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ABSTRACT

Measurement error studies estimate the measurement variance of gages used to check the
quality of manufactured products. These studies are often executed as designed experiments
with a fixed sample size. We show that sequential procedures can be used in measurement
error studies. In a one-way study the levels are different productions of the same part and
each part is independently measured m times. The sequential procedure takes as its incre-
mental step either an additional part with m measurements or an additional measurement
on each of the existing parts. Sequential probability ratio tests, confidence intervals, and
Bayesian sequential procedures are used to determine the acceptability of the measurement
error variance as a proportion of the part to part variance. Simulation analyses compare

these sequential procedures.
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[. INTRODUCTION

In manufacturing it is important to produce high quality parts and assembled products.

To determine if a product meets a standard of high quality it is necessary to take one
or more measurements. These measurements are taken according to some measurement
system and all measurement systems have measurement errors. These measurement errors
are controlled by calibration of the measurement devices and by measurement error studies.
Quality certifications, such as ISO 9000, have focused greater attention on calibration and

measurement studies.

In most measurement error studies a fixed sample size procedure is executed; however,
there can be a substantial savings in time and effort by employing sequential sampling
| procedures. The application of sequential sampling proceciures to measurement error studies
has been reported in Barnett and Andrews [1] and Andrews, Barnett, and Andrews [2]. The
purpose of this paper is to continue the investigation of sequential sampling procedures as
applied to measurement studies. Throughout this study we assume that the measurement
device has been calibrated to zero bias and therefore we focus on the measurement variance.
In [2] we introduced the concept of a data engine for a measurement error study. The
term data engine is a way to refer to the measurement error study procedures and the
statistical model for the data and subsequent analysis. The investigation in [2] considered
sequential sampling procedures applied to two of the most basic data engines. The first one
had independent unbiased observations taken on a known standard, which meant the only
unknown quantity was the measurement error standard deviation (am). The second data
engine relaxed the assumption of a known standa.rd and therefore added another unknown
parameter, (), the true measured value of the part. In both these cases a single item was
measured repeatedly. The results of that study showed that a sequential confidence interval
procedure introduced in [1] was as good as the more sophisticated sequential ratio tests and

Bayes procedures.



The data engine we use throughout this paper is a balanced one way random effects
analysis of variance model. This has been suggested in Montgomery[3] and AIAG [4] and is
used in practice. For this data engine multiple parts from the same production system are
repeatedly measured. We assume no bias in the measurement device and that a single oper-
ator is taking all the measurements. Therefore, the three unknown quantities are (i, 0y, o)
as defined by the following one-way random effects model.

Yi=p+éte;
t=1,2,...,k = number of parts
j=1,2,...,m = number of measurements per part

Y,; = the j** measurement on the i** part

g = the mean measurement of the production
6 ~ii.d. N(O,a:)

€5 ~ t.i.d. N(0,0’?n)

So the two unknown quantities of interest are the part to part standard deviation, o, and
the measurement error standard deviation, 0,,. As part of a measurement error study a
statement needs to made about the ratio, %21 That is, we need to know the size of the
measurement standard deviation as a proportion of the part to part standard deviation. We
will refer to this ratio as the measurement error ratio (MER). If the MER is too large the
measurement on the part may not reflect its true quality because of contamination by the

measurement error.

There are no specific numerical standards for MER which is unlike the P/T ratio given

by
6o,

FIT = Tolerance”
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The ATAG[4] gives guidelines for P/T which state that a P/T less than .10 indicates an
0.K. gauge and that any P/T less than .30 may be acceptable. We will apply these same
standards to the MER by assuming that tolerance is set at 6g,. This allows us to use .30
as the cut-off value for MER. Any MER less than .30 is acceptable and any value greater is
not.

