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ABSTRACT

In this paper, sales data for a liné of office equipment are

analyzed by Box-Jenkins methods using the Box~Cox transformation, given

by

A
y(e) -1
PME =TT

A#0
yo(t) = 1n y(t)

where A is the transformation parameter. It uses likelihood equations
and a numerical algorithm for their solution which have beén developed
by Amnsley, Spive&, and Wrobleski.

A step;by—step account of the analysis and forecasting of the
data is presented, together with a discussion of some of the special
problems- encountered. Forecasting performance of the model is shown to
be superior to the best ARIMA model based on the logarithmic transforma-

tion.



Introduction

Th; Box-Jenkins approach to time series analysis and fore-
casting is becoming widely used in many business and economic applica-
tions. Examples of seasonal forecasting, however, have not appeared‘
often in the literature. Amongst the few published examples are
analyses of airline passenger data, Box and Jenkins [4, Section 9.2]:
automobile registration data, Nelson [10, Chapter i]; and a detailed
case study of sales data by Chatfield and Prothero [7].

The sales data study is somewhat disturbing to users of Box-
Jenkins seasonal forecasting methods--the authors were unable to. obtain
a satisfactory forecasting model. Box and Jenkins [5], Harrison [8],
aﬂd Tunnicliffe Wilson [14] suggested that this occurred because
Chatfield and Prothero had improperly transformed their data initially
by taking|logarithms. A more flexible family of transformations, sug-
gested originally by Box and Cox [3], was put forward by these discus-
sants as a more suitable approach to choosing an initial transformation,
and two, [5] and [14], were able to obtain much better results in this
way. The Box~Cox family of transformations is given by

A
¥y (t) = LXLEL;XJL¥L
A#0 @)

]

Yo(t) = 1n y(t)

where y(t), assumed positive, is a nonstationary time series and ) is
the transformation parameter.

A formal development of the likelihood function for joint
estimation of the transformation parameter A and the other parameters

of a seasoﬁﬁl ARIMA,model is given by Ansley, Spivey, and Wrobleski [1],
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[2]. These authors also have developed an algorithm for approximate
solution of the likelihood equations. This algorithm is easily imple-~
mented and requires only a modest modification of existing Box-Jenkins
computer programs.

This paper outlines the effects of the transformation on data
structure and summarizes estimation and identification procedures. It
then provides a steb-by—step account of the application of the transfor-
mation to the analysis and forecasting of sales data for a line of
office equipment. The results demonstrate a significant improvement in

forecasting performance over the log transformation approach.

Nature of the Transformation

For a fixed value of A the transformation (1) is simply a

linear transformation of the power transformation

y,(®) = Oy . )

We can therefore use the transformation (2) to gain some insight into
the effects of transformations on the data structure.l

The first step in the Box~Jenkins methodology is to reduce a
'nonstationary series to a stationary series by means of differencing
operations. The differenced series should have

(i) constant mean,
(ii) constant variance,

and we often assume that

(iii) the differenced series is normal.
The first property, constant mean, requires that the original series

have both trend and seasonal components generated by a polynomial. The



most common example is a series with a straight-line trend plus
seasonal fluctuations of constant amplitude. A very simple example is
given in Figure 1.

Often, however, a series has some other trend pattern, such as
an exponential trend. The usual procedure in such a case is to trans-
form the data initially; for an exponential trend, one would choose a
logarithmic transformation.

Unfortunately, a logarithmic transformation can "over-
transform' the data; In Figure 2 we show a series with an increasing
trend and its logarithms. Note that the original series has a trend
that could easily be mistaken for an exponential trend and has seasonal
fluctuations of increasing magnitude. The logarithmic transformation,
on the other hand, has a decreasing trend, with decreasiqg seasonal
amplitude. This is an example of overtransformation.

Overtransformation can and does arise in practice. For
example, the data plotted by Chatfield and Prothero [7, p. 298] shows
an increasing trend with increasing seasonal amplitude, while the
logarithms of the data show a decreasing trend with decreasing seasonal
amplitude. With the benefit of hindsight, one could point to this as
the source of their problems in developing a forecasting model based on
a logarithmic transformation.

The series in Figure 2 was generated by réising that in Figure
1 to the power of 2.5. If we were to transform the data back using
A= .4 in equation (2), we would obtain the original series. A constant

mean could then be obtained by simple differencing operatioms.
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The second requirement of the differenced series is that it
have constant variance. With real data, we often take one difference
and one seasonal difference. These two operations remove parabolic
trends, and given the random fluctuations in real data, it can be very
difficult to detect a varying mean in the differenced series. If the
data are improperly transformed originally, however, the variance of
the differenced series Wiil not be constant.

