not be a precisely
defined threshold. Until more is known about the exact nonlinear nature of
capsizing, it is impossible to predict whether a given vessel at a given loading
will capsize in a given seaway.

Also, the “random” occurrence of the necessary conditions for capsizing
accounts for some of the scatter in the data. In particular, it explains why the
model at some test conditions capsized in one wave when it appeared to be
safe in another wave of larger significant height.

The results of the Phase II tests do not tend to verify the results of the
Phase I tests. That is, at the same loading condition, the model in Phase I
seemed to survive waves as large as those which capsized the model in Phase
II. This could be due to any one or a combination of several factors which
differed between the two phases: 1) the model sizes were different and scale
effects could be important, 2) the waves used in Phase II were more nearly
random than those used in Phase I, with a resulting increase in the likeli-
hood of capsizing conditions, and 3) each test run in Phase II was of longer
duration than in Phase I.

Discussion. This article has dealt with one aspect of a testing program
conducted at The University of Michigan for the investigation of the dynamic
stability needed by deck cargo barges to resist capsizing in irregular beam
seas. Although the matrix of loading conditions with a flush-deck model
formed the major portion of the testing program, two other aspects affecting
the survivability of deck cargo barges were investigated briefly. These were
1) the effect of cargo on deck and 2) the effect of the characteristic period
of the spectral density of the incident waves. The data are insufficient to afford
definite conclusions, but they do indicate that these two aspects are important.



Eric D. Swyder 33

Two types of deck cargo were simulated. One was solid, which provided
added buoyancy when immersed and did not trap water on deck. The other
was porous, which did not provide buoyancy when immersed but did allow
water to be trapped on deck. Of these two types of cargo, the second did not
appear to affect survivability significantly, in comparison with the flush-deck
case, while the first did markedly improve survivability. This tends to verify
the earlier conclusion as to the importance of freeboard on the survivability
of the model.

The inverse of the characteristic period of the spectral density of the
incident wave roughly indicates the frequency about which most of the energy
in the wave is concentrated. If the natural frequency of the vessel in roll is
close to this frequency, one would expect the vessel to capsize in smaller
waves. The vessel is essentially being excited at or near its resonance fre-
quency. Our test results do indicate that this is the case and the relation be-
tween the characteristic frequency of the spectral density of the incident wave
and the natural roll frequency is an important parameter in determining the
survivability of a deck cargo barge.

The test program described here was of limited scope, and it could not
be expected to answer all of the questions about the ability of a deck-cargo
barge to resist capsizing. However, some areas of fruitful further research
have been found. Among these would be a more extensive investigation of
the effects of cargo on deck, as well as the effects of the wave spectral den-
sity (i.e., exciting moment) on the vessel response. Another item of impor-
tance is the dynamic effect of water on deck. During the tests with the flush-
deck model, water came on deck often from deck edge immersion, regardless
of whether capsizing occurred. The dynamics of this water on deck must have
an important effect on the subsequent motions of the vessel. Also, since these
tests were all performed in beam seas with zero forward speed, an investigation
of the effects of heading relative to the incident wave and the effects of for-
ward speed is needed.
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Rational Selection of the Power Service Margin

Peter M. Swift

The Service Margin. The service margin is an allowance for the difference
in the power requirements of a ship between its trial and average service con-
ditions. In the trial condition, the new ship operates in calm water, fair
weather, and with a clean exterior hull. In the service condition the power
required to maintain the same speed is inevitably higher because of less
favorable average sea and weather conditions and because of deterioration
effects, as illustrated in Figure 1. The service margin therefore takes account
of environmental factors such as sea state, wind, and current, and of deteriora-
tion effects, which include hull fouling and corrosion, machinery wear, etc.

aoyerage service condition

POWER >

\— trial condition

SPEED >
Ficure 1 Power-Speed relationships,

for trial and average service conditions

Selection of the Service Margin. Traditionally the service margin has been
selected through the provision of a fixed power margin or of a speed margin:
With the speed margin, a trial speed in excess of the design service speed is
selected and the required power is determined for the trial speed in the trial
condition. Figure 2 illustrates the speed margin approach. This approach
has been used at various times in parts of Europe, as has the power margin
method.

