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Abstract
Spector (1987) concluded that there is little evidence of method variance in MTMM data
from 10 studies of self-reported affect and perceptions at work. Williams, Cote, and
Buckley (1989) recently reanalyzed these data and concluded that method variance is
prevalent. In this article we extend these studies by examining several important, but often
neglected, issues inv assessing method variance. A direct product model is described that
can represent multiplicative method effects. It is also proposed that one should carefully
examine model assumptions, individual parameters, and diagnostic indicators, as well as
overall model fits. Our reanalyses indicate that method variance exists in these studies
more often than Spector concluded, but less prevalently than Williams, Cote, and Buckley
asserted. It is also found that methods can have multiplicative effects, supporting the claim

made by Campbell and O'Connell (1967, 1982).
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Assessing Method Variance in Multitrait-Multimethod Matrices:

The Case of Self-Reported Affect and Perceptions at Work

Researchers have often shown a substantial interest in assessing method variance
with multitrait-multimethod (MTMM) matrices (e.g., Campbell & Fiske, 1959; Schmitt,
Coyle, & Saari, 1977). As an artifact of measurement, method variance can bias results
when researchers investigate relations among constructs measured with the common
method. Since method variance provides a potential threat to &e validity of empirical
findings, it seems important to assess the extent to which method variance is problematic in
typical research settings.

Spector (1987) addressed this issue by examining a series of MTMM matrices in
research on self-reported affect and perceptions of work. Following the classic procedure
proposed by Campbell and Fiske (1959), Spector assessed the amount of method effects
by comparing the correlations of different traits measured with the same method (i.e.,
monomethod correlations) and the correlations among different traits across methods (i.e.,
heteromethod correlations). The monomethod correlations were not significantly different
from the heteromethod correlations, and Spector concluded that there was little evidence of
method variance.

Williams, Cote, and Buckley (hereafter WCB, 1989) recently noted a number of
limitations of this analytic procedure. As summarized by Schmitt and Stults (1986) and
Widaman (1985), these limitations are (a) the lack of quantifiable criteria, (b) the inability to
account for different reliability, and (c) the implicit assumptions underlying the procedure,
especially the requirement of uncorrelated methods. It should be emphasized here that
these limitations concern the analytic procedures (i.e., interpretation of correlations) of
Campbell and Fiske (1959),while their core ideas (i.e., the use of multitrait-multimethod

data and convergent and discriminant validity) are sound. WCB reanalyzed the same data
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as Spector (1987) by using chi-square difference tests and variance partitioning with
confirmatory factor analyses (CFA). Their analyses indicated that method variance is
present and accounts for substantial variance in the measures originally examined by
Spector.

The WCB study was executed carefully with a powerful CFA approach. However,
the findings of WCB are inconclusive, because their procedure has several limitations.
First, since their tests examined only overall ef't"ects of method factors, they failed to
provide information about method effects on individual measures. Suppose, for example,
that the chi-square difference test indicates significant method effects in a MTMM model
with 10 measures. This omnibus test does not identify how many and which of the
measures are significantly affected by the methods. For instance, a global test based on
model fits can indicate significant method variance when only 1 of 10 measures is affected
by the method factor. Although they partitioned the variance into trait, method, and error at
the scale level, WCB did not test the significance of the method variance either at the scale
level or at the individual item level. Thus, the WCB study does not give diagnostic
information for drawing conclusions about individual measures in the MTMM matrix.

Second, WCB examined only the chi-square goodness-of-fit test and the normed fit
index (NFI, Bentler & Bonett, 1980), but ignored other indicators such as the adjusted
goodness-of-fit index (AGFI), root mean square residual (RMR), standardized residuals,
and improper estimates, which can provide useful information as to model fit. For
example, the chi-square test is sensitive to sample size and could possibly point to a
satisfactory fit because of a lack of statistical power (e.g., Satorra & Saris, 1985).
Likewise, when many trait and method factors are introduced into a MTMM model, a

satisfactory chi-square may arise simply as a result of over-fitting. One should evaluate a
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structural model by using all the measures of the overall degree of fit as well as information
on individual parameters provided in any particular application.

Finally, the CFA approach taken by WCB assumes that variation in measures will
be a linear combination of traits, methods, and error. That is, methods are presumed to
have additive effects on measures in the CFA model. This may be a reasonable assumption
and in fact can be tested as a hypothesis on any particular MTMM. However, in certain
contexts, traits and methods may interact in the determination of measure variation.
Campbell and O'Connell (1967) went so far as to suggest that such an interaction is "quite
general in nature" (p. 421). The multiplicative relation occurs such that "the higher the
basic relationship between two traits, the more that relationship is increased when the same
method is shared" (Campbell & O'Connell, 1982, p. 95). If methods have indeed
multiplicative effects, the CFA model will be inappropriate for examining method effects.
By using CFA models only, WCB assumed that methods have linear effects for all of the
data examined by Spector (1987), and ignored the possibility of multiplicative method
effects.

WCB, in fact, seem to confuse trait-method interactions with trait-method
correlations. For example, WCB (1989, p. 463) assert that their "analysis assumes that
Trait X Method interactions do not exist (zero correlation among trait and method factors)."
Also, their justification for assuming no interactions on the basis of Widaman's (1985, p.7)
argument that correlations among trait and method factors "present both logical and
empirical estimation problems of great magnitude" is misleading. The degree of association
among traits and methods may be independent of the interaction between traits and
methods, if any.

One purpose of the present article is to investigate these issues that are important,

but often ignored, in assessing method variance through analyses of MTMM matrices. A
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second is to correct any erroneous conclusions about method variance and construct
validity of the data examined by Spector and WCB by incorporating the aforementioned
issues into the analyses. Finally, we attempt to show that the analysis and interpretation of
MTMM data are not straightforward endeavors, but require a careful, detailed consideration

of many criteria as to model specification, goodness-of-fit, and other statistical findings.

Evaluation of Method Variance and Model Fit
The general form of the CFA model for the MTMM data can be expressed with two
sets of equations (e.g., Joreskog, 1974; Werts, Joreskog, & Linn, 1972):

n

y=[ATAM1[ T}+e (1)
Ly

X= AT‘PT A'T + AM‘I‘MA'M +0 (2)

where y is a vector of r x s measures for r traits by s methods, AT and Ay are factor
loading matrices for traits and methods, respectively (defined below), N and nyz are
vectors of r traits and s method factors, respectively, € is a vector of residuals for y, X is
the implied variance-covariance matrix for y, W't and W) are correlation matrices for traits
and methods, respectively, 0 is the vector of unique variances for €, AT =[A1, Ay, ...,

Ad', Ajis a diagonal matrix with factor loadings corresponding to the measures of the i-th

trait, and
(A 0 0]
012...0

Ay =
0
0 0 . . 0 Ag
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where A; is a vector of factor loadings corresponding to the measures obtained by the j-th
method. Application of the CFA model to MTMM data permits one to partition variance
into trait, method, and random error. These reside, respectively, in the squared factor
loadings for AT and Ay and in 6.

