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ABSTRACT

An experimental procedure based on the normative theory of
the subjective expected utility (SEU) model can be represented as a
special case of the additive conjoint measurement model. The power
utility function can be shown to be consistent with the strictly
additive conjoint measurement model. This paper considers methods of
estimating the power utility function using experimental data. It
discusses the experimental procedure and the conjoint measurement
model, then presents three different estimators. The first estimator,
which has been reported previously [9], requires an extensive ex-.
perimental design in order to yield satisfactory results. The second
estimator is derived using a least squares method. The third estimator
is obtained via the methods of maximum likelihood and requires that
the model be expanded to include a conditional distribution on the
subjective probability. This conditional distribution is selected
to be consistent with known experimental results. The three estimators
are compared using simulation, and the maximum likelihood estimator

is shown to be the most accurate.



Introduction

Within the framework of decision theoxry it is necessary
to specify a utility or loss function which is a mapping from the
consequences into the reals., Different approaches to decision theory
are developed using various forms of utility. For example, a squared
error loss function is used predominantiy in Bayesian:estimation...
Actual decision making, especially using monetary rewards, requires
a utility function.

Since a utility function is very difficult to assess, ex--
perimental procedures for its evalvation have become necessary. A
survey of some of the utility models and their associated experimental
methods is given by Becker, DeGroot, and Marschak [2]. The specific
experimental procedure with which this report is concerned is given in
another paper by Becker, DeGroot, and Marschak [3].  In the ex- .
periment under comsideration, each subject is presented with a sequence
of n two-outcome gambles, denoted by (a, p'), such that if an event
which has objective probability p' is realized, then the subject re-
ceives the outcome a. If the complement event occurs, the subject
receives nothing. The subject is asked to state the smallest amount
of money for which he would be willing to sell the right to the gamble,
which will be denoted by M. In assessing the value of M, the subject
will be assessing the subjective probability of the event that had
objective probability p'. The symbol p, without the prime, will re-

present this subjective probability.
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Hence, each wager in the sequence can be represented by
(ai, p£,~3i,“¥i);;i<=al,22,....,‘n. The subjective-probability, p,
is not observed.

On the basis of the subjective expected utility model (SEU)
Becker, DeGroot, and Marschak . [3] have shown that a subject can do
no better than state his true, lowest selling price (M). Tversky [9]
has used this experimental procedure in an effort to determine whether
the subjective expected utility model is descriptive in actual practice.
Following the lead of Tversky [9] we describe the SEUrmodel as a a
special case of the conjoint measurement model and then show that a
specific form for the utility function is appropriate. For each ex-
periment performed, an estimation procedure must be chosen in order
to produce a representative utility function. This study will present

and compare three methods of estimationm.

The SEU Model As an Additive Conjoint Measurement Model

In the SEU model the utility of a wager is the sum of the
utilities of the consequences weighted by the subjective probabilities
of the events which lead to the various consequences. In general,

k
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where u(.) is the utility function, a5 the actual value of the various
consequences, and P> the subjective probability of the corresponding
events. If we perform an experiment similar to the one described in
theintroductibp}our purpose ' is to somehow measure both the utility
function and the subjective probability. This is an example of a con-

joint measurement problem as described in the psychological literature

™ .



-3-
[1], ;[8].s We are attempting .to;measure more than one variable .
based on their joint effects, undexr the assumption that a specified
composition rule holds. Since the composition rule in this case is
determined by the SEU model as given in equation (1), we say that
the SEU model is an example of a conjoint measurement model.

A conjoint measurement model is called additive [8] if--
the data matrix D and the component matrices Cl’ C2’ vees Ck which
conjoin to form D (D = Cl g 02 2 ... % Ck’ where % represents the
specific combination rule) havecthe:followingapropertiesss:

(i) There exists real valued functions ¢, fl’ fZ’ cees fk

- on D, Cl’ C2’ cens Ck respectively, such that for all
cq € Cl, <, € CZ’ cees Cp € Ck
(2) ¢(cl, Cos wees ck) = fl(ci) + fz(cz) + ...+ fk(ck)

and (ii) ¢(cl, Cos aees ck)

[v

¢(cy, ey ..., ¢) if, and only if,
(cl, Cys +es ck)i# (ci, cé, crey ci) where>* denotes the

order observed in the~data®™matrix, -

Furthermore, the model is termed strictly additive if ¢ can

be chosen to be the identity, i.e.,

¢(cl, Coy wees ck) =c, % <, ¥...%¢

1 k?

