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ABSTRACT

The Derivation of Efficient Sets
By Gordon J. Alexander

In 1952, Harry M. Markowitz described a theory on the selection of
assets in forming a portfolio, which has had a major impact on research
in the field of finance. His theory postulated that rational investors
would select a portfolio from the set of all portfolios which offered
maximum expected returns for varying amounts of risk (measured by
variance), called the efficient set.

Finding the optimal portfolio therefore involves (1) finding the
efficient set, and (2) choosing that portfolio from the efficient set
which maximizes the investor's utility. This paper will be concerned
primarily with solving the former, which involves a quadratic objective
function and linear constraints. The complementary pivot algorithm of
C. M. Iemke will be shown to be not only adaptable to this problem, but
also to be superior to the widely used critical line method in terms of
computational efficiency.

This working paper represents the culmination of a research project
carried out by the author under the auspices of Professor Timothy J.

Nantell.



INTRODUCTION

In 1952, Harry M. Markowitz 476*7' described a theory on the
selection of assets in forming a portfolio. Assuming asset returns are
stochastic, his theory postulated that rational investors should select
a portfolio from the set of all portfolios which offered minimum risk
(measured by variance) for varying levels of expected return. This
set was named the efficient set by Markowitz.

There are two conditions (each sufficient but not necessary, as
shown in £f16;7) that enable the investor to choose his portfolio only
on. the: basis:'of its expected return and variance. First of all, if
security returns are normally distributed, then they can be completely
described by two parameters --mean and variance. Secondly, if investors
behave as if they had quadratic utility functions, then it can be
shownl/ that they will choose between alternative portfolios on the
basis of mean and variance of return. Assuming one of these conditions
is valid, finding the optimal portfolio involves (a) determining the
efficient set, which is the concern of this paper, and (b) choosing
that portfolio from the efficient set which maximizes the investor's

utility.

Defining the Problem

The variance of a portfolio (Var (Rp) ) is XTbX where X is an N

by 1 vector representiﬁg'the proportions of the investor's funds that

1

—/See W. H. Jean, The Analytical Theory of Finance (New York: Holt,
Rinehart and Winston, Inc., 1970), p. 76, for a demonstration of this
property of quadratic utility functions.
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are to be placed in each of the N securities, and C is an N by N matrix
representing the covariance of returns between the N securities. The
expected return of the portfolio (E (Rp) ) is XTﬁ(R) where E(R) is the
vector representing the expected returns of the N securities.

Deriving the efficient set involves solving the following problem

* *
for various E , where E represents a given level of expected return:

)

Minimize Var (Rp) = XTCX (1)
*
Subject to E®) = X'ER) = E
XK = 1
X=0.

Here K is an N by 1 vector with all its elements equal to one. The
problem therefore involves solving a quadratic objective function with

linear constraints.

METHODS OF SOLVING THE PROBLEM
Past research has developed several methods for deriving the
efficient set. These methods can be separated into two classes ~-- those
that solve problem (1) exactly and those that seek a solution to
problem (1) -by.. approximation. One method of exact solution, shown
by Martin 178_7, involves the use of calculus to minimize a Lagrangian
objective function formulated from problem (1):

7 = xTcx +>\l (XTE(R) - E*) +)\2 (XTN - 1).

By taking advantage of the fact that the efficient set is convex, this

*
problem need only be solved for a finite number of values of E . This
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method involves the inversion of an N + 2 by N + 2 matrix, and may
require extra steps if X is not nonnegative.

In 1956 Markowitz / 7 / derived a widely used algorithm, called the
critical line method, which provides another method for determining
exactly the efficient set. It begins by finding the portfolio with
maximum expected return (point A in Figure 1) and then proceeds to
delineate corner portfolios (a corner portfolio being one in which a
security either enters or leaves the efficient set) by generating the X
vector for each one as it moves down the efficient set through succeedingly
smaller values of E*. The algorithm stops when it reaches the minimum
variance portfolio, denoted by B in Figure 1. This method also involves
the continual inversion of an N +1 by N + 1 matrix, which must be done

at each corner portfolio.

Effici
ER ) ficient
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\
\
\
\
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~ /
N/

Var (R )
p

Fig. 1. Efficient set.