Four CFA models can be tested and compared to yield meaningful tests of
hypotheses about method and trait factors (Widaman, 1985):

Model 1: the model hypothesizing that only unique variances are free (i.e., the
null model).

Model 2: the model hypothesizing that variation in measures can be explained
-completely by traits plus random error (i.e., the trait-only model).

Model 3: the model hypothesizing that variation in measures can be explained
completely by methods plus random error (i.e., the method-only
model).

Model 4: The model hypothesizing that variation in measures can be explained
completely by traits, methods, and random error (i.e., the trait-method
model).

Model 4 is, in fact, the hypothesis implied by equations 1 and 2. Models 1-3 are special
cases formed by constraining certain parameters of Model 4. Notice that the null model is
nested in both the method-only and trait-only models and that the method-only and trait-
only models are nested in the trait-method model. Consequently, chi-square difference
tests can be used to test whether trait, method, or trait and method factors are present. For
example, a test of .method variance is provided by comparing Models 1 and 3 as well as

Models 2 and 4.
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The chi-square difference test is an omnibus test that indicates whether or not
measures are significantly affected by methods (or traits). In many cases, however, one
may wish to determine how many and which of the measures are responsible for the global
significance. Also, the method effects should be meaningful and interpretable (e.g.,
Browne, 1984). In this regard, an inspection of the loadings linking method factors to
individual measures is useful, since loadings in Ap represent method-related variance for
each measure (Widaman, 1985). Thus, an examination of loadings for method factors will
provide useful information as to how often the method effects are significant at the

individual item level and whether or not they are meaningful and interpretable.

Multiplicative Effects of Methods

It has been suggested that method factors may interact with trait factors in a
multiplicative way (e.g., Campbell & O'Connell, 1967, 1982; Schmitt & Stults, 1986).
That is, the higher the relationship between traits, the higher the method effects. Swain
(1975) proposed the following direct product model (DPM) to represent the multiplicative
interaction of traits and methods in the MTMM:

= ZM ® Z’I‘ 3)
where X is the covariance matrix of the observed variables, y and 2 are method and trait
covariance matrices, respectively, and ® indicates a right direct (Kronecker) product.

This model expresses the covariance matrix of measurements as the direct product
of a covariance matrix of methods and a covariance matrix of traits. However, this model
has several limitations. The model does not allow for measurement errors or different
scales for different variables, which can limit the applicability of the model in many MTMM
studies. Browne (1984, 1989) thus extended the DPM to overcome these limitations (see

also Cudeck, 1988):
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Z=Z(PM®PT+E)Z 4)
where Z is a nonnegative definite diagonal matrix of scale constants some of which are set
equal to unity to achieve identification, Py and P are nonnegative definite method and
trait correlation matrices, respectively, whose elements are particular multiplicative
components of common score correlations (i.e., correlations corrected for attenuation), and
E is a diagonal matrix of nonnegative unique variances.

The DPM in Equation 4 is called the "heteroscedastic error" model and is equivalent
to a three-mode factor analysis model (Bentler & Lee, 1978; Bloxom, 1968; Tucker, 1966)
with some constraints (Browne, 1984). It can be seen that Equation 4 decomposes test
scores into true scores plus error score components. Under Equation 4 the correlation
matrix corrected for attenuation has a direct product structure,

Pc=Py ®Pr (5)

where Pc is the disattenuated cprrglation matrix with a typical element p(TiMy, TjMy), Py

is the latent method correlation matrix with a typical element p(Mg, My), and Pr is the latent

trait correlation matrix with a typical element p(Tj, Tj). From the definition of a right direct
product, one can then see that a typical element of Equation 5 is

p(Tj My, Tj My) = p(Tj, Tj) p(Mk, M)). 6)
Notice that this equation assumes a multiplicative structure for true scores or common
scores in the factor analysis sense, rather than for observed scores. Browne (1985) has
developed a program, MUTMUM, to estimate the parameters in the DPM, but it has not
been widely used perhaps because of its limited distribution.

Wothke and Browne (1990) have recently shown that the DPM can be reformulated
as a linear model, allowing researchers to estimate the model using the widely available
LISREL program. Specifically, Equation 4 can be written as a second order confirmatory

factor analysis model as follows:
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T=ATOI"A )

where A = Z, I is the partitioned matrix
I'= (CM ® It | Imt) =T11Ty) 8)

CM is a square, lower triangular matrix chosen such that Py = CpC'y, I; and Iy are

identity matrices, and

®P 0 o o
M t 1
“’=[1 0 E }{ o QZJ )

The DPM can be easily restricted to suitable submodels. One useful version of the

model, a composite error model, is defined by the additional restriction

E=E\, ®E, (10)

with Eyp and E1 diagonal. By using the fact that any symmetric, nonnegative definite
matrix can be expressed as the product of a square matrix and its transpose (e.g., Searle,

1982), this restriction can be rewritten as follows:

E= (EMV2 ® It) (Im ® ET) (EMI/2 ® It)' =& 1Y (11)

Several restrictions are needed for the identification of the DPM. First, one equality
constraint per method is required for identification of scale factor estimates (Wothke &
Browne, 1990). This restriction will fix the scale of the component scores. For instance,
one may select a trait and set all its scale factors in Z equal to unity. Alternatively, one can
constrain all diagonal elements of Cp to unity. The two types of restriction may be

suitably combined. Another restriction is required in order to fix the scale of the error
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components, since (a Ep) ® (b ET) = EM ® Et for any a = 1/b. This may be achieved by
fixing one element in either Ep or ET at unity.

Pr is directly estimated in the model, and standard errors of its elements will be
available from the LISREL solution. In contrast, the estimate of Py is obtained by
rescaling Cy C'M into a correlation matrix, and standard errors are not available from the
LISREL output. However, one can obtain the standard errors for the method correlations
by employing an alternative parameterization in which P)/f (rather than P) is directly
estimated. Under the multinormality assumption, the model fit can be evaluated by using

the maximum likelihood chi-square statistic computed as

x2=WN-1)[InIZl-1nISI + trace (ST-1)-rs], (12)
where N is the sample size, and r and s are the number of traits and methods,
respectively. The corresponding number of degrees of freedom is computed as rs (rs +
1)/2 - k, where k is the number of free parameters to be estimated in the model.