0 , . . . .
where X again denotes the combination rules under consideration and

C{s Coy =evy C aTE specific values of the k variables.



A

Using the experiment described in the introduction, if we
subscribe to the SEU model we have
(3) uM) = p u(a) + (1-p) u(0).
Allowing u(0) = 0 and taking logarithms,
(4) log u(M) = log u(a) + log p.
Therefore this experiment in the context of the SEU model is a specific
case of the strictly additive conjoint measurement model with ¢, fl’
and f2 all being log functions.

Furthermore, if we assume that utility is a power function, i.e.,
(5) w® = x5 x 20
then our SEU model yields
©) u = a’p,
and we see that log M = log a + é_l log p. Therefore, if we
consider the logarithm of the bid to be the data matrix, we have a
strictly additive conjoint measurement model.

Throughout this report we assume that equations (5) and (6)
properly model the utility function and the experimental procedure
under investigation, The assumption that utility of momey is a power

function of the actual money value has been suggested in the previous

literature on utility theory (see [7] foroexample)?. -

- Estimating the Exponent

Based on the model given by equations (5) and (6), Tversky
[9] suggested a method of estimating 6, the exponent in the power

utility function. This method does not require that additional structure



~5m
be added to the model; however, it does require that complementary
events be used in the experimental procedure. That is, if we want to
use the data that resulted from a wager that had objective probability
p', then we also must have a wager in which the objective probability
is 1-p'.

This estimation procedure says that 6p' is an estimator of ©

if it is the solution of

Ju, ) % D)
(7) 2 PR I s =1
pZ' ai 1§p'ai

where E denotes the sum over all events with objective probability p'.
t

P
This estimator seems reasonable since equation (6) can be given as

® b = [%]6

and therefore

would be a reasonable estimate of p if 6 were known. It should be noted,
however, that adding the two terms to equal one in equation (7) assumes
that the subjective probability assessment of complementary events sum

toc unity. Once a ép, is evaluated for each set of complementary events,

the estimator § is the average of these estimators, with each ép' re-
ceiving equal weight. Notice that in finding éP' this estimation pro-
cedure gives a different estimate of 8 for each set of complementary events.

Since we want the end product to be a utility function covering the
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entire range of consequences and valid for any probability, we propose
two estimators that accomplish this.

The first alternative is a fitted estimator using the methods
of least squares. If it is assumed that
(9 p=2p'
in which A is a random variable with E[1lnA] = 0, then we can write

equation (3) as

(10) 6 (1n ri) = 1n pi + ln Ai i=1,2,...,0
where
(11) x, = Mi/ai.

The assumption that E[1nA] = O implies that the support of A has values
both greater than and less than one, The validation of this type of
assumption will be discussed after the density in equation (13) is given.

The 8 that minimizes

n
z (61n r, - ln pi)2 is given by
i=1
n
] (In r,)(n p,)
12) ex = =L
£ 2
Z (Inr,)
i=1 *

8% will be referred to as the fitted estimator.
In order to obtain a maximum likelihood estimator of 6 we will
assume a conditional probability distribution on the subjective proba-

bility p, given the objective probability p':

S (p')

(13) Eplp') = Q")p Ippry @)
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where IA(X) is the indicator function for the set A,
(14) B(p') = {x: .5-|p'-.5| < x < .5+|p"-.5|};

and

(15) sp") = 0 if p' = .5 o

1/p' dif p' > .5
This conditional density for the subjective probability has the following
properties:

(a) 1If p' > .5, Ehe distribution indicates that the subjective
assessment of probability wiil be less than the stated objective proba-
bility,

(b) 1If p' <.5, ;he distribution indicates that the sub-
jective assessment of probability will be greater than the stated ob~
jective probability,

(¢) 1If p' = .5, the subjective assessment of probability
will be exact because the coﬁditional distribution of p given p' = .5
is degenerate at .5, and

(d) The support éf the distribution decreases as the ob-
jective probability approaches .5, which means that there is greater
variation for very large or very small probabilities.