The methods for solving problem (1) by approximation involve the
use of an expression for the problem which is amenable to either linear
programming or available quadratic programming methods. Several of the

methods require security returns to be expressed in terms of a single
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index model. This model assumes that the return on any security i can
be represented as:

R, = A, +B. I +C, (2)
1 1 1 1

where Ai and Bi'are constants, I is an appropriate market index with

~and Ci is a random variable with a mean of zero and

. 2
variance QM ,

variance Q?. There are two vital assumptions to this model:

Cov (I, Ci) =0

Cov (C;, €)=0  i#].

Here Cov is used to denote covariance. With these assumptions, portfolio
‘variance can be expressed as:
. N N
2 2 2 2
var (R ) = (Z X.B.)" Q +Zx.. Q. (3)
P : ii M i1
i=1 izl
Sharpe / 11 / has developed an algorithm for finding the efficient
set exactly, but requires the problem to be stated in terms of the
single index model. It inVDIVﬁS the creation of an artificial variable,
2
which has a value of ( ZE: XiBi) . Furthermore, the covariance

i=1
matrix C has all off-diagonal elements set equal to zero and is then

XN+1’

expanded to include an additional row and column of zeros with entry
(N +1, N+ 1) equal to Qi. This enables portfolio variance to be

expressed as XTé X, where S is the new form of the covariance

N+1 N+1

matrix. With SN_+1 being a diagonal matrix, Sharpe uses the critical

line method to solve the problem:
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T
Minimize Var (Rp) =X SN+1X “4)
T *
Subject to E(Rp) = X'E(R) = E
XTK =1
X2 0.

The cost savings of this method when compared to the critical line
method applied to problem (1) come from the ease of inverting the

diagonal matrix S However, the single index model is an appromi-

N+1°
mation to problem (1) and hence the solution obtained, while exact for
problem (4), is an approximate solution to problem (1).

Sharpe 4f12_7 also suggested using the single index model and
then solving problem (4) by approximation. He requires the existence
of ceilings on the proportion invested in any particular security,
Jjustifying it by noting that many investment managers face this con-
straint by law, This enables him to approxﬁmate the portfolio variance
in equation (3) by only the first term, ( ;E; XiBi)z Q;, since the
second term will be close to zero. Then S;;rpe uses a linear program-

ming technique to solve:

N
Minimize Z X, B, (5)
‘ ii
i=1 T *
Subject to E(Rp) = XE =E
XTK =1
X =20.
Hence this method involves two approximations -- the single index

model to approximate problem (1) and then an approximation for portfolio

variance in the single index model.
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Sharpe éfl4_7 developed a third method to solve problem (1) which
does not require the use of the single index model. Instead, he trans-
forms the objective function of problem (1) so as to diagonalize the
covariance matrix C and then uses piecewise linear approximations of
the transformation to solve the problem. The results yield an approx-
imate solution to problem (1).

Stone £f15;7 also devised a way to use a linear programming
method to solve the quadratic programming problem (1). However, his
me thod réquires the use of the single index model and upper bounds on
the Xi' Hence two approximations to problem (1) are involved, similar
to Sharpe / 14 /.

In summary, past methods of solving problem (1) by approximation
have this inherent disadvantage: they don't give the exact solution.
Those methods which do solve problem (1) exactly have generally been

expensive to use.
IEMKE'S ALGORITHM

C. M. Iemke éfﬁ_? derived the complementary pivot algorithm in

1965 to solve exactly the complementary problem of the form:

=
I

=M + Q 6)
0

=
N
1l

=
\4

0
0.

W

Quédratic programming problems may be solved exactly by the use of this

algorithm, as demonstrated by Ravindran £f10_7. Since determination
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of the éfficient set is a quadratic programming problem, this paper
will explore the feasibility of using lemke's algorithm to solve this

problem.

Its Applicability

Consider the following quadratic programming problem:
Minimize DTX + XTGX
Subject to AX 2 B
Xz 0.

Ravindran éflO_? has demonstrated that an optimal solution to this

problem may be obtained by solving a complementary problem of the form:

v G+ G AT X D
= +
U A 0 Y -B
U, V, X, Y %0
viox + 'y = o.
T T
Here W=| V| , 2= [X]|, M= [G+G -A and Q = D
U Y A 0 -B

from the original complementary problem, denoted (6). The efficient
set problem fits into this form, setting D = 0 and making the follow-

ing substitutions:

%
C=2aG A= E(R) B = E
*
-E(R) -E
N 1
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Note that both problems (1) and (6) require the X vector to be non-
negative.