Given this structure we investigate four different sequential procedures. They are: (1)
a sequential probability ratio test, (2) an adjusted sequential probability ratio test, (3) a
confidence interval procedure, and (4) a Bayesian procedure. Simulation is used to compare
these procedures for settings of MER from 0.05 to 0.40. In all cases we note the proportion

of correct decisions where it is correct to accept the measurement system if the MER is

less than .30 and it is a correct decision to reject the measurement system if the MER is
greater than or equal to .30. In addition we report the sample size required to come to a
conclusion. The sample size is reported by noting three numbers from the simulation. The
average number of parts needed, k, the average number of repeated observations per part,
7, and the average total sample size (¢ = km).

Sequential sampling on a random effects one-way layout adds the complexity as to how
additional observations are selected. In all cases we start with three parts, (k = 3), and eight
observations on each part, (m = 8). If a decision is not reached at any stage the sequential
step can be in either of two directions. One direction is that we can select a new part and
take m observations on that part. The other direction is that we can increase the number
of observations by one on all the parts in our study. The first procedure increments on k
and the second procedure increments on m. If a decision is not made by the time we reach
either k£ = 10 or m = 30, we stop sampﬁng and use the usual estimates to make a decision.

The next four sections describe each class of procedures and compares their results.



II. SEQUENTIAL PROBABILITY RATIO TEST

In Johnson(5], Johnson[6], and Ghosh[7] sequential probability ratio tests are given for
testing hypotheses on the ratio of variances from random effects models. The procedures are
the same even though they were derived in different ways. The incrementing at a sequential
step is either in the k (addition part) direction or in the m (additional repeated measure)
direction but not both.

In this paper we use their test procedure but add an additional step which allows us
to increment in either direction. This adjustment to the reference procedure destroys the
theoretical properties of convergence and creates a situation in which the size of the two
types of error are not automatically controlled. However, we are not concerned with con-
vergence since we truncate the procedure and :we will use simulation to investigate the error
probabilities.

Our procedure uses a hypothesis structure that contrasts an unacceptable MER with an

acceptable one.

Ho MER———‘>03 ho

Op

H,:MER =2 <01=#,
Op

The test statistic is
,_1 (Y Y)’ _ SST

f(k,m) = }::—1 _1-1 (Y - Y) SSE

Where,
S .
Yi=—)Y;
m 2o
- 1 k m
Y=E’--‘>;152=;KJ



The sequential procedure will be to start with ¥ = 3 and m = 8 and use the following

decision rule.

If I(k,m) < lj(k,m), Accept H,
If I(k,m) > l,(k,m), Accept H,

Otherwise, take a sequential step.

Where, o
B?c p2c __
Iz(k,m) _ é (4,,) o
1— Bzc(gq)pgc
1

$rA%(2)me — g,
1— A?c(%)mc

l(k,m) =
1
do=1+ m(Eg)

1
$1=1 +m(7'—¥—)

n=k-1
Py =k(m - 1)
C=kP1+P2)_l
Aol=8

a

The sequential step can be in either of two directions. We can either sample a new part
and take m measurements on that part or we can take an additional observation on each of
the k parts. The first step will be referred to as incrementing on k and the alternative step
will be incrementing on m. Therefore, to run a test we must set the values of @ and §# and

state the rule for choosing the increment.



An extensive simulation study indicated that reasonable values for the size of the two
errors are & = .05 and § = .20. This is reasonable since rejecting a true null hypothesis means
we are approving a faulty measurement system. This is a serious error and therefore we hold
the size of this error to less than 0.05. Whereas accepting a false null hypothesis results
in disapproving a good measurement system and this is a less serious error and therefore
B = 0.20 is reasonable.

As the criterion for determining which direction to increment we will calculate the usual

components of variance estimates of o2 and o7,.

SSE
mk — k

~2
m

%51 A2
“3=maz{0,~————"lm =1

Then if the ratio %’:} is greater than (ko + h1)/2 we increment on m, and if %1: is less than
(ho + h1)/2 we increment on k.