Finally, the choice of thé initial transformation will affect
the distribution of the individual values of the series. A carefully
chosen initial transformation can lead to a more nearly normal distri-
bution for the differenced series.

It is clear that a family of transformations indexed by a
single parameter cannot simultaneously satisfy (i), (ii), and (iii) in
every case. The maximum likelihood procedures outlined be}ow in effect
provide a rational procedure for weighting the importance of these re-

quirements in model estimationm.

Outline of the Transformation Estimation Procedure

We assume that (1) we have observations y(t) from a time
series and that (2) for some value A of the transformation parameter,
the transformed observations follow a seasonal ARIMA(p,d,q)°(P,D,Q)

process. Using the notation of Box and Jenkins [4, p. 205] we have
S,.d
b (®)0@)7 Yy, (1) = 6 + 0B) @ BVa(t) (3)

where B is the backshift operator (see Box and Jenkins [4, p. 8]), and

where
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s = length of seasonal cycle;
d = degree of differencing;
D = degree of seasonal differencing;
§ = constant term;
= _ _ _ P,
¢.(B) =1-¢,B-... ¢pB ;
=1 - - - q,
6(B) =1 61B vee GqB H
Sy . 1 _ s _ _ sP,
o(B%) =1 - 2.B° - ... - 9,3%
®@°%) =1- @135 - el - (_H)QBSQ .

We write ¢ to represent the vector ¢1,...,¢p of autoregressive para-
meters and similarly 6, ¢ and (ﬁ) to represent the vectors of moving
average, seasonal autoregressive, and seasonal moving average parameters,
respectivgly.

Suppose we observe ntd+sD values of the time series
y(-d-sD+1),....,y(0),y(1),.....,y(n). Assuming that the first d+sD
values y(-d-sD+1),....,y(~1),y(0) are fixed, it has beén shown by Ansley,

Spivey, and Wrobleski that the log likelihood is given by

L = const. - 2 1n o? + L 1n M | - St (4)
2 2 n 2
2q
where
2 .
¢” = variance of a(t)
2,~-1 '
o Mn = covariance matrix of wx(l),...,wx(n) ,
n
J= 1yt
t=1
n
2
s =1 [a(t)]
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and where

vy (t) = Vdvgyx (t)

and

[a(t)] = E[a(t)lw}\(l),n-,wl(n)] .

We can shed some light on this complicated expression by the
following comments. First, the likelihood function is conditional on
the first d+sD observations because the.two differencing operations
effectively reduce the data set by thig number. For example, if we had
72 observations on monthly data (s=12j and we took one backward differ-
ence and one seasonal backward difference to reduceifhe data to station-
arity, the differenced series would contain 59 = 72 - 12 - 1 differences.

Secopd, the formula for J, which is, in fact the Jacobian
for the transformation (1), excludes the first d+sD observations. For
the example above, we would calculate J using only the last 59
observations.

The expected values [a(t)] appearing in the sum of squares S

are calculated from the difference equations
$(®)2 (%) [w, ()] = 6 + 0(B) & (B%)[a(t)] . (5)

An aigorithm for the numerical solution of these equations is given by
Box and Jenkins [4, Section 7.2].

Maximization of L is simplified by a numerical algorithm
developed by Ansley, Spivey, and Wrobleski [1], [2]. They show that

maximum likelihood estimates can be obtained by minimizing

LI 2
5, = _Z.; {a ()} (6)



where az(t) is obtained from the difference equations

¢(B)®(Bs)zk(t) =6 + e(B)(ﬁ)(BS)az(t>_, (7)
where

z, () = wx(t)/Jl/n ,
and

5 = s/atm

Because the equations (7) are in the same form as equation (5), the
same algorithm can be used for their solution. In these equations § is
replaced by Gz, and after SZ is minimized, an estimate of‘é‘is obtained
from the value Sz by |
5= 8 3G
Any computer program for Box-Jenkins estimation will contain:
(i) an algorithm for solving difference equations such as
(7), and
(ii) a nonlinear least-squares algorithm that can be used
to minimize the sum of squares Sz in equation (6).
This method for estimating the parameter A simultaneously with the other
ARMA model parameters can therefore be incorporated into an existing
computer package with minimum modification. A flow chart for the major
steps involved is given in Figure 3. The main difference between the
standard and modified estimation procedures is that in estimating A, the

" series must be transformed and differenced prior to each evaluation of

the sum of squares within the nonlinear least-squares algorithm.
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The Box-Jenkins program employed here uses the Marquardt non-
linear least-squares algorithm [9]. The program was adapted as outlined
above to minimize Sz simultaneously over all the parameters including
the trgnsformation parameter A, and it has proven efficient over a wide
range of ARIMA models. On the University of Michigan's Amdahl 470
computer, the modification requires approximately 10 percent more CPU

time than does standard estimation.