Campbell and Fiske's (1959) original criteria for convergent and discriminant
validity have the following direct interpretations in the DPM (Browne, 1984, pp. 9-10).
Evidence for convergent validity is achieved when the correlations among methods in Py
are positive and large. The first criterion for discriminant validity is met when the
correlations among traits in P are less than unity. The second criterion for discriminant
validity is attained when the method correlations in Py are greater than the trait correlations
in P1. The final discriminant validity criterion is satisfied whenever the DPM holds.

These interpretations follow from the DPM specification. Recall that p(Tj M, Tj
M)), a typical element of P¢, denotes the disattenuated correlation between the i-th trait
measured with the k-th method and the j-th trait measured with the I-th method. We know
from Equation 6 that p(Tj M, Tj M)) = p(Tj, Tj) p(Mk, M). The Campbell and Fiske's

criterion for convergent validity is that the monotrait-heteromethod correlations should be
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substantially greater than zero. When we look at the monotrait-heteromethod correlation
p(Ti Mk, Ti M) under the DPM, we see that

p(Ti My, Ti M) = p(Tj, Ti) p(Mk, M) = p(My, MD. (13)
That is, the monotrait-heteromethod correlations are equal to method correlations under the
DPM. As a consequence, convergent validity is achieved when method correlations are
large and positive.

The first criterion for discriminant validity is that the monotrait-heteromethod
correlations, p(Tj Mk, Ti M), should be greater than the corresponding heterotrait-
heteromethod correlations, p(Tj Mk, Tj M) and p(Tj Mk, Ti M), fori # j. One can see
that

P(Ti M, Tj MD/p(Tj Mk, Tj My) = p(Tj Mk, Ti M1)/p(T; Mk, Ti Mp)

=p(Tj, Tj. (14)
That is, the ratios of a monotrait-heteromethod correlation to the heterotrait-heteromethod
correlations become trait correlations under the DPM. Thué, the first criterion for
discriminant validity is met when trait correlations are less than unity. The second criterion
monotrait-heteromethod is that the monotrait-heteromethod correlations, p(Tj M, Tj My,
should be higher than the corresponding heterotrait-monomethod correlations, p(Tj M, Tj
Mo and p(Tj My, Tj M]. From Equation 6 we can see that
p(Ti My, Tj Mi/p(Ti M, Ti M) = p(Ti My, Tj MD/p(Ti Mk, Ti M)

=p(Ti, Tj) / p(Mk, Mp). (15)
That is, the ratios of monotrait-heteromethod correlations to heterotrait-monomethod
correlations become the ratios of trait correlations to method correlations under the DPM.
As a consequence, this criterion is met when the method correlations are greater than the
trait correlations. The final criterion monotrait-heteromethod is that all matrices of intertrait

correlations should have the same pattern whichever methods are used. This criterion is
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met whenever the DPM holds, since the ratio

p(Ti M, Tj M1)/ p(Tm My, Tn M1) = p(Ti, Tj)/p(Tm, Tn) (16)
has the same value for any Mg and M].

The DPM hypothesizes multiplicative effects of methods and traits such that sharing
a method exaggerates the correlations between highly correlated traits relative to traits that
are relatively independent. That is, the higher the intertrait correlation the more the
relationship is enhanced when both measures share the same method, whereas the
relationship is not affected when intertrait correlations are zero. An important question then
arises: What processes underlie the multiplicative effects of method factors?

One view might be called differential augmentation (Campbell & O'Connell, 1967,
1982). This view explains the multiplicative effects by a functional interaction between the
"true" level of trait correlation and the magnitude of method bias. A conventional position
is that method factors add irrelevant systematic (method-specific, trait-irrelevant) variance
to the observed relationships. That is, sharing a method is expected to augment or increase
the correlations between two measures above the trﬁe relationship; halo effects and
response sets provide evidence for such method bias. However, not all relationships are
likely to be equally exaggerated by sharing the method. Only relationships that are large
enough to get noticed are more likely to be exaggerated. Campbell and O'Connell (1967,
pp. 421-422) provide an example of such effects where ratings (e.g., self-ratings and peer-
ratings) are used as methods. Each rater might have an implicit theory (expectations) about
the relationships (co-occurrence) of certain traits, which will lead to a rater-specific bias. In
such cases, the stronger the "true" associations are between traits, the more likely they are
to be noticed and exaggerated, thus producing the multiplicative method effect pattern. In
sum, this view hypothesizes that method factors augment or exaggerate the observed

correlations differently, depending on the level of true trait relationships.
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Another possible explanation for the mulﬁpﬁcaﬁve method effects is a differential
attenuation perspective (Campbell & O'Connell, 1967, 1982). A conceptual basis for this
view is that using different methods will attenuate the trait relationships better represented
when method is held constant rather than varied. Not sharing a method attenuates the true
relationship so that is appears to be less than it should be; that is,vmethods are seen as
diluting trait relationships rather than adding irrelevant systematic variance. This view
asserts that not sharing a method attenuates the observed correlations differently, depending
on the level of true trait relationships. Suppose, for example, that multiple occasions are
used as methods. It is often found in longitudinal studies that correlations are lower for
longer time lapses than shorter lapses, following a so-called autoregressive process.
According to thé autoregressive process, a high correlation between two traits will be more
attenuated over time than a low correlation (for more details, see Campbell & O'Connell,
1982, pp. 100-106). In contrast, a correlation of zero can erode no further, and it remains
zero when computed across methods (here occasions). It can also be noted that the
traditional concept of attenuation due to the unreliability of measures shows a multiplicative
pattern, because high correlations are more attenuated by unreliability than low ones. See
Campbell and O'Connell (1982) for a detailed discussion on these two explanations for
multiplicative effects.

In sum, the CFA model and DPM hypothesize different functional forms for trait
and method effects: the former additive, the latter multiplicative. In principle, the two
models constitute alternative explanations for MTMM data. Specifically, the effects of a
method are hypothesized to be constant in the CFA model. In contrast, method effects are
hypothesized to vary with the level of trait correlations in the DPM. Although Campbell
and O'Connell (1967, 1982) imply that trait and method interactions are the rule rather than

the exception, it might be better in any specific case to examine which (additive or




Assessing Method Variance
15

multiplicative) model is more appropriate. Ideally, one should have substantive expectation
about the method effects prior to selecting a model. If no prior expectations are available,

the researcher should test both models in order to discover which process is at work.

Method
For each of the 10 studies (11 data sets) examined originally by Spector (1987) and
later by WCB (1989), four confirmatory factor analysis models (Models 1 to 4) were fitted
by following the procedures suggested by Widaman (1985; see also WCB, 1989). Figure
1 provides an example specification of the full CFA model (i.e., Model 4) for MTMM data
with three traits and three methods. It can be seen that Models 1 to 3 are derived from

Model 4 by constraining certain parameters.