The simulation study will set g = 10.0 which will have no effect on the results. The
value of o, will be set at 1.0 and' o, will be set at values to give ratios from 0.05 to 0.40.
The increments on m and k will proceed until either a decision is reached or k reaches 10 or
m reaches 30. If either k or m reaches these limits the decision will be made by accepting
that hypothesis which is closest to the ratio determined by the usual estimates.

Each setting of the ratio will be simulated with 1000 replications and the reported values
are given in Table 1. For each MER the table gives the proportion correct, the average
number of parts used (K~BAR), the average sample size per part (M-BAR) and the average
total sample size (T-BAR).

In addition, the average proportion correct is calculated by equaling weighting each set-
ting of MER. Likewise the average total sample size is found and then a criterion is calculated

by dividing the average total sample size by the average proportion correct. From Table 1
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we see that for this procedure and for this setting of (e, 3) this criterion is approximately
83. This criterion, whit‘:h trades off correct decisions with sample size requirements, has
the interpretation of the sample size needed to make 100% correct decisions over the val-
ues of MER chosen. This criterion was used to choose the (o, §) values and will provide a

comparison with other procedures.

Figure 1 gives the correct proportions at the assumed MER values. The proportion
correct at MER = .10 is approximately .80 which is what was expected with a § equal to
.20. However, the percent correct at MER = .30 is slightly larger than the .95 expected
based on the « used. However, this procedure is not acceptable for the decisions we need
to make because the proportion correct for values close to but less than .30 are extremely

'low. This is consistent with the findings in [2] and it results because we state that any MER
less than .30 is acceptable. In the next section adjustments to this sequential test slightly

improve this situation.

III. ALTERNATIVE TESTS

In an attempt to improve on the results of the last section we investigate three alternative
ways of approaching this hypothesis structure. The purpose is to see if we can increase the
probability of accepting the measurement system when the MER is close but smaller than
the cut-off value of 0.30; however, we do not want to greatly increase the sample size. We
again use the criterion value as a guide to balance off sample size with proportion of correct

decisions.

Figure 2 shows the of values l;(k,m) and l,(k,m) as you increase m and k. Notice
the erratic jumps are from m = 30 at k to m = 8 at k+1. In an attempt to increase the
probability of accepting H, when the true MER is 0.29, we arbitrary reduce the upper limit
to be half way between the lower limit and the old upper limit. This is shown in Figure

3. The resulting test has some favorable results over the results given in the last section.
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Compare Table 2 with Table 1 and Figure 4 with. Figure 1. We see that using this reduced
upper limit, the criterion value has decreased from approximately 83 to 75. This is due to
both smaller sample sizes and a slightly increased average prbportion correct. The proportion
“correct at MER = 0.29 has increased from 021 to .077; still not very high. The very critical
proportion correct at MER = 0.30 has decreased from .984 to .947. This is still very close
to the 5% alpha that was set.

As a second alternative we employed a multiple hypothesis structure as suggested by
Armitage[8]. This procedure helped greatly in the basic data engin'es as reported in [2] but
as you will read we had much less success with this data engine.

The structure we used was to consider three pairs of hypotheses. They were:
STRUCTURE 1:
Om
Hy:MER =—2>03=hg

Op

H,:MER = 2" <01=#,

Op

STRUCTURE 2:
Om

H, MER =— 2>02=h,
Op

H,:MER =2 <0.1 =4,

Op

STRUCTURE 3:
am

Hy :MER =— >03=h,
Op

H,:MER =2 <02=h,

Op



The decision rule is:

Accept that MER = .3, if H; is accepted in Structure 1 and H, is accepted in Structure 3

Accept that MER = .1, if H, is accepted in Structure 1 and H, is accepted in Structure 2

Accept that MER = .2, if H,, is accepted in Structure 2 and H,, is accepted in Structure 3

Otherwise, increment your sample in the usual way.

In using this procedure anytime we accept MER = .2, we consider that acceptance in the
same manner as when we accept MER = .1; that is, we conclude the measurement system
is properly functioning. The results of this test are given in Table 3 which shows that the
value of the criterion is high at 147 and that the proportion correct at MER = 0.29 has not

increased. Therefore, this method has not proved effective for this data engine.