Model Identification

The estimation procedures described above assume that the
order of the ARIMA(p,d,q)-(P,D,Q) model is known. A problem arises
immédiately in that the autocorrelation function used in identification
will be a function.of the initial transformation parameter and will
change as the parameter is changed.

Experience has shown the following strategy to be successful:

(i) Choose an initial transformation which seems reasonable‘
from an examination of the raw data.

(ii) Using this initial transformation, carry out the usual
Box-Jenkins identification procedure to find p,d,q,P,D,Q
and initial estimates of the parameters.

This simple solution needs some justification. Experience
with a large ﬁumber of business and economic time series has shown that
the identification of (p,d,q) and (P,D,Q) is not affected by the choice
of the transformation parameter A over a wide range of vélues. More-
over, initial estimates of other model parameters are relatively

insensitive to the choice of A. However, as A is a scale parameter,
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any constant term will be sensitive to the choice of A, and the initial
choice of this coﬁstant term must be compatible with the initial choice
of A.

In addition, the likelihood function has been found to be
well behaved and unimodal over a wide range of ARIMA model configurationms.
This suggests that optimization algorithms should converge efficiently
from any reasonable initial value of A.

Box and Jenkins [5] suggest a heuristic method for rapid ap-
proximate evaluation of A. The value thus obtained could be used here
to provide an initial value for A, but we have found that the additional

computer time and effort are not worthwhile.

The Data and an Initial Transformation

Data were obtained for monthly sales of a line of office equip-
ment January 1969 through December 1975. The data are given in Table 1
and plotted in Figure 4. TFor the sake of example, the last twelve data
points, plotted with a dashed line in Figure 4, were omitted from the
identification and estimation phases of the analysis so that they could
be used to test forecasting performance.

The series has a marked downward trend resembling an exponential
decay. There is also a seasonal pattern with decreasing amplitude.
These two factors suggest that a reasonable initial transformation would
be the logarithmic transformation, i.e., A=0 in equation (1).

The logarithms of the data, plotted in Figure 5, show a down-
ward trend that is more nearly linear than the original series, al-

though some appearance of decay remains. This suggests that the
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final transformation has a parameter A<Q0. The amplitude of seasonal
fluctuations is more nearly constant over the series, although there is
some decrease, again suggesting that the final transformation parameter
may be negative.. Although it appeared that a logarithmic transformation
may, in this case, be an undertransformation, it was an adequate initial

choice.

TABLE 1

SALES OF OFFICE EQUIPMENT JANUARY 1969--DECEMBER 1975

1969 1970 1971 1972 1973 1974 1975

Jan 1564 1061 857 757 691 636 553
Feb 1586 1116 917 823 746 652 586
Mar 1475 1083 890 779 724 636 564
Apr 1459 1006 846 768 702 619 553
May 1343 973 823 741 691 591 519

June 1221 934 796 702 647 553 497
July 1155 890 741 652 613 531 481

Aug 1111 868 729 641 591 508 470

Sept 1155 906 790 663 624 536 492

Oct 1105 879 774 . 691 624 547 492

Nov 1083 868 174 685 613 531 481

Dec 1050 873 713 663 569 503 453
Differencing

Let the observed series at time t be y(t), and the initial
transformed series be yo(y) = Iny(t). The first step is to reduce the
transformed series to approximate stationarity by differencing opera-
tions. As the éeries yO(t) has both a trend and a seasonal pattern,
plots and autocorrelations of the series Vdvgzyo(t) were examined for
various integer values of d and D (see Box and Jenkins [4, Chapter 9]).
It has been shown (see Appendix to Chatfield and Prothero [7]) that the
operator VV12 will eliminate both a linear trend and a stable seasonal

pattern.
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The sample autocorrelations for the series {yo(t)},{Vyo(t)},

{Vl (t)}, and {vvl (t)} are given in Table 2. Note that the series

270 250

contain 72,71,60, and 59 terms, respectively.