Insert Figure 1 about here

The effects of method factors were examined in two ways. First, the hierarchically
nested models were compared in order to determine whether the introduction of method
factors improves the fit of the model. Specifically, Model 1 (null) is compared with Model
3 (method-only), and Model 2 (trait-only) is compared with Model 4 (trait and method).
Second, the specific effects of method factors were examined by examining the statistical
significance of the individual method factor loadings. For each measure, the method factor
loading indicates the effect of the method factor, and the square of the loading indicates the
percentage of variance due to the method factor (Widaman, 1985). Thus, the significance
of factor loadings was examined in order to determine whether the method variance is
significant.

As noted earlier, we also tested the possibility that Trait X Method interactions
exist. In this regard, the DPMs were fitted on the basis of the procedures proposed by
Wothke and Browne (1990). Because the causal diagram for the LISREL
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operationalization is quite cumbersome (e.g., there are 27 latent variables alone for the
smallest model with three traits and three methods), we have not provided a figure.
However, the appendix contains the input program needed to perform a DPM analysis of
the data found in Gillet and Schwab (1975).

Marsh and Hocevar (1988) recently introduced a new, powerful approach to
MTMM analyses that uses hierarchical confirmatory factor analysis. As an alternative to
CFA, this procedure explicitly partitions total variance into additive components for random
measurement error, variance specific to each trait-method combination, variance common to
a trait across methods, and variance common to a method across traits. But the approach
requires multiple measures for each trait-method combination, unlike the CFA or DPM.
Since none of the data sets reported in the studies considered herein satisfied this
requirement, this approach was not used in our study.

All statistical analyses were performed using the LISREL 7 program (Jéreskog &
Sérbom, 1989), given the widespread use of LISREL among researchers (e.g., Bagozzi,
1980; Widaman 1985). LISREL 7 provides several advantages over earlier vefsions (e.g.,
LISREL 6); for example, the correct formula for the asymptotic variances of the residuals
is used, and an error in the computation of the adjusted goodness-of-fit index (AGFI) has
been corrected. Throughout our analyses, the models were evaluated using multiple
indicators of goodness-of-fit. These indicators included (a) chi-square tests, (b) AGF], (c)
RMR, (d) the number of large standardized residuals, and (e) the number of improper

estimates (these will be discussed below).

Results
Table 1 presents the results of the four CFA models discussed earlier for examining
trait and method effects. One can note that the descriptions of four data sets are different

from those provided by Spector (1987) and WCB (1989). Specifically, the sample size is
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111 (not 302) and 723 (not 941) for Alderfer (1967) and Sims et al. (1976), respectively,
whereas the number of traits is 4 rather than 5 for both Dunham et al. (1977) and Gillet and
Schwab (1975). These corrections were made after a close inspection of the data given in
the original articles. For example, there are only four traits that are common across
methods in Dunham et al. (1977, p. 429), contrary to the description in the WCB (1989, p.
465) study. It should be noted that convergence failures were common when both method
and trait factors were included in CFA models. Nevertheless, by judicious choices of
starting values, we were able to achieve satisfactory solutions in most instances.

The first thing to notice is that the CFA model with traits and methods fits most data
sets well. This is shown in the last column in Table 1. Specifically, in 10 of 11 data sets,
the CFA model explains the MTMM data quite well. It should be stressed here that this
conclusion is based on an interpretation of the chi-square goodness-of-fit tests alone. Later
we will scrutinize additional goodness-of-fit measures and other diagnostic criteria which
make the interpretation problematic.

Table 2 provicies the chi-square difference tests based on comparison of two sets of
nested models: M1 vs. M3 and M2 vs. M4. The comparison of M1 and M3 shows that
the introduction of method factors significantly drops the chi-square value in each data set,
indicating that meaningful improvements over the null models are achieved (see the first
column in Table 2). The comparison of M2 and M4 also shows that the introduction of
method factors provides significant improvements over the trait-only models for all data
sets except Spector (1985). Notice that the two chi-square difference statistics are generally
quite different in their magnitude (e.g., 1096.8 vs. 53.1 for Meier, 1984) with the same
degrees of freedom. It is thus possible that the two chi-square difference tests can lead to

different conclusions. Indeed, for Spector's (1985) data the comparison of M1 vs. M3
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shows a significant chi-square difference test, whereas the comparison of M2 vs. M4
yields a nonsignificant chi-square difference test.

Insert Tables 1 & 2 about here

Thus, a question arises: Which chi-square difference test should be used in order to
assess method effects? We believe that the test should be based on the comparison of M2
and M4 for two reasons. The first reason stems from the definition of method variance.
Campbell and Fiske (1959) defined method variance as variance attributable to
measurement method rather than to the constructs of interest. This definition suggests that
method variance refers to the variance that cannot be explained by traits but that is explained
by methods. Second, the baseline model should be chosen from the set of meaningful
models researchers already accept as valid (Sobel & Bohmnstedt, 1985). In most MTMM
matrices, the measures are not selected at random, but rather are systematically chosen in
order to capture traits. These considerations imply that the trait-only model should be a
baseline model for the chi-square difference tests. In sum, the chi-square difference tests
suggest that method variance is significant in 10 of 11 cases.

Next we examined the statistical significance of method factor loadings for
individual measures. If a loading is greater than twice the value of its standard error, then it
is judged to differ from zero. Since the method factor loading reflects the degree to which
the observed measure is determined by the method factor, this test would indicate whether
or not the variance due to the method factor is significant. The third column of Table 2
summarizes these results. The method factor loading was significant for 0 of 10 measures
for Alderfer (1967) and both data sets in McCabe et al. (1980, 1 & 2), 0 of 8 measures for
Gillet and Schwab (1975) and Pierce and Dunham (1978), 1 of 10 measures for Spector
(1985), S of 10 measures for Johnson et al. (1982), 5 of 9 measures for Meier (1984), 7 of
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8 measures for Sims et al. (1976), and 10 of 10 measures for Dunham et al. (1977) and
Soutar and Weaver (1982).

That is, none of the method factor loadings was significant for five data sets (i.e.,
Alderfer, 1967; Gillet & Schwab, 1975; McCabe et al., 1980 (1) & (2); Pierce & Dunham,
1978). For four data sets (Spector, 1985; Meier, 1984; Johnson et al., 1982; Sims et al.,
1976), method factors were found to have significant effects for some of the measures
employed in each study. 'In contrast, two studies (Dunham et al., 1977; Soutar & Weaver,
1982) showed that all the method effects were significant. Overall, in 5 out of 11 data sets
half or more of the measures showed significant effects of method factors. Across these
five studies, 78% (37/47) of the method factor loadings were significant.