Two alterations were made to the above formulation prior to its
implementation. First, the second row in the A matrix and the second
element in the B vector may be deleted. Figure 1 demonstrates that as
the expected return of the efficient set declines. the variance
similarly declines. This feature results in the optimal solution,

i.e.

, portfolio with minimum variance and expected return greater than

*
or equal to E occurring at the smallest feasible expected return,
. . * 2/ . . T *
which is E = . Thus the constraints forcing X'E(R) = E are not
. T * .

necessary, the constraint X'E(R) 2 E is sufficient. Secondly, to
remove the possibility of roundoff errors causing the algorithm to fail
in finding a solution, the last element in the B vector was set equal
to —1.0001.2/

If upper or lower bound constraints exist on some of the Xi,because
of legal, personal, or institutional dictates, then Iemke's algorithm
can incorporate them in the problem. Ietting Ei denote the unit vector

h .
with a one in the ii— position, upper and lower bounds on Xi and Xj

T
respectively may be represented by X Ei £ S and XTEJ. 2 T. Hence

i N *

g-/'Ihe only time this does not hold is when E is chosen so that
it lies below the minimum variance portfolio of the efficient set,
denoted B in Figure 1. This case will be handled subsequently.

§/Requiring X'K $1 and -X'K 2 -1 caused the algorithm to fail to
find a solution when a solution was known to exist. Using -1.0001 was
not thought to introduce any significant bias in the optimal solution
to the problem.
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matrix A would have the additional rows -E, and E’J. added onto it and
vector B would have -S and T appended to it.

Ravindran points out that Iemke's algorithm is guaranteed to find
an optimal solution if M is positive semidefinite, which is the case
‘if G is also positive semidefinite. Remembering G equals C, the
covariance matrix, and that the variance of any portfolio is non-
negative (i.e., XTCX 2 0), we find it follows that M is positive semi-
definite. Hence lemke's algorithm is guaranteed to find the optimal
solution.

In deriving the efficient set by use of Iemke's algorithm, a
means of determining which values E* should assume is essential. Since
Markowitz's critical line method starts by seeking that security with
maximum expected return, this procedure was followed in implementing
Iemke's algorithm. This return will be denoted Emax' Next, the max-
imum of either zéro. pr the minimum expected return of the N:sécurities

was found, denoted E.,. . 'The interval E . +«'E was divided by 10,
min max

min
and a uniform grid search for the minimum variance portfolio was
*
i inually d i E =E 0 -

carried out by contin y decreasing nax by (1/1 )(EmaX

Emin) and solving problem (1). This search was terminated when the

T
expected return (X"E(R) ) for the current optimal solution was higher
ES
than E , This termination will occur only when the search finds the

minimum variance portfolio. To remove the possibility of roundoff

errors causing premature termination, the current optimal solution was
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* 4 5
compared with-1.001 E .—/ Since the efficient set is convex,—/
finding its value at a finite number of points is sufficient in
determining its location.

A sample problem for 5 securities is provided in Appendix. A.

Its Advantages

After Ravindran's computer program of Iemke's algorithm was
modified as previously described, it was tested on The University of
Michigan's IBM System 360 model 67 computer. Since Markowitz's
algorithm was available,g/ comparisons of the two methods were made.
Initial results for 5 and 20 securities are presented in Table 1.

Table 1 |

A Comparison of Iemke's and Markowitz's Algorithm

N=25 N =20
Central Processing Unit Time
Markowitz 60 seconds 104 seconds
Iemke 11 seconds 16 seconds
Cost
Markowitz $3.64 $9.16
Iemke $1.38 $1.78

4 .

4/Roundo£f errors could cause the optimal solution to be slightly
higher than.E . Hence a precaution was taken to guard against this
event. This precaution has no effect on the optimal solution.

5
—/See W. F. Sharpe, Portfolio Theory and Capital Markets, (New

- York: McGraw-Hill, Inc., 1970), ch. 4, for a description of the shape
of the efficient set.

6
—/The program used was written at the Amos Tuck School, Dartmouth
College,’ - . Hanover, N.H.
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Note that in both CPU time and cost,Z/ Iemke's algorithm was superior
to the critical line algorithm of Markowitz (see Appendix B for further
discussion).