The alternative to a speed margin is the selection of the service margin
the adoption of a fixed power margin, such as the 25% required by the U.S.
Maritime Administration, which stipulates that design speed be reached on
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trials at 80% of normal power. Figure 3 illustrates this approach, which is
commonly used in North America.

In both methods the trial condition is used as the accepted reference, since
it is well defined and experimentally verifiable, while the average service
condition is not.
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power margin
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Ficure 3 Power-Speed relationships,
illustrating power margin



T s
Ha

e L Per M. Swift 37

Proposed Approach. It is proposed that, rather than considering the ship
design speed as a free variable, or prespecified requirement, and calculating
the required installed horsepower, the designer treat the installed horsepower
as an independent design variable. A stipulated minimum service speed to
meet ship scheduling requirements may then be handled as an inequality
constraint that has to be satisfied in the ship design.

For a given installed horsepower, it is necesary to determine the long-term
average service speed, which requires realistically modelling the operational
environment and the characteristics of the vessel. This requires an analysis
of ship performance in the various seaways to be encountered and a study of
hull deterioration effects.

Once the long-term average service speed has been determined, the calm
water power required for this service speed in the trial condition is computed,
leading to the definition of an “effective service margin” as:

’

“effective _ { installed horsepower

— 1 x 100%.

. )
service margin calm water power for average

service speed

Environmental Analysis and Ship Performance. In a separate project in
cooperation with the Massachusetts Institute of Technology (Ref. 1), seastate
data for the North and South Atlantic, the Indian Ocean, and the Persian
Gulf were programmed from Hogben and Lumb’s “Ocean Wave Statistics”
(Ref. 2). This reference contains the data necessary to compute the proba-
bilities of the energy density spectra for specific seastates in each area, season,
and direction for the major shipping routes of the world. The data were col-
lected over an eight-year period and represent several million wave observa-
tions by ocean weather ships and participating merchant ships. The data were
analyzed by Hogben and Lumb in such a way that values of the significant
wave height, H, _;, and the frequency of the spectral peak, w,, were obtained
from the observed values of H and T given in their tables:

H, = 1.23 + 0.88 H meters,
T, =T, = 410 + 0.76 T seconds,
Wp 2n/Tp ?

Il

where H is the average observed wave height, in meters, reported by the
ocean weather ships, T, is the modal period, and T is the observed wave
period reported by these ships.

Ship responses to specific seaways have been computed by interfacing the
data obtained from the above with seakeeping tables of Loukakis & Chrysso-
stomidis (Ref. 3). They developed a “Seakeeping Standard Series” for Series
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60 type hull forms over the following ranges of ship parameters:

Cp : 0.55-0.90 ,
L/B : 5.50-8.50 ,
B/T : 2.00-4.00 ,

for Froude numbers in the range 0.10-0.30 and nondimensional sea states
from 0.015 to 0.100.

It has therefore been possible to predict the heave and pitch motions, the
bending moment amidships, added resistance, vertical accelerations, relative
motions, and relative velocities for a specific ship in a specific seaway. These
responses have then been weighted by the respective spectrum probabilities
calculated above.

For a specified route, the results are then further weighted by the percen-
tage time spent in each of the areas covered by Hogben & Lumb’s analysis,
and they take into account the season, also on the basis of the data of Hogben
& Lumb.

The calculated added drag in a seaway is added to the predicted hull de-
terioration effects in order to determine the average service speed. This ser-
vice speed is calculated by means of established powering-speed relationships,
such as provided by standard series, etc.

Hull deterioration. An extensive study of previously reported experiments
for measuring hull deterioration effects on powering requirements has been
undertaken. The purpose was to determine time-dependent relationships for
fouling and corrosion effects for a variety of commercial ships on different
trade routes. This is similar to work of Lackenby (Ref. 4) and others, who
have reported the percentage increase in power with time, due to fouling and
increasing plate roughness, necessary to maintain a constant service speed.
An example for the cross-channel ferry Koningen Elisabeth is given in
Figure 4, where the effects of drydocking and hull bottom scraping are clear-
ly visible.

The results of this study have been incorporated into two examples, de-
scribed below, and, because of some uncertainties in the degree of accuracy
involved, sensitivity studies have been made on the assumed fouling and
corrosion rates and their effects.