These properties were selected based on the reports of Preston
and Baratta [6] and Mosteller and Nogee [4] in which experiments indi-
cated that large probabilities are underestimated and small probabilities

are overestimated.
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Since we want to use this conditional distribution and the

model (6) to estimate § based on the observations (ri, pi); i=1, 2,

+sey N, we will make the transformation

This yields the conditional dénsity of the bid ratio r,

1y = 1yn..08 (p")+6-1 .
(16) f(xp") = Q@"er’® Tt ®
where ‘
(17) R(p") = {r: (-5-|p"—.5|)l/e <rT < (.5+|pv__.5|)1/9}.(

The resulting maximum likelihood estimator of 0 is

" IS
GA if BB < BA
(18) 6 = 65 16 6, <0, <67
GC if eC < eB
where
. ln(.5+|p}-.5])
(19) 8y = max in r, ’
1 1
A _ -n ,
(20) eB = h ‘ >
iZl(ﬁ(Pi)ﬂ)ln r,
. 1n(.5-|p}-.5])
(21) O = m%n 1n r, ’
1 ‘ 1

The immediate advantage this estimator has over the previous two esti-
mators is that it enjoys the well-known properties associated with a
maximum likelikhood estimato?. For a comprehensive survey of these

properties see Norden [5].
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Comparison of Estimators

In order to compare the three estimation procedures intro-~
duced above, the following experimental procedure was employed: One
replication consisted of offering an individual 40 wagers consisting of
eight different objective probabilities (.1, .2, .3, .4, .6, .7, .8, .9)
and five different values for a (10, 30, 50, 70, 90) which should be
considered as some monetary unit, Actual execution of this experiment
would be valuable for estimating ©; however this study investigates only
a simulation of this experiment.

Five different values of 9 were fixed in the simulation
process: .5, .6, .7, .8, .9. Two different conditional distributions
were employed in the generation of the subjective probability assessment.
For a fixed p', the following distribution was used in addition to the
distribution given by (13):

5if p' -~ .2 <p < p' ifp' > .5
(22) £(plp!) =

54if p'<<p < p' + .2 if p' < .5.
Five hundred replications were executed for each fixed 6 and specified
conditional distribution of p. The data is summarized in Table 1. This
table gives the mean of the 500 estimates generated with a plus or minus
term, which is twice the estimate of the standard deviation of the esti-

A A

mate of 6, i.e., 20, where the caret (") should be replaced by the tilda

@ >

(~) or star (*) when using one of the other two estimation procedures.

The maximum likelihood estimator definitely estimates 6 the best. The
MLE always has a smaller og . In only one case did 6 estimate 6 closer

than 8, and in that instance, again, 08

> ca. Also, it should be noted

that in some instances the fitted estimator 6% was closer than 8,
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TABLE 1

Estimates of the Exponent in the Power Utility Function

Actual Value 5 6 .7 .8 .9
of ©

8 . 4959 .5951 ,6943 ,7935 .8925
Conditional +.0342 +.0419 | +.0496 | +.0564 | +.0624
Distribution ] .5806 .6852 ,7895 .8938 .9980
(13) +.1016 +.1201 | +.1381 | +.1563 | +.1747
g%| ,5789 6947 .8105 .9262 | 1.0420
+.1052 +.1266 | +.1475 | +.1684 | +.1895
8 .5008 .6009 ,7011 .8012 9013
Conditional +.0220 +.0279 | +.0337 | +.0375 | +.0419
Distribution 8 | .5046 .6035 . 7024 .8014 .9003
(22) +.0362 +.0443 | +,0523 | +.0590 | +.0662
6% | .6087 .7304 ,8521 .9739 | 1.0956
+.0466 +.0564 | +.0655 | +.0747 | +,0838

The experiment as summarized by Table 1 was carefully designed
so that complementary events were included repeatedly. This was done so
that the estimator 8 could be formed. In an actual situation it is
doubtful that 40 different wagers would be practical. Aiso, complementary
events might not be included in all cases which would mean that the
evaluation of & could not use all the data. Furthermore, even if com-
plementary events exist, the number of wagers for each set of comple-

mentary events may not be the same., The evaluation of 6 does not
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consider this possibility. All of these comments give more credence to

the proposed maximum likelihood procedure.
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