1270
large and positive then fall steadily to large negative values. Clearly,

For both {yo(t)} and {V (t)} the autocorrelations begin
further differencing is required--a necessity that also can be easily
verified in this case from plots of the series. The autocorrelaéions of
{Vyo(t)} have a seasonal cycle with peaks at the lags of 12,24, and 36
and troughs at 6,18, and 30. Examination of the plot of {Vyo(t)} shows
a marked seasonal pattern but little trend. These findings strongly in-
dicate that a seasonal difference is required. The autocorrelations of

{wv (t)} diminish quickly after lag 12 and there is no marked trend

1270
(£)}

or seasonal pattern. It is thus reasonable to assume that {vvl
i

270
is approximately stationary. The plot in Figure 6 shows no obvious

. trend or seasonality, confirming this choice of differencing operator.
Note, however, that the variance of the series tends to decrease over

time, suggesting once again that a negative value of the transformation

parameter may ultimately be required.

Identification of the Differenced Series

We have obtained an approximately stationary series WO(t)
given by
Next we must find a model of the ARMA class which will adequately de-

scribe the autocorrelation structure of wo(t). The class of seasonal

. ARMA models can be written
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PBIB(E g () = 6 + 6(8) @ B D)alt)

as in equation (3) in which the polynomials ¢(B),6(B),¢(B12) and (@ (Blz)
have degrees p,q,P, and Q, respectively. To find suitable values of
P»q,P, and Q, we begin by examining the sample autocorrelations and
partial autocorrelations. These statistics and their approximate
standard errors are given in Table 3. (The autocorrelations are, of
course, the same as those given previously in Table 2,)

Approximate standard errors for the sample autocorrelations
T assuming zero autocorrelations at lags > k. were obtained from the

expression

o _ 1 2 2 \,1/2
c(rk) = /ﬁ'{1+2(ri+""+rk—l)}

(see Box and Jenkins [4, p. 177]). The partial autocorrelations are
calculated from the autocorrelations I via the Yule-Walker equations

{4, p. 55]. The standard error for the estimated partial autocorrelation
$kk at lag k given that the underlying true partial autocorrelations are
zero at lags k > 0, is approximately 1//5'[4, p. 178].

From Table 3 we see that the only significant (i.e., greater
than two standarq errors) autocorrelations are at lags 1 and 12. At lag
1 the autocorrelation r is large and negative, followed by a number of
autocorrelations close to zero. The first partial autocorrelation 611

is large and negative followed by values which decay more slowly. This

suggests that the series {wo(t)} is of the form

wo(t) =a - eat—l + other terms . (8)

Turning now to lag 12, we see that there is a large, negative

autocorrelation, = -,36, flanked by positive autocorrelations,

T12
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TABLE 3

AUTOCORRELATIONS AND PARTIAL AUTOCORRELATIONS OF {Wo(t)}

Approximate
Lag . Autocorrelations Standard Error
1-6 -.43 ,06 .03 .05 .01 .12 .13
7-12 -.06 -.,11 ,25 -.18 .23 -.36 .15
13-18 .22 -.06 .13 -.04 -.05 .00 .18
19-24  -.08 .27 -.23 .01 .05 .14 .19
25-30 -.26 .13 -.05 -.06 .16 -.14 .20
31-36 .04 -,09 .13 -.06 .03 -.09 .21
Partial Autocorrelations

1-6 -.43 -,15 -,01 .08 .08 .20 .15
7-12 A2 -,11 .15 -.05 .18 -.32 . .13
13-18 -.07 -.06 .14 .14 .03 .01 .13
19-24 -.16 .14 .04 -.18 .10 .04 .13
25-30 -.13 -.12 .06 .06 .01 -.05 .13

31-36 -.03 .01 .04 .05 .02 -.04 .13
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Ty = .23 and rig = .22, There is no significant autocorrelation at

lags 24 or 36 suggesting that a single seasonal MA parameter could
adequately explain the observed autocorrelation at lag 12. The follow-

ing tentative model was chosen for Wo(t)
12
wo(t) = § + (1-6B) (1- @B ")a(t) . )
If r2 = VAR(a(t) the autocovariances are given by
= (1+6%) (@ %) o?,

Yl = -6 (1+(\ﬁ5‘ 2)02,

2
= &
Yll 6\@0 s
Yoo = = (@) (1+6%)0?
12 ’
a2
Y3 = 8(Hio

[4, p. 329]. Note that for such a model Y11 = Y13 # 0; this is consis-

tent with the observed sample autocorrelations. Now it can be seen that

0 -0/ (1+6%)

@ /arm .