Examples. This approach to a more rational selection of the installed horse-
power has been illustrated with two examples:

e an oil tanker operating from the Persian Gulf to the U.S. East Coast,
e a North Atlantic containership.
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FIGURE 4 Loss in performance with time in service for
the cross-channel ship Koningen Elisabeth

Ship design and construction, powering, and operating synthesis models
have been developed for each case. These models have been run in optimiza-
tion mode with the principal ship characteristics and the installed horsepower
as design variables. Constraints are introduced to limit the characteristics
to the range of validity of the design relationships and to model stability
requirements and freeboard regulations. Operational constraints include
motion sickness considerations with an upper limit on the acceleration at
house locations. Cargo safety is accounted for also by considering the vertical
acceleration and constraining the permitted average-1/10-highest values.
Other operational constraints are deck wetness, which is expressed in terms
of the amplitude of the forward stations exceeding the freeboard, and slam-
ming, of which the permitted frequency of occurrence is limited. In the event
of excessive ship slow-down, caused by the imposed operating constraints, the
heading of the vessel is assumed to change temporarily.

The optimization method used is the External Penalty Function Technique;
it is a slight modification of the program of Wangdahl (Ref. 5). It is designed
for minimization problems and it uses a transformed objective function
plus a penalty term. This penalty term is zero in the feasible regions of the
decision space and becomes operative when one or more of the constraints
is violated. This method, incorporated with a Hooke & Jeeves direct search,
has been found to be both effective and efficient in this application.

Results. At this time, the approach appears to have been successfully vali-
dated. A detailed report, including results, will be published soon.
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Arrangement of Shipboard Piping by
Digital Computer

John B. Woodward III

Introducton. Arrangement of piping (often referred to synonymously as
layout) is the task of choosing the coordinates of paths connecting terminals
in some specified way. In its elementary form, arrangement consists of finding
a single path between two terminals, in which case the process can be seen
to follow rational but simple rules, the essence of which is

Choose the shortest path, consistent with the following constraints:

(1) Avoid all obstructing objects or spaces in which the pipe is not per-
mitted (e.g., access space).

(2) Run close to structure at points where support is required.

These rules are close to being intuitively obvious, so much so that even the
most inexperienced designer would produce a satisfactory arrangement in
many instances when supplied with only a modicum of additional details.

In practice, many problems are encountered that require the application
of additional rules. Some problems and their rules may be quite specific. For
example, gravity drain piping must be arranged with a continuous slope of
some minimum value, and the rule might be stated, “provide minimum slope
of x inches/foot.” Others are more nebulous. For example, where several
piping systems are competing for limited space, the designer will aim for a
best total array, but the definition of “best” is impossible to state categorically
(least total length? least number of bends and elbows? least total weight?),
and it is impossible to state rules that he follows in achieving the best arrange-
ment.

Can the digital computer do what the human designer does? I have chosen
to introduce the topic by a mention of rules, since this implies that an algo-
rithm could be constructed for a computer to follow, thus duplicating the
human’s actions. Surely the computer can do this, but it suffers a grave
handicap in that it cannot see. It is therefore found immediately that, when
programming the designer’s rules is attempted, they are more complex than
they seem to a brain equipped with eyes. Instructions such as “follow
shortest path” and “avoid obstructions” are meaningless and must be re-
placed by a logical array of detailed instructions. The situation can be
contrasted to others within the piping design field. For example, consider
the problem of the thermal-expansion stress analysis of steam piping that
has inflicted so many laborious manhours on the power plant design process
in earlier times. Although geometry is important in that problem also, the
big thing is numerical evaluation of shape coefficients and the solution of the
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resulting simultaneous equations—the major task is computation. The digi-
tal computer can follow essentially the same steps that the human does, hence
this device provided welcome relief in one of its first applications to marine
engineering. The arrangement problem, on the other hand, requires a negli-
gible amount of computation, but a great amount of practical geometry. It
is essentially a graphical problem, and visualization is a human ability not
duplicated by the computer.