We also examined the possibility that the nonsignificance of method loadings might
be due to empirical underidentification or over-fitting (Kenny, 1979). For example,
empirical underidentification can increase the standard errors of parameter estimates
(Rindskopf, 1984), which may lead to the nonsignificance of method factor loadings.
However, an inspection of the parameter estimates and their star;dard errors gives no
indication of empirical underidentification or over-fitting,!

Another important consideration in assessing method effects is the interpretability of
parameter estimates. Parameter estimates are inconsistent if they are highly unlikely or
contradict what would be expected on the basis of theoretical or methodological reasoning.
For example, if method effects are inconsistent in the sense of yielding both positive and
negative loadings on the same method factor, they are typically uninterpretable.2 Browne
(1984, p. 7) terms these "wastebasket parameters” to indicate that they are introduced to
achieve a satisfactory goodness-of-fit but do not have a substantive interpretation (see also
Kenny, 1979, p. 154). With respect to our reanalyses, the results showed that Sims et al.
(1976) and Meier (1974) had 2 and 1 inconsistent loadings for method factors,
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respectively, rendering method factors in these studies difficult to interpret. However, it
should be noted that across these two studies 14 of 17 method factor loadings were
consistent and 12 of 17 were significant.

In sum, in five data sets (i.e., Dunham et al., 1977; Johnson et al., 1982; Meier
1984; Sims et al., 1976; Soutar & Weaver, 1982) most method factors (78%) showed
statistically significant effects. These results suggest that method variance can often be
significant, consistent with WCB (1989). In the other six data sets, however, many of the
individual method loadings showed statistical nonsignificance. Spector (1987) concluded
that there was little evidence of method variance (i.e., 1 of 10 studies), whereas WCB
concluded that there was strong evidence of method variance (i.e., 9 of 11 data sets).
Thus, the findings of our investigation suggest a conclusion somewhere between Spector's
(1987) and WCB's (1989).

So far, we have implicitly assumed that the CFA model is adequate for analyzing all
the data sets. However, the assumed structure of Fhe trait and method effects should be
tested with various goodness-of-fit indicators for the CFA model. Table 3 summarizes a
number of diagnostics for each data set. The chi-square test, adjusted goodness-of-fit
index (AGFI), and root mean squared residual (RMR) are overall measures of fit in the
sense of expressing the discrepancy between the variance-covariance matrix implied by
one's hypothesized model and the observed variance-covariance matrix.

Two additional criteria can be examined in the evaluation of CFA solutions. First,
the size of standardized residuals was examined. The standardized residuals are formed by
taking the residuals from the observed and implied variance-covariance matrices and
dividing these residuals by their asymptotic standard errors. "Each standardized residual
can Be interpreted as a standard normal deviate and considered 'large’ if it exceeds the value

2.58 in absolute value" (Joreskog & Sorbom, 1989, p. 32). Standardized residuals can be
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obtained as an option on LISREL 7. The presence of large standardized residuals indicates
that a significant amount of variance remains unexplained and that the model may be
misspecified.

A second procedure we used was an examination of each parameter for the presence
of improper estimates. An improper estimate is one that is either illogical or outside the
range of conventional acceptability. Negative error variances, correlations greater than
1.00, and standardized factor loadings greater than 1.00 are examples. Since improper
estimates often result from model misspecifications (e.g., van Driel, 1978), they provide
useful information about the adequacy of a model. Thus, the presence of large
standardized residuals or improper estimates would indicate that the hypothesized model is
not appropriate for the given data set.

Only statistically significant anomalies were considered improper estimates in this

study. For example, nonsignificant negative error variances were not counted as improper

estimates since they could occur as a result of sampling errors. Similarly, we counted as

inconsistent estimates only those that were statistically significant and opposite in sign to
that expected. Nevertheless, it should be acknowledged that the presence of a significant
number of nonsignificant error variances could point to model misspecification if no
theoretical or methodological reason can be offered to explain their occurrence.

Applying the above criteria to our analyses, we obtained the summary of results
shown in Table 3. Notice first that the Dunham et al. (1977) analysis yielded an
unsatisfactory goodness-of-fit based on the chi-square test (e.g., X2 (76) =258.0,p <
.001) and 91 large standardized residuals. The data of Gillet and Schwab (1975) showed a
satisfactory chi-square statistic (i.e., %2 (5) = 6.1, p > .28), but revealed 6 large
standardized residuals. All studies showed satisfactory levels of AGFI with the possible
exception of the data in McCabe et al. (1980, 2) (AGFIs ranged from .87 to .97) and
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satisfactory levels of RMR with the possible exception of the data in Dunham et al. (1977)
(RMR values ranged from .01 to .08). No improper estimate was found for any of the data
sets. On balance, we have reason to accept the CFA solutions for 9 of the 11 data sets.
However, the analyses of the Dunham et al. (1977) and Gillet and Schwab (1975) give
unsatisfactory goodness-of-fit. Thus, we reject the hypothesis of linear, additive effects
for methods as implied by the CFA for these two data sets.

Next we examined whether the DPM is a viable alternative, especially for the two
data sets not fitting the CFA pattern. Table 4 presents a summary of the findings for the
DPM applied to each data set. On the basis of the standard goodness-of-fit indicators, the
DPM appears to fit the data of Gillet and Schwab (1975) and possibly Spector (1985). For
example, the chi-square tests indicated an acceptable fit for these data sets: %2 (16) = 17.6,
p > .30; %2 (28) = 40.9, p > .06, respectively. However, the Spector (1985) data revealed
6 large standardized residuals, suggesting a model specification error. In fact, an
inspection of the standardized residuals reveals the presence of large values in 8 of the 11
DPM analyses. In addition, 4 improper estimates were found in the Alderfer (1967) |
analysis. Finally, one error message arose in the analysis of the McCabe et al. (1980, 2)
data, suggesting that one parameter was unidentified. Because the parameter in question
was in fact theoretically identified, it is likely that the message refers to empirical
underidentification (Dillon, Kumar, & Mulani, 1987; Kenny, 1979; Rindskopf, 1984). In
sum, when all the goodness-of-fit indicators and diagnostics are taken into account, the
evidence supports the DPM for the data of Gillet and Schwab (1975), but not for any of the
remaining 10 data sets. Table 5 presents the individual parameter estimates for the DPM

analysis of the data in Gillet and Schwab (1975).

Insert Tables 3, 4, & 5 about here
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Examination of the parameter estimates in Table 5 reveals some useful information
about the properties of trait and method factors. The trait correlation matrix Pr can be
easily retrieved from @j. As expected, the elements of Pr, the trait correlation coefficients
corrected for attenuation, are larger than the original (observed) correlation coefficients
(reported in the original Gillet and Schwab study). For instance, the disattenuated
correlation between promotion and pay is .63, which is higher than the corresponding raw
correlations (ranging from .34 to .55). However, Pr reflects trends in the correlations
among the observed measures. That is, the promotion-pay correlation is relatively large,
while the promotion-coworkers and pay-coworkers correlations are small, consistent with
the pattern in the original MTMM data. Similarly, the elements of Py can be examined.
By use of the findings in Table 5, we found that the correlation between the two methods is
.79.