]

12
Thus, we can obtain initial estimates of 6 and @D by solving the

equations

(]
——Q—r-r =-.36 .

l+@2 12
Discarding roots having an absolute value exceeding 1, we obtain

6, = .57 and @0 = .43.
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The series {wo(t)} has 59 points aﬁd ranges from -.088 through
.078. 1Its mean is .0045. This value is sufficiently large relative to
the range to justify including a constant term in the model for a first
estimation run. For the model (9) Ewo(t) = §, so that an appropriate
initial estimate for the constant term is 60 = ,0045.

To summarize, thus far we have tentatively identified the

series as an ARIMA(0,1,1)-(0,1,1) model with initial values A, = 0,

0
6g = 57, @0 = .43, and 8, = .0045.

Finally, it is interesting to compare Table 3 with the sample
autocorrelations and partial autocorrelations for the differences (vvlz)
for the raw series, as shown in Table 4. It can be seen that there is
very little variation between the statisfics for the logarithms (A=0)
and the raw data (A=1), especially at lags where values are significant.
This confirms our earlier comment that autocorrelations and partial

autocorrelations are insensitive to the initial choice of the transfor-

mation parameter A.

Estimation

Approximate maximum likelihood estimates were obtained using
the least-squares algorithm described earlier. An important considera-
tion here is that most nonlinear least-squares computer packages will
not accept zero initial values; our Marqﬁardt routine is no exception.
It was therefore necessary to perturb the initial value of A = 0.
Because we suspected that the final value of A would be negative, an
initial value of A, = -.05 was chosen. Note that thls perturbation must

0

be small because the initial estimate of the constant term was chosen to
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. TABLE 4

AUTOCORRELATIONS AND PARTIAL AUTOCORRELATIONS OF VVlzy(t)

(Raw Data)
Approximate

Standard

Lag Autocorrelations : Error
1-6 -.26 .08 .13 .08 .11 .10 .13
7-12 .00 -.13 .23 -.06 .17 -.25 14
13-18 .17 -.03 .11 -.03 -.03 -.01 .16
19-24 -.07 .27 -.26 .05 .04 .03 .17
25-30 -.15 .08 -.09 -.06 .15 -.15 .18
31-36 .07 -.14 .13 -.05 -.04 -.05 .19

Partial Autocorrelations

1-6 -.26 .02 .17 .16 .17 .15 .13
7-12 ,01 -.24 .06 .00 .21 -.20 .13
13-18 .06 -.04 .13 -.03 .02 -.10 .13
19-24 -.12 .15 -.04 -.05 .12 -.01 .13
25-30 -.16 -.08 .03 -.01 .08 -.03 .13

31-36 .05 -.06 .00 .03 -.06 -.04 .13
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be consistent with A = 0. A large perturbation could make the initial
values of § and A incompatible and possibly cause the least squares
routine to diverge.

The estimated values and their standard errors3 are shown in

Table 5.
TABLE 5
PARAMETER ESTIMATES AND STANDARD ERRORS
Standard Errors
‘EEEEEEEEE Estimate Unconditional Conditional
9 423 117 114
(i) .891 .054 .054
§ - .663E-3 .117E-2 .232E-3
A -.212 .219
o .351E~4

There are two ways of viewing the distributions of the esti-

mators 0, @D, and §. We can consider their distributions conditional
on a fixed value of A. Or we can admit the possibility of random

S

variation in X and thus allow additional random variation in 6, @D,
and 3.

The procedure we are using is designed to choose the best
metric, or transformation, for our analysis. Given that we have
selected A = -.212, we should examine the adequacy of our model for the
data thus transformed. In other words, we should examine the estimates
using statistics conditioned on our choice of A. From Table 5 we see

A A

that from this point of view, each of the estimates 6, @E, and § is
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more than two standard errors away from zero and thus can be considered
significant.
| It is worth noting that if we had first transformed our data

using A = .212 and then estimated the other parameters using standard
Box~Jenkins techniques, we would have arrived at identical estimates
with the same estimated standard errors as the conditional standard
errors in Table 5.