On occasion research has involved the comparison of two or more
efficient sets which were derived from the same E(R) vector but
different C matrices.§/ If solutions~-- i.e., X vectors -~ for the
different efficient sets at common values of E* can be found, direct
comparisons of the portfolio variances can be made in order to deter-
mine the degree of dissimilarity of the C matrices. This comparison
is accomplished by the use of Iemke's algorithm if the previously
described uniform grid search method is appended to it, as it will find
the X vectors at the same values of E* for all the efficient sets.
However, the critical line method produces solutions only at corner
portfolios. Whether two efficient sets have corner portfolios at the
same values of E* is an uncertainty. What must be done in the case
where there is no explicit solution given at common values of E*
involves, first, determining at which values of E* such comparisons
are to be made and then, second, interpolating, if necessary, to find

b3
the X vector for each efficient set for each E . Since neither of

z-/Included in the time and cost figures was the compilation of
the respective programs.

§/See /_1_7 and / 17 /, for example.
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these steps ¥is: necessary with Iemke's algorithm, this is another

advantage it possesses over the critical line method.
CONCILUSION

This paper has demonstrated the following:

1. Iemke's algorithm can be used to derive efficient sets.

2. Iemke's algorithm is superior to Markowitz's algorithm in
terms of CPU time and cost.

3. The comparison of efficient sets is facilitated when Iemke's
algorithm (rather than Markowitz's algorithm) is used to solve
for efficient sets derived from the same E(R) vector but

different C matrices.
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APPENDIX A

A Sample Problem

There are 5 securities from which the efficient set is to be
derived. It has been determined that they have the following expected

return vector and variance-covariance matrix:

ER) = .0215 C = .0096 .0089 .0046 .0019 .0137
.0267 .0089 .0440 .0064 .0071 .0232
.0158 .0046 .0064 .0088 .0036 .0048
.0452 .0019 .0071 .0036 .0062 .0052
.0318 .0137 .0232 .0048 .0052 '0878J
- - -

The algorithm proceeds to find the largest and smallest elements in
the E(R) vector. These are the 4th and 3rd elements, respectively, and

are labelled E and E . . Next, the interval between E and
max min max

Emin is divided by 10 and a uniform grid search is systematically

carried out by continually reducing EmaX = .0452 by .0029 = (1/10)
(E - E . ). The search produces the following points on the
max min

efficient set:

Security Weights

ER)) Var(R_) o X "X X X X
p p

L2 3 4 5
.0452 .0062 -- - -- 1.0000 -~
.0423 .0053 .1241 -~ -- .8759 -~
.0393 .0048 .2481 -~ -- 7519 -~
.0364 .0046 .2933 -~ .0635 .6431 --
.0343 .0046 .3016 -~ :1234 8700  ~--

*
Note that the last value of E is .0343. Here the algorithm originally

*
set E at .0335, but the minimum variance portfolio was found, since
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the optimal solution was greater than .0335. Hence the termination
criterion was met (.0343 2 .0335) and the search was stopped. The
efficient set and the individual securities are showh in Figure 1A.
Point A (security 4) denotes the maximum return security and point B

denotes the minimum variance portfolio.

E(R))
p A
Efficie
0850 1ol TR
\ \
\
B '\.
.0300 + \\ Feasible Set - — —5
e NZ
N\ -
/
N
.0150 + 3
} } + { }— —— Var(R )
.0050 .0100 .0150 .0200 .0250 .0300 p

Fig. 1A, The efficient set for the sample problem.
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APPENDIX B

The Use of Iemke's Algorithm for 75 and 90 Securities

After compiling Iemke's algorithm along with the previously
X
described search procedure for E on the computer, test runs were made
using larger number of securities than those mentioned in Table 1.

The results are displayed in Table 1A.

Table 1A

Test Runs of Iemke's Algorithm

CPU
Total Time
Test Run Number . Iterations (Seconds) Cost
75 securities:
Run 1 400 57.2 $5.74
Run 2 409 61.7 6.41
Run 3 423 62.2 6.20
Run 4 426 61.6 6.41
Run 5 703 98.9 10.07
Run 6 805 112.2 11.38
Average 528 75.6 7.70
90 securities:
Run 1 825 167 .1 $16.86
Run 2 944 .186.9 18.82
Run 3 1150 217 .0 21.77

Average 973 190.3 19.15
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The maximum number of points on an efficient set which can be found
using the previously described.procedure is 11. .Eleven points were
found for the last two runs with 75 securities and for all three runs
with 90 securities. All the other.runs involved 10 points. From
Table 1A it appears that the total number of iterations performed
explains the differing CPU times and costs for a given number of

securities.
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