An important purpose of MTMM analyses is to assess the construct validity of
measures. Thus, the convergent and discriminant validity were examined for each data set
using both CFA models and DPMs. The convergent validity in the CFA model was first
assessed by comparing hierarchically nested models (Schmitt & Stults, 1986; Widaman,
1985): M1 vs M2 and M3 vs. M4 (see Table 1). The comparison of Model 1 with Model
2 resulted in a significant chi-square difference in all studies, suggesting that the addition of
trait factors to a null model resulted in a better fit. The comparison of Model 3 and Model 4
also yielded a significant chi-square difference in all the studies, indicating that the addition
of trait factors improved the model fit significantly.

We then examined the loadings in AT to gain information for the degree of
convergent validity. The loadings for trait factors indicate trait-related variation in the
measures, and the extent of trait variation reflects the magnitude of shared variation for two

Or more measures on a common factor. Within the context of CFA, this variation has
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method and error variance removed fromit. Trait variance thus yields a quantitative
indicator of the degree of convergent validity. Convergent validity can be said to result
when the trait factor loading on a measure of interest is statistically significant.

In Table 6, convergent validity in the above sense is achieved for most data sets.
Specifically, the loadings for trait factors were significant 0 of 10 times for Alderfer
(1967), 0 of 8 times for Gillet and Schwab (1975), 7 of 10 times for Soutar and Weaver
(1982), 8 of 8 times for Pierce and Dunham (1978) and for Sims et al. (1976), 9 of 9 times
for Meier (1984), 10 of 10 times for Johnson et al (1982), for McCabe et al. (1980, 1 &
2), and for Spector (1985), and 16 of 16 times for Dunham et al. (1977). Overall, 81% of
measures showed convergent validity across studies. In sum, two data sets failed to
achieve convergent validity, one data set revealed mixed results, and eight data sets
achieved convergent validity (see Table 7 for a summary). We should stress that this
conclusion is based on the statistical significance of trait factor loadings. It is possible that

significant trait factor loadings can be low from a practical point of view.

Insert Tables 6 & 7 about here

We assessed discriminant validity by examining the correlations among traits and
their standard errors under the CFA model. Discriminant validity among traits is achieved
when an intertrait correlation is significantly different from 1.00 or when the chi-square
difference test indicates that the two traits are not perfectly correlated (e.g., Schmitt &
Stults, 1986; Widaman, 1985). Discriminant validity was established for all the measures
of 7 data sets: Dunham et al. (1977), Johnson et al. (1982), McCabe et al. (1980, 1),
McCabe et al. (1980, 2), Pierce and Dunham (1978), Spector (1985), and Sims et al.
(1976). In contrast, discriminant validity was achieved 8 of 10 times for Alderfer (1967),
0 of 6 times for Gillet and Schwab (1975), 6 of 10 times for Soutar and Weaver (1982),
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and 2 of 3 times for Meier (1984). The third column of Table 7 summarizes the results of
these analyses.

We also examined convergent and discriminant validity under the DPM using the
criteria described earlier. Because the method correlation (i.e., r =.18) is small in Alderfer
(1967), we conclude that convergent validity is not achieved. Because the method
correlations are relatively large in all other studies, we conclude that convergent validity is
achieved. Specifically, the average method correlation was .64 for Dunham et al. (1973),
.79 for Gillet and Schwab (1975), .77 for Johnson et al. (1982), .98 for McCabe et al.
(1980, 1 & 2), .94 for Soutar and Weaver (1982), .94 for Spector (1985), .83 for Pierce
and Dunham (1978), .83 for Sims et al. (1976), and .94 for Meier (1984), respectively.

The test of discriminant validity can be illustrated with the data of Alderfer (1967).
The correlations among traits ranged from —.02 to .03, and are significantly less than unity,
satisfying the first criterion of discriminant validity. The method correlation was .18,
which was larger than any of the trait correlations, satisfying the second criterion. The
third requirement was also met. Similarly, all the stﬁdics were evaluated in terms of these
criteria. As the final column of Table 7 shows, the criteria for discriminant validity were

met for all studies, except for Dunham et al. (1977).3

Discussion

We have investigated the nature of method effects (i.e., additive or multiplicative)
by comparing two alternative models: CFA and DPM. To gain a perspective into the
issues, let us examine Table 7 summarizing the conclusions implied by the CFA and DPM
analyses. The conclusions in the table are based on a full interpretation of goodness-of-fit
measures, parameter estimates, and the other diagnostics mentioned earlier (cf. Tables 3
and 4). Looking first at the model fit criteria in the full sense, we see that neither the CFA
nor DPM hypotheses fit the data of Dunham et al. (1977). The DPM, but not the CFA
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model, fits the data of Gillet and Schwab (1975).4 In contrast, the CFA model, but not the
DPM,, fits all the other data sets. The results across studies tend to support the premise that
MTMM data can be explained by either additive or multiplicative method effects, but not by
both.> Only the data in Dunham et al. (1977) failed to fit the models by either approach.
Why was this? One explanation is methodological. Dunham et al. administered 41 scales
to respondents with each scale containing many items. This might have induced fatigue
and other biases, leading to the lack of a discernable structure in their data.

If we were to have based our conclusions on model fit solely on the chi-square
goodness-of-fit tests (cf. Tables 3 and 4), the CFA model would be accepted for Gillet and
Schwab (1975), whereas the DPM would be accepted for Spector (1985). Aside from
overlooking the anomalies noted in the Results section, the use of only the chi-square
goodness-of-fit test thus leads to ambiguous and contradictory results for these data sets.
We see the need for a careful examination of individual parameter estimates, standardized
residuals, and the additional diagnostics noted earlier.

If we examine the evidence for‘convergent and discriminant validity, we see that the
CFA and DPM conclusions can be quite different (see Table 7). Consider, for example,
the analyses of the data in Gillet and Schwab (1975). Here CFA points to a failure to
achieve convergent and discriminant validity, whereas the DPM leads to a conclusion of
satisfactory convergent and discriminant validity. Which conclusion should be made?
Recall that the DPM gave a satisfactory fit to the data, whereas the CFA model was
rejected. From this perspective, more credence should be given to the conclusion from the
DPM analysis. This result suggests that one should investigate the structure of method
effects before assessing construct validity.