As a last alternative to the sequential test we make the simple adjustment of using the
alternative hypothesis of
Im
H,:MER =-—"<02=4,
Tp
The results of this test are given in Table 4. This adjustment increases the proportion correct

at 0.29 to 0.105 but at the expense of larger sample sizes as indicated by a criterion value of

134. In the next section we leave ratio testing to investigate a confidence interval procedure,

IV. CONFIDENCE INTERVAL PROCEDURE

Similar to the presentation in [1] and [2], we introduce a sequential confidence interval
procedure to determine if the MER is acceptable, where acceptable means any value less that

0.30. Using confidence intervals in a sequential setting was first considered in Knudsen]9).

To develop a confidence interval for MER we use the following procedure. See Burdick
and Graybill [10] for details.



Using the model given by (1) a (1 — 2a) x 100% confidence interval for MER. = om. is
[Lower, Upper] =

[\/U*ni T’ \/L"i 7l

where,
[ MST
" MSE X Fyn,
U = MST
MSE X Fl--a,nl n2
SST
SSE
MSE = oo
ny = k-1
Ng = mk —k

Fynym, = the F value with « in upper tail

For each value of MER reported in Tables 5, 6, and 7, 1000 replications were simulated.
At each stage in the sequential procedure, if the upper confidence limit (Upper) is less than
0.30, the MER is considered acceptable. If the lower confidence limit (Lower) is greater than
0.30, the MER is considered unacceptable. If the confidence interval contains 0.30, then a
sequential step is executed.

In the sequential step, if 0.30 fell in the upper half of the interval the sample size was
incremented by taking an additional part; that is incrementing on k. If 0.30 fell in the lower
half of the interval one additional reading was taken on each of the existing parts in the
study. That is, there is an increment on m.

From Tables 5, 6, and 7 and Figure 5 we see that there has been a substantial increase -

in the proportion correct at MER = .29, However, there has been some decrease in the
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proportion correct at the high and low values of MER. Overall, these confidence interval
procedures work better than any of the sequential ratio tests attempted in the previous two
sections.

Comparing the three confidence levels (80%, 90%, 95%) shows very little difference and

therefore to be consistent with [2] we recommend using the 90% level.

V. BAYESIAN PROCEDURE

As a starting point for developing a Bayesian procedure we use a result from Hill [11]

which gives the posterior distribution of ¢ = ;%
¢- (¢ + m-lfi—"-

l+m¢

f(4 | data) o

This assumes use of the noninformative prior, ;2. This prior yields an improper posterior
distribution. However, we can use this improper distribution since we employ a discrete
approximation.

By using the transformation MER = § = ¢, we obtain the posterior on MER () to

be
9-1(9—2 +m—-1)’—;—"
(SSE+ omien) F-

Since we do not know the constant of proportionality we use the following procedure.

f(8 | data)

Setting k = 3 and m = 8 we evaluate f(# | data) for 100 values of § = .01,.02,...,1.00.
For values of SSE and SST we equate these sum of squares to their expected values and set
op = 1.0 and 0, = .05,.10,.15,.20,.25,.275, .29, .30, .31, .35, .40.

For example, with o, = 1.0 and o,, = .30,

E[SST] = (k- 1)(¢Z + mo)) = 16.18,

E[SSE] = k(m —1)02, =1.89.

11



Using this procedure we can evaluate f(8 | data) for the array of MER values. By stan-
dardizing the 100 values of f(# | data) we get approximate posterior probabilities for these
100 points. For each MER setting, we calculated the P[f > 0.30 | data]. Table 8 gives
these values. Based on this table we decided to use 0.15 and 0.40 as the cut-off values.
That is, if P[§ > 0.30 | data] > 0.40 at any stage we will reject the measurement sys-
tem. If P[# > 0.30 | data] < 0.15 at any stage we will accept the measurement system. If
0.15 < P[@ > 0.30 | data] < 0.40 we increment the sample on either k or m. The entire

decision rule is:

> 0.40 reject system;
<0.15 accept system;
< 0.40 and > 0.275 increment on k;
> 0.15and <0.275 increment on m.