We can reconcile the two points of &iew by examining the cor-
relation matrix4 of the estimators 6, d% s g, and i given in Table 6.
This matrix allows random variation in all of the estimators jointly and

therefore corresponds to the unconditional case above.

TABLE 6

ESTIMATED CORRELATION MATRIX

|

@

|o»
|>

8  1.00
® -.11  1.00
§  -.20 .12 1.00

A -.22 .10 .98 1.00

A

There is very little correlation between either 0 and A or @ and i,
implying that the standard deviations of 8 and éb will be little

affected by conditioning on A. This confirms the figures in Table 5.
These results are also consistent with our observation tﬁat the auto-

correlations and partial autocorrelations, which are functions of 6 and

QD » are insensitive to the transformation parameter A.
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On the other hand, there is extremely high correlation between
X and 5. As pointed out earlier, this is expécted because A is a scale
parameter directly affecting the measurement units of 8. Consequently,
if we allow A to vary, we must also expect 8 to vary, not only because
of the random.errors in themodel, but also because its units of measure-
ment are changing. Thus the large, unconditional standard error for 8
(shown in Table 5) also is expected. This standard error is of little
use in determining the significance of 3; however it can be interpreted
only as a measure of the effect of changes in A on the units of measure-
ment of the transformed data.

We also see in Table 5 that the transformation parameter A is
only one standard error away from zero and could, therefore, be regarded
as insignificant. But our purpose is not to test the hypothesis that
the logarithm is the correct transformation: it is to find the trans-
formation that best explains the observed data. We therefore prefer
A =-,212 to a logarithmic (A=0) transformation and expect to obtain
improved forecasting performance through use of this transformation.

The only relevance of the standard error of A is that perhaps the fore-
casting improvement might be expected to be smaller than if A were, say,
two standard errors removed from zero.

Finally, it is useful to examine the nature of the likelihood
surface., In Figure 7 we have plotted the variation of the likelihood L
with 6 and A. (In this iﬁstance L is maximized over () and 6.) Note
that the surface is regular and unimodal, with nearly elliptical contours,
especially near the maximum, supporting our assertion that standard, non-

linear least-squares algorithms will be efficient in this application.

\
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The contours are only slightly inclined to the axes, indicating only
slight correlation between 6 and A. Similar comments apply to the
variation of the likelihood L with @D and A, as shown in Figure 8.
Figure 9 gives the variation of the likelihood L, maximized
over 6, @, and 8, with A. This illustration shows L is approximately
quadratic in A near the maximum and that the curve is well behaved and

unimodal.

Diagnostics

We have now estimated jointly the transformation parameter and
the parameters of the ARIMA(0,1,1):(0,1,1) model based on the transformed
data. The next step is to examine the model for adequacy of fit to the
transformed data.

The adequacy of fit was tested by examining the residuals,
their autocorrelations, and their cross-correlations with the differenced
transformed series. As a first step, we plotted the residuals (see
Figure 10). Examination of tﬂis plot reveals no evidence of systematic
change in variance, nor of cyclical patterns. There is some suggestion
of "stickiness" in one or two places, but the significance of this was
easily checked through the autocorrelation function.

The autocorrelation function of the estimated residuals is
given in Table 7. Nowhere do the autocorrelations exceed two
standard errors in maénitude. At small lags and at multiples of 12,
however, the standard errors can be somewhat smaller than those shown
[6], and care must be taken to allow for this possibility.. Even so,

the only doubtful value is at lag 36, but with no other suspicious values
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there is insufficient evidence to conclude that the residuals are not

white noise.

TABLE 7

RESTDUAL AUTOCORRELATIONS

Approximate
Standard

Lag __Error
1-6 -.07 .03 .15 -.03 -.01 .18 .13
7-12 -.08 .01 .20 -.16 .11 .05 14
13-18 .01 .09 .12 -.09 .03 —.69 . .15
19-24 -.09 .07 -.10 -.10 .08 -.01 .16
25-30 -.25 .01 -.01 .06 .13 -.11 .16
31-36 .03 -.04 -.11 -.07 -.02 -.20 .17

It should be noted that the distributions derived by Box and
Pierce do not allow for the effect of estimating the transformation
parameter A. Thus we have assumed that these distributions are not
greatly affected by the estimation process and that the standard errors
are'approximately the same as in a fixed transformation. This assumption
is supported by our observation that estimates of 6 and @D are insensi-
tive to A, although an analytical investigation must eventually be
undertaken.