Should the digital computer be given the job of arranging piping, assum-
ing the handicaps in the area of visualization can be overcome? This I shan’t
attempt to answer unequivocally, but will point out the incentives for attempt-
ing this accomplishment. A first argument is that piping design for a ship is
usually a major engineering task—in some cases, several hundred thousand
manhours might be expended—but it is largely routine (e.g., does not require
the creativity involved in developing hull lines). A second is the practical fact
that it already seems feasible to use the computer to check arrangements for
the human mistakes that produce interferences among pipes and between pipes
and other engineering systems. Many such mistakes inevitably appear in ship-
board piping arrangements, and computer methods have been developed by
which they are located. Although a great deal of labor must be expended to
furnish the computer with the mass of geometrical data, the expense is
claimed (by those selling the service) to be justified by the savings that re-
sult in building costs. It seems reasonable to at least investigate the next
apparent step—instructing the computer to use the geometrical input to con-
struct the arrangements, rather than merely checking it.

What of computer graphics? Readers will perhaps have reacted to my
references to the computer’s lack of sight by remarking that this deficiency is
remedied by graphical displays and inputs via the graphical devices. If the
human were not present to interact with the computer in this way, however,
it would still be blind. Without the human, the graphics capability is of no
value. My intention is to eliminate human participation in the design process,
hence graphic interaction is ruled out. Of course, it may indeed turn out that
a compromise between total human design and total computer design will
prove to be the optimum. But meanwhile one must see just how far the
computer can go.

Some work toward the goal of completely computerized piping arrange-
ment has been done in our department. Progress has recently been reported.*-*
In this article, I shall briefly outline what has been accomplished, discuss
a few detailed aspects, and point out the continuing problems.

The Routing Problem. The capability developed to date is this: Given the
coordinates of two terminals to be connected by a pipe, the coordinates of one
or more terminals to be connected by branches from the main pipe, coordinates
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of the compartment boundaries, coordinates of the corners of forbidden areas
in each of several horizontal layers that divide the compartment, a clearance
radius and a bend radius, the computer chooses the coordinates of the short-
est path for the pipe centerline, avoiding all forbidden places. The path con-
sists of vertical risers and a horizontal route joining the two risers. Most
of the work has been done on the problem of routing in the horizontal plane;
a discussion of this effort can suggest some of the individual problems.

Look first at Figure 1, a two-dimensional space containing terminals 4 and
B to be connected by a pipe. The solution is obvious to the eye: A quick ad-
justment of a straightedge into position, plus a stroke of the pencil, produces
an “arrangement drawing” of the best path. The task is almost as simple for
a computer. If it is furnished the coordinates of the terminals, elementary
analytic geometry produces the equation of the line.

TERMINAL A

TERMINAL B8

Ficure 1 Ficure 2

Figure 2 poses a slightly—and only slightly—more difficult task for the
human. The cross-hatched areas must not be penetrated by the pipe, but the
shortest path is readily visualized. The computer faces a more severe test,
however. Although it is easy to solve elementary simultaneous equations to
locate where the direct path of Figure 1 intersects obstructions, there is no
direct way to choose an alternative path. Although several ways appear to
be feasible, all require some elements of trial and error groping.

One way, which I call the “sprouts” method, is to generate new lines in
directions paralleling the sides of obstructions at every point where a line of a
previous generation is intersected. The technique is suggested by Figure 2,
wherein a line originating at 4 is shown intersecting an obstruction, giving
birth to two new lines offset at a suitable clearance. Each new line in turn
gives rise to a third generation, and so on until terminal B is reached. Sub-
sequent back-tracing through the family history of any “sprout” reaching B
delineates a path.
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Another method, devised by graduate student Glenn Wangdahl, with guid-
ance from Professor Stephen Pollock (Industrial and Operations Engineer-
ing Department)2, makes use of “control points” located at the corners of
each obstruction. See Figure 3. All paths that are candidates for shortest
between A and B are postulated to consist of straight segments joining a
select set of control points. The process of choosing these points goes some-
thing like this:

(1) All points visible from 4 (an exercise in testing line intersections) form
a second generation of points from which a third generation is chosen similar-
ly. (Figure 3 shows the paths to the second generation.)

(2) A fourth generation is formed of those visible from the third, and so on,
until point B (also treated as a control point) is reached.