To date, most analyses of MTMM matrices have been based on the assumption that

effects of methods and traits are additive. As Campbell and O'Connell (1967, p. 424)
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argued, the assumptions underlying the additive models of factor analysis have been
untested. Researchers have invariably used factor analysis as the criterion to which the data
should fit, never vice versa. However, analytical procedures should be chosen based upon
the fit of the models (e.g., CFA or DPM) to the data. That is, the models should be tested
against data, rather than merely assumed. Our analyses revealed that the multiplicative
effects are plausible at least for some data, suggesting that more attention should be given
to the DPM in MTMM analyses (see also Bagozz & Yi, 1990).

One potential limitation of the DPM might be noted. The DPM criterion for
convergent validity requires that the method correlations be substantial. Notice that this is a
composite indicator that implicitly takes into account the resultant convergence among
multiple measures for each trait. The composite indicator does not identify the degree of
convergent validity or point out which measure(s) is satisfactory or not. The CFA criterion
for convergent validity based on the amount of trait variance for each measure, suggested in
this study, provides diagnostic information as to which of the measures achieve convergent
validity. Such diagnostic results can aid researchers in item selection for future research
(cf. Anderson & Gerbing, 1988). It thus appears that the DPM is less informative than the
CFA model with respect to convergent validity.

The primary focus of the current article was on the adequacy of the MTMM models
based on commonly accepted statistical criteria. We now turn to consideration of the
practical relevance of the findings with particular emphasis on the nature of over-fitting.
For each of the data sets, we computed noncentralized normed fit indices for a) the trait-
only CFA model compared with the null model, b) the trait-method CFA model compared
with the null model, and c) the trait-method CFA model compared with the trait-only CFA
model. The first two indices give the proportion of total information accounted for by the

trait-only and trait-method models, respectively, from a practical standpoint (e.g., Bentler
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& Bonett, 1980; Mulaik et al., 1989). The third index provides an indication of the gain in
goodness-of-fit when going from the trait-only to trait-method CFA model. In all three
indices, the appropriate degrees of freedom are subtracted from their respective chi-square
values to yield noncentralized estimates. The noncentralized normed fit indices remove the
bias in small samples of the ordinary normed fit indices (e.g., McDonald & Marsh, 1990).
Table 8 presents the findings for the application of the aforementioned
noncentralized normed fit indices (NNFI) to the 11 data sets examined herein. Notice
initially in the first column that NNFIs for the trait-only model are quite large for most data
sets. This suggests that trait factors explain a substantial amount of information in the 11
data sets. An inspection of the second column shows that both trait and method factors
explain virtually all the information in the data (except for Dunham et al., 1977). When we
examine the increment in NNFIs when going from the trait-only to the trait-method CFA
model (see columns 3 in Table 8), the values range from .01 to .12. Our analyses based on
commonly accepted statistical criteria showed that method variance is significant for five of
eleven data sets (see Table 2). In three of these five studies (i.e., Dunham et ai., 1977,
Johnson et al., 1982; Sims et al., 1976), the improvement in the NNFI value due to the
addition of methods is larger than .05 (.09, .12, and .06, respectively). One might thus
conclude that method variance is significant in both statistical and practical senses for these
data sets if .05 value is used as a rule-of-thumb for practical significance. In fact, three
other studies with nonsignificant method loadings (Alderfer, 1967; McCabe et al., 1980
(1); Pierce & Dunham, 1978) showed the NNFI increment larger than .05 (.11, .05, and
.07, respectively). From this perspective, one could argue that method factors are
important for these studies on the basis of the NNFI values (as well as the chi-square
tests). However, it should be stressed that standards are lacking as to what constitutes a

significant increment in NNFIs.
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Insert Table 8 about here

Some caveats of the present study are in order. The findings of this investigation
might be limited in their generalizability, because they are based on empirical data setsin a
selected research area (cf. Bagozzi & Yi, 1990). Caution is also needed in comparing the
results across the studies examined, because they had different sample sizes. It has been
shown that the sample size has significant effects on goodness-of-fit indicators such as
AGFI and RMR (La Du & Tanaka, 1989; Marsh, Balla, & McDonald, 1988). It should
also be mentioned that the rules suggested for assessing validity and practical significance
are merely heuristics.

In summary, this research indicates that the assessment of method variance in
MTMM analyses is a complex process involving a number of criteria. Our reanalyses of
the data analyzed by Spector suggest that the conclusions stated by WCB (1989) could
have been an artifact of their analytic procedure which was solely based on overall tests of
fit. In the 10 studies on affect and perceptions at work, method variance is sometimes
significant, but not as prevalent as WCB concluded. It is also found that method effects are
sometimes multiplicative (though much less prevalently than Campbell and O'Connell
suggested) rather than additive, so that the usual confirmatory factor analysis model is
inappropriate. Thus, it seems necessary for researchers to consider alternative models
(i.e., the CFA model and DPM) in analyzing MTMM matrices.

Future research should be directed at determining the conditions under which each
model is appropriate. One might conduct simulation studies to compare the performance of
alternative models (i.e., CFA model and DPM) over a range of relevant factors. Such
studies will give a better understanding of the consequences and implications of employing
the improper model in analyzing MTMM data. One should also examine MTMM data in

other substantive areas for the generalizability of the findings.
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Appendix

The following is an input program specification of the direct product model for the data in
Gillet and Schwab (1975).

Title Direct Product Model for the Gillet and Swab Data
DA NI=8 NO=273 MA=KM

[data]

MO NY=8 NE=8 NK=16 LY=DI, FR GA=FU,FR PH=SY,FR PS=ZE BE=ZE, TE=ZE
ST8LY1-LYS8

EQLY1LYS

PA GA

*

0000000010000000
0000000001000000
0000000000100000
0000000000010000
1000100000001000
0100010000000100
0010001000000010
0001000100000001

MA GA

*

1000000010000000
0100000001000000
0010000000100000
0001000000010000
1000100000001000
0100010000000100
0010001000000010
0001000100000001
EQGA51GA62GA73GA84
EQGA55GA66GA77GA88
FIGA19GA210GA311GA 412



EQGAS513GA614GA715GA8 16
PA PH

%k

0

10

110

1110

00000

000010

0000110
00001110
000000001
0000000001
00000000001
000000000001
0000000000001
00000000000001
000000000000001
0000000000000001
MA PH

*

1

51

551

5551

00001

0000.51
0000.5.51
0000.5.5.51
00000000.2
000000000.2
0000000000.2
00000000000.2
000000000000.2
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0000000000000 .2
00000000000000.2
000000000000000.2
EQPH21PH6S
EQPH31PH7S
EQPH41PHSS
EQPH32PH76
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Footnotes

1 We thank two anonymous reviewers for suggesting these ideas. Also, a third
reviewer pointed out that the difference in conclusions for the test of overall versus
individual method effects may reflect the properties of the chi-square statistic and its
degrees of freedom. For example, a chi-square value of 3 with 1 degree of freedom is not
significant. But if this chi-square value were tested together with another value (an
omnibus chi-square test of 6 with 2 degrees of freedom), it would be considered
significant.