The second test calculated the Q statistic [6], [4, p. 291].
This is given by

36, .
Q=159) r, (a) = 26.5
1
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where rk(ﬁ) is the residual autocorrelation at lag k. The factor of 59
is the number of values in the differenced series, and the upper limit
of 36 is chosen as the value beyond which theoretical autocorrelation
becomes negligible. Box and Pierce have shown that Q is asymptotically
X2 with 36-3 = 33 degrees of freedom (there being 3 parémeters, 6, @,
and §, estimated in the model). We have assumed that the Q statistic
will, in this case, be approximately X2 with 32 degrees of freedom, a
reduction of one degree of freedom to allow for estimation of the addi-
tional parameter A. The 5 percent critical value of X2 for 32 degrees
of freedom i; 46.2. This test therefore provides no evidence rejecting
the estimated model.
Finally, we can examine the cross correlations bétween the

differenced series wx(t) =V (t) and the estimated residuals a(t).

Y1992
For positive values of k, we would expect the cross—correlations of

Wl(t) and §(t+k) to be close to zero. The cross—-correlations between
WA(t+k) and ;(t) should be somewhat removed from zero at small lags and
multiples of 12 but should diminish as k increases. This general pattern
is apparent in Table 8.

We conclude from this and the preceding section that the data

is closely approximated by the model

]

A
7, (6) izi&%;_;:k A= -.212

w, (t) = V7. .y, (t)
A 1292 w0
w, (£) = 000663 + (1-.4238) (1-.8918 ) a (t)

Var{a(t)} = .0000351 .
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TABLE 8

CROSS-CORRELATIONS OF RESIDUALS AND DIFFERENCED SERIES

Lag Cross—Correlations a(t), wl(t+k)
1-6 ~.46 .20 -.03 -.05 .05 .02
.12 .09 .04 .07 -.16 .16 -.46
13-18 .16 .06 .02 -.07 .03 -.10
19-24 02 .08 -.17 .09 -.03 .02
25-30  -.19 .04 -.04 .06 .05 -.11
31-36 .07 -.12 .03 -.04 .00 -.12

Cross-Correlations £(t+k), Wk(t)

1-6 -,02 -.05 .01 .05 -.06 .23
7-12 .04 -.17 .27 .00 -.07 .01
13-18 .19 -.07 .18 .00 -.05 .07
19-24 -.11 .13 .03 -.13 .05 .25
25-30 = -.21 .03 .06 -.02 .15 -.01

31-36 -.05 .04 .10 -.11 .04 -.01
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Forecasting

Forecasts were calculated up to twelve months ahead and com-
pared with actual values.

A formula for forecasts of the transformed data can be easily
obtained for the model (10). We use ﬁht(z) to represent the forecast
of Wk(t+%) made from the origin date t. Noting that the forecast of
a(tte) is zero for positivg values of g, we have

w, (1) = .000663 - .423a(t) - .891a(t-12) + .377a(t-13) ,

and for 1 < £ < 12 we have

W, (1) = .000663 - .891a(e-12) + .377a(t-13) .
Now

vy (£) =y, (t) -y, (t=1) -y, (e-12) + yA(t—13),§
and thus |

Yk(t) = wx(t) + yA(t—l) + yA(t—IZ) - yA(t~13) .

We therefore can obtain forecasts §At(2) of yl(t+£) from

e = W@+ 3y () + 3y (1D -y, (1)

and for 1 < £ < 12

th(z) = Wlt(z) + yAt(Rnl) + yA(t+£—12) - yx(t+2—l3) .

Approximate tolerance limits for §At(2) wvere calculated using the methods
described by Box and Jenkins [4, Chapter 5]. Forecasts and tolerance
limits for the transformed data are given in Table 9. Note that the
limits are tolerance (or probability) limits, not confidence intervals.
They are only approximate because they are based on estimated values of

2
0, () s and ¢, rather than true values.
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TABLE 9

TRANSFORMED SERIES--FORECASTS FROM ORIGIN t = 72

95 Percent Tolerance

Lead Time Forecast §At(2) Limits
1 3.4712 + .0118
2 3.4933 + .0137
3 3.4879 + .0153
4 3.4804 + .0168
5 3.4747 + .0181
6 3.4554 + .0193
7 3.4416 + .0205
8 .3.4365 + .0216
9 3.4521 + .0227

10 3.4516 + .0237
11 3.4483 + .0247
12 3.4376 + .0256

orecasts {y of the original series {y(t were then
F { t(%)} f th iginal ies {y(t+2)} h

obtained by means of the inverse transformation

Approximate 95 percent tolerance limits were obtained by
similarly inverting the limits for §At(2)' The final results are shown
in Table 10 and plotted in Figure 11.