P[6 > 0.30 | data]

If either k = 10 or m = 30 are reached the system will be rejected if P[f > 0.30 ] ciata] is
closer to 0.40 than to 0.15; otherwise it will be accepted.

The simulation results of this Bayesian approach are given in Table 9 and Figure 6. Of
all the procedures described in this paper the Bayesian procedure performs the best. Note
that the criterion is very small at approximately 43. Also note that the proportion correct
at MER = 0.29 is 0.261.

In comparing the Bayesian procedure with the confidence interval procedure at 90% we
see that the confidence interval procedure has a higher proportion correct at every value of
MER but the required sample size is more than double. Therefore, based on this investigation

the Bayes procedure is recommended.
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TABLE 1: ALPHA = .05, BETA = .20

MER PROP CORRECT K-BAR M-BAR T-BAR
0.050 0.946 3.170 8.813 28.027
0.100 0.791 3.770 10.689 39.859
0.150 0.490 4.399 14.086 58.092
0.200 0.220 4.310 16.686 67.171
0.250 0.076 3.915 17.063 63.914
0.275 0.029 3.629 16.574 59.602
0.290 0.021 3.483 17.203 59.807
0.300 0.984 3.386 16.096 54.978
0.310 0.988 3.325 15.842 52.852
0.325 0.990 3.265 16.327 51.061
0.350 0.997 3.186 14.218 45,810
0.400 1.000 3.096 13.268 41.610

AVERAGE-> 0.628 AVERAGE-> 51.907

CRITERION-> 82.698




TABLE 2: REDUCED UPPER LIMIT

MER PROP CORRECT K-BAR M-BAR T-BAR
0.050 0.947 3.056 8.771 26.875
0.100 0.794 3.250 10.980 36.303
0.150 0.533 3.526 13.554 48.157
0.200 0.310 3.484 16.669 58.865
0.250 0.149 3.414 16.263 56.409
0.275 0.092 3.298 16.442 55.024
0.290 0.077 3.212 16.925 54.985
0.300 0.947 3.226 16.019 52.548
0.310 0.955 3.175 16.250 52.476
0.325 0.963 3.165 15.106 48.630
0.350 0.979 3.121 14.939 47.226
0.400 0.992 3.065 12.854 39.884

AVERAGE-> 0.645 AVERAGE-> 48.115

CRITERION-> 74.616




TABLE 3: USING H(MIDDLE)

MER PROP CORRECT K-BAR M-BAR T-BAR
0.050 0.941 3.653 9.372 33.690
0.100 0.792 5.646 12.640 61.556
0.150 0.457 6.040 20.046 95.538
0.200 0.216 5.209 24.874 107.074
0.250 0.054 3.985 28.747 107.174
0.275 0.031 3.719 29.344 105.164
0.280 0.019 3.526 29.597 101.750
0.300 0.985 3.413 29.664 99.030
0.310 0.992 3.464 29.803 101.950
0.325 0.996 3.282 29.912 §7.580
0.350 0.999 3.213 29.978 96.170
0.400 1.000 3.079 30.000 92.370

AVERAGE-> 0.624 AVERAGE-> 91.587

' CRITERION-> 146.892




TABLE 4: H(a): MER <= 0.2

MER PROP CORRECT K-BAR M-BAR T-BAR
0.050 0.859 3.323 8.965 29.760
0.100 0.863 4.351 11.156 45.868
0.150 0.670 5.455 15.458 71.133
0.200 0.447 5.670 20.537 94.028
0.250 0.229 5.074 25.244 109.172
0.275 0.137 4.558 27.154 109.042
0.290 0.105 4.348 27.888 110.134
0.300 0.923 4.122 28.457 108.538
0.310 0.937 4.074 28.785 110.510
0.325 0.946 3.893 28.899 105.982
0.350 0.973 3.642 29.461 104.002
0.400 0.994 3.343 29.875 99.040