2 A reviewer suggested that negative as well as positive loadings on the method factor
could occur, if organizational informants were employed as methods. Presumably this
could reflect systematic biases from multiple informants in a manner leading to opposite
effects on each measurement. For example, if two informants from each of a set of
organizations provided information on each measurement in a MTMM design and the
responses were systematically influenced in opposite ways (e.g., due to differences in
knowledge, position in hierarchy, vested interest, power, etc.), negative and positive
loadings could occur across items on a method factor.

3 Since no standard errors were available in McCabe et al. (1980, 2) because of the
empirical underidentification problem, the first criterion could not be tested statistically.
But the size of the correlations (.40 to .76) suggested that they all are most likely lower
than unity and thus probably satisfy the first criterion.

4 It should be noted that a convergence failure occurred for the CFA model (with two
method factors) in this data set. On the other hand, an alternative model hypothesizing only
one method factor yielded converging solutions with a satisfactory fit. The results suggest

that over-fitting might be a problem for the CFA model in this data set.
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5 The findings for the DPM applied to the data of Meier (1984) might be interpreted
as supporting the model, thus implying that both the CFA model and DPM fit the data.
However, although no standardized residuals were significant and all other parameter
estimates pointed to an acceptable DPM fit, the chi-square test suggested a poor fit. Thus,
the evidence is mixed for accepting the DPM in the case of the data of Meier (1984). When
it is not possible to differentiate between the CFA and DPM analyses for a particular data
set on the basis of the criteria scrutinized herein, the researcher might wish to apply cross-
validation and penalty functions (e.g., Cudeck & Browne, 1983). We acknowledge that,
while unlikely, it is possible for both the CFA model and DPM to fit a particular data set
(cf. Bagozzi & Yi, 1990).
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Table 1

M4 Method
M Null M; Trait MzMethod & Trait
Study x:(df) x2df)  xdf) X2 (df)
Alderfer, 1967 260.8* (45) 46.2* (25) 119.2* (34) 12.9 (14)

(n=111,T=5M=2)

Dunham, Smith, & Blackburn,1977 6799.7*(120) 1850.1*(98) 2659.6*(98) 1258.0%(76)
n=622,T=4,M=4)

Gillet & Schwab, 1975 710.1* (28)  39.2* (14) 259.4* (19) 6.1 (5)
(n=273,T=4,M=2)

Johnson, Smith, & Tucker, 1982 528.3* (45) 77.1* (25) 204.5" (34) 10.4 (14)
(n=100,T=5M=2)

McCabe et al., 1980 (1) 774.8* (45)  50.5* (25) 435.0* (34) 6.5 (14)
(n=82,T=5M=2) _

McCabe et al., 1980 (2) 926.2* 45) 34.6 25) 376.9* (34) 13.9 (14)
(n=82,T=5M=2)

Soutar & Weaver, 1982 1264.2% (45) 48.7° (25) 199.8* (34) 13.0 (14)
(n=242,T=5M=2)

Spector, 1985 485.7* (45) 25.6(25) 218.4° (34) 10.4 (14)
(=102, T=5M=2) '

Pierce & Dunham, 1978 682.9* 28) 58.9% (14) 214.5* (19) 2.6 (5)

(n=155,T=4,M=2)

Sims, Szilagyi, & Keller, 1976 1082.4* 28)  78.6* (14) 259.7* (19) 11.5 (6)
(n=723,T=4,M=2)

Meier, 1984 1682.3* (36)  64.8% (24) 585.4" (24) 11.7 (12)
(n=320,T=3,M=3)

Note. T = number of trait factors; M = number of method factors.
*p < .05,
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Mj vs. M3 M vs. My Number of Number of
significant inconsistent
method factor method factor

Study xd2(df) xa2(df) loadings loadings
Alderfer, 1967 141.6* (11) 33.2* (11) 0/10 0
Dunham et al., 1977 4140.1* 22)  1592.0* (22) 10/10 0
Gillet & Schwab, 1975  450.7* (9) 33.1* 9) 0/8 0
Johnson et al., 1982 323.8* (11) 66.7* (11) 5/10 0
McCabe et al., 1980 (1)  339.8* (11) 44.0* (11) 0/10 0
McCabe et al., 1980 (2) 549.3* (11) 20.7* (11) 0/10 0
Soutar & Weaver, 1982 1064.4* (11) 35.7* (11) 10/10 0
Spector, 1985 267.3* (11) 15.2 (11) 1/10 0
Pierce & Dunham, 1978 468.4" (9) 56.4" (9) 0/8 0
Sims et al., 1976 822.7* (9) 67.1* (9) 1/8 2
Meier, 1984 1096.8* (12) 53.1% (12) 59 1

*p <.05.
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Table 3

x*df) p  AGFI RMR Number Numberof

oflarge  improper

standardized estimates

Study residuals

Alderfer, 1967 1204(14) 53 91 .06 0 0
Dunhametal, 1977 2580 (76) .00 .92 .08 91 0
Gillet & Schwab, 1975  6.1(5) .29 .96 .02 6 0
Johnsonetal, 1982  104(14) .73 92 03 0 0
McCabeetal, 1980 (1) 65(14) 95 .94 .02 0 0
McCabeetal, 1980 (2) 13.9(14) .46 .87 .02 0 0
Soutar & Weaver, 1982 13.0(14) .53 .96 .02 0 0
Spector, 1985 104(14 73 93 .03 0 0
Pierce & Dunham, 1978 2.58(5) .76 .97 .01 0 0
Sims et al., 1976 1156 07 .98 .01 0 0
Meier, 1984 17712 47 97 02 0 0
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x*df) p  AGFI RMR Numberof Numberof
large improper
standardized estimates
Study residuals
Alderfer, 1967 50.1 (28) .01 .82 A2 6 4
Dunhametal, 1977  465.2 (101) .00 .89 .08 46 0
Gillet & Schwab, 1975 17.6 (16) .30 .96 .04 0 0
Johnson et al., 1982 443 (28) .03 .85 .07 4 0
McCabe et al., 1980 (1) 52.7 (28) .00 .80 .05 3 0
McCabe etal., 1980 (2) 42.7 (28) .04 .82 .02 0 0
Soutar & Weaver, 1982 53.8 (28) .00 .92 .04 11 0
Spector, 1985 40.9 (28) .06 .86 .07 6 0
Pierce & Dunham, 1978 33.3 (16) .01 89 .06 1 0
Sims et al., 1976 924 (16) .00 .93 .05 15 0
Meier, 1984 493(25) .00 94 .03 0 0
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Table 5
Parameter Esti for the Di is of th in Gill hwab (1975