There is a special problem with calculating forecasts as in
Table 10. Box-Jenkins forecasts are minimum, mean-square error fore-
casts, and, under the assumption of independent normal residuals, these
are conditional expectations. Because the normal distribution is
symmetrical, the mode and mean colncide and the forecasts become most

probable forecasts.
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TABLE 10

FORECASTS OF ORIGINAL SERIES FROM ORIGIN DATE t=72

Lower . Upper

Lead 95 Percent 95 Percent
Time Limit Forecast Limit Actual Error
1 511 534 559 553 19
2 551 581 613 586 5
3 537 569 604 564 -5
4 519 553 590 553 0
5 505 541 580 519 ~22
6 468 503 541]. 497 . -6
7 443 478 516 481 3
8 433 469 508 470 1
9 456 497 542 492 -5
10 455 496 541 492 =4
11 447 490 538 481 -9
12 429 471 518 453 -18

However, if we obtain such forecasts for transformed data with
a value of A # 1, then use the inverse transformation to obtain fore-
casts of the original series, the distribution of the forecast error
will be skewed and the mode and mean will not be the same. The fore-
casts will still correspond to the mode of the distribution, and there-
fore will be most probable forecasts, but they will not be conditional
expectations nor minimum mean square error forecasts. Some discussion
of the possibility of adjusting forecasts to allow for a quadratic loss
function is given by Chatfield and Prothero t7], Harrison [8], and Box

and Jenkins [5].
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Comparison with Log Model

To compare the forecasting performance of the transformed
model with that of the more conventional log model, we fit the best
model to the logarithms and calculated a set of forecasts. The log

model used was

Wy (£) = V9,20 y(¢)

Wy (t) = .00349 + (1-.389B) (1-.90482)a(t) .

All parameters in this model were significant, and no serious irregu-
larities were found in the diagnostics.

The following sets of forecasts were generated for the log
model. First we found one-step-ahead forecasts for origin dates
72,73,....,83. Then we calculated two-steps-ahead forecasts for origin
dates 72,73,....,82, and so on, until finally we obtained a single
12-steps—ahead forecast for the origin date 72. The same model para-
meters were used at each origin date; no attempt was made to re-estimate
the parameters as additional data points became available with fhe
advancing origin date. A similar set of forecasts was obtained éor the
transformed data model (A=-.212). In both cases, forecasts of the
original data were obtained by simple inversion of forecasts of the
transformed data, and no adjustment was made for skewness.

Table 11 summarizes the forecasting errors for the transformed
(A=-.212) model and the log model. These results speak for themselves:

the model for A=-.212 was clearly superior.
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Discussion

Use of the Box-Cox tfansformation,in this example has been
shown to give greatly improved forecasting performance. This approach
‘is new and relatively untried, however, and there are several issues
yet to be resolved.

First, identification depends largely on the near orthogo-
nality of the estimator for A and the estimators of the other structural
parameters. A group at the University of Michigan is working on a formal
proof of this property, but until they are finished, we have only our
rather limited experiemnce on which to rély. Similarly, we believe that
asymptotic distributions of parameter estimators and residual autocor-
relations remain unchanged except for the loss of a degree of freedom,
but, again, a rigorous analytical proof is required.

Forecasting performance has not yet been ful}y investigated.
Experience to date has disclosed substantial improvements in forecasts,
and we have found no'casé in which inferior forecasts were generated.
However, a detailed empirical study covering a wide range of time
series is being planned by researchers at The University of Michigan to
substantiate this experience. It will adopt the same general approach
as used by Reid [13] and Newbold and Granger [4] to compare different
forecasting methods. Despite these reservations, all indications are
that the modified Box-Jenkins method is easy to use and gives generally

better forecasts. In short, it seems to work.



Footnotes

The reason for working with the transformation (1) rather than the
power transformation (2) is that the former is continuous at A = 0
(the log transformation).

Pierce [12] has shown that the Box-Jenkins least-squares estimators
are consistent and have the same asymptotic distributions for both
normal and non-normal series.

Standard errors were obtained by inverting the estimated information
matrix (see Box and Jenkins [4, p. 227]).

This matrix was obtained by inverting the estimated information
matrix.
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