(3) Many cases of duplication will appear, e.g., some third-generation points
will also be second-generation points. All such duplications are tested to see
which path is shortest to 4. The point is retained only in the generation that
belongs in the shortest path. Duplications also occur within a generation (note
in Figure 3 that several third-generation points are going to be reached by
paths from two second-generation points), and these are also eliminated by
retaining the shortest path.

(4) When B is reached and duplication checks are completed, the surviving

points are the end points of segments delineating the shortest route from 4
to B.
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A third method is borrowed from the automatic layout of complex electri-
cal circuits; it is known as Lee’s algorithm?®. The method is illustrated by the
two sketches of Figure 4. The piping space is laid out into a matrix of cells,
some allowable, some forbidden. The method consists of surrounding terminal
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A with a I in each cell lying in a coordinate direction, likewise surrounding
each I with a 2, etc., until B is reached. A path traced back through decreas-
ing numbers is the shortest path. (Where ambiguity is encountered in the back
tracing, the rule is to continue in the previous direction.)

Among these three methods, the second appears to be the best on the basis
of least computer storage and time. It has obvious defects, however, that
keep it from being immediately applicable to practical problems. Since it
derives a path that strikes directly across open spaces, it produces paths that
often are unacceptable because of inadequate support points. Also, it does
not recognize the additional space required for bends and elbows between
tangents (but neither do the other two). However, these defects appear to
be removable by added programming complexity; they await the attentions
of an enthusiastic graduate student.

Many details of elementary analytical geometry are involved in all of this.
I'll mention just one, by way of example: In establishing the control points
required in the second method, the computer is furnished only with the coor-
dinates of the corners of obstructing objects, and it must compute the control
point locations. It must therefore carry out these steps:

(1) Use the corner coordinates to write the equation Ax + By = C of each
side of the obstruction.

(2) Write the equation Ax + By = C’ of a line paralleling each Ax + By = C
at a perpendicular distance R.

(3) Find the intersection of each pair of adjacent lines Ax + By = C..
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A typical complication is that two lines are found in step (2), one being an
unwanted line inside the obstruction. An “insideness” test must consequently
be included that will work infallibly for any plane figure bounded by straight
line segments. Perhaps a reader well-versed in analytical geometry will know
immediately how this can be done. But for the reader whose major talents
lie elsewhere, it may be a challenge—I’ll leave it as an exercise for such readers.

In Three Dimensions. The control-points method, in particular, seems
directly adaptable to three-dimensional space. However, the concept that has
been pursued in programming so far is that a piping system is to consist of
vertical risers joined by a horizontal path at some appropriate level. The
approach is to divide the piping space into horizontal layers spaced a mini-
mum of one bend radius apart. Nominally, a riser from each terminal appears
in each layer as a point having the coordinates of its associated terminal.
But an obstruction may be in this path, as suggested by Figure 5. The process
of constructing the riser therefore consists of a layer-by-layer check to see if
this point falls within (the same “inside-or-outside” problem as just men-
tioned) or too close to a forbidden area. If it does, the computer seeks an
alternative path, as suggested in Figure 5. After both risers are completed,
then a route is chosen in each layer. The one that produces the shortest total
path is retained as the best.
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Branches. The programming completed so far has the capability of run-
ning branches from the main pipe. The process is the same, but it requires the
additional feature of locating the branching point on the pipe first con-
structed. This is done by passing three coordinate planes through the branch
terminal and placing a branching point where such plane intersects the main.
The one that eventually provides the shortest branch is retained. See Figure 6.
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Of course, none of the three planes may intersect the main, in which case
they are translated in coordinate directions until at least one does intersect.
Also, a branch route can coincide in part with the main. If so, the point of
coincidence nearest the branch terminal replaces the previous choice of
branching point.

Additional Work. The previous discussions obviously do not describe a
system that can now be applied in actual design work. Many additional fea-
tures to handle the complexities of real piping systems must be added. Some
are recognized now, and others will surely be encountered as the program-
ming is tested in increasingly realistic situations. The biggest problem of all
appears to be the provision of multi-system capability, with individual ar-
rangements being adjusted to produce overall optimality (perhaps minimum
total piping weight).
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