AVERAGE-> 0.682 AVERAGE-> 91.434

CRITERION-> 134.084




TABLE 5: 95% CONFIDENCE INTERVAL

MER PROP CORRECT K-BAR M-BAR T-BAR
0.050 0.975 3.138 8.623 27.150
0.100 0.893 3.679 10.491 37.882
0.150 0.780 4.462 13.127 54.473
0.200 0.561 5.013 17.908 76.673
0.250 0.367 5.050 22.156 95.472
0.275 0.261 4.894 24.134 101.332
0.290 ~0.231 4.809 24.701 103.852
0.300 0.780 4.776 24.801 103.301
0.310 0.830 4.508 25.840 103.614
0.325 0.865 4.402 26.482 106.124
0.350 0.913 4.060 27.150 102.527
0.400 0.9%57 3.610 27.675 96.185

AVERAGE-> 0.701 AVERAGE-> 84.049

CRITERION-> 119.884




TABLE 6: 90% CONFIDENCE INTERVAL

MER PROP CORRECT K-BAR M-BAR T-BAR
0.050 0.971 3.107 8.609 26.827
0.100 0.900 3.393 10.201 34.577
0.150 0.759 4.133 13.248 52.153
0.200 0.585 4.689 16.698 70.415
0.250 0.366 4.856 21.355 91.021
0.275 0.286 4.807 22.869 97.489
0.290 0.277 4.814 22.950 98.194
0.300 0.758 4.679 23.766 99.224
0.310 0.815 4.481 24.490 100.944
0.325 0.835 4.514 25.128 105.199
0.350 0.881 4.250 26.072 103.963
0.400 0.965 3.746 26.798 99.256

AVERAGE-> 0.700 AVERAGE-> 81.605

CRITERION-> 116.593




TABLE 7: 80% CONFIDENCE INTERVAL

MR PROP CORRECT K-BAR M-BAR T-BAR
0.050 0.981 3.071 8.401 25.928
0.100 0.914 3.311 9.786 32.431
0.150 0.795 3.693 12.294 44.964
0.200 0.630 4.242 15.454 63.723
0.250 0.416 4.453 19.286 81.448
0.275 0.356 4.381 20.303 83.904
0.290 0.298 4.455 21.353 89.618
0.300 0.756 4.290 22.070 90.191
0.310 0.761 4.325 21.716 90.987
0.325 0.795 4.297 22.596 93.210
0.350 0.876 4.081 23.326 83.848
0.400 0.948 3.797 24.716 94.427

AVERAGE-> 0.711 AVERAGE-> 73.723

CRITERION-> 103.762




TABLE 8: POSTERIOR PROBABILITIES

FOR EQUATED
SUM OF SQUARES
SPECIFED MER | PROBABILITY POSTERIOR GREATER THAN 0.30
0.050 0.000000235
0.100 0.001867
0.150 0.038428
0.200 0.141594
0.250 0.274737
0.275 0.339932
0.290 0.377020
0.300 0.400717
0.310 0.423532
0.350 0.505587
0.400 0.588097




TABLE 9: BAYES PROCEDURE

MR PROP CORRECT K-BAR M-BAR T-BAR
0.050 0.960 3.017 8.074 24.373
0.100 0.877 3.089 8.632 26.784
0.150 0.695 3.126 8.910 28.001
0.200 0.540 3.197 9.272 30.095
0.250 0.366 3.265 9.241 30.686
0.275 0.306 3.233 9.298 30.722
0.290 0.261 3.204 9.262 30.212
0.300 0.746 3.263 9.480 31.380
0.310 0.776 3.247 9.100 30.008
0.325 0.810 3.258 8.984 29.845
0.350 0.861 3.227 8.804 28.766
0.400 0.912 3.174 8.555 27.401

AVERAGE-> 0.676 AVERAGE-> 29.023

CRITERION-> 42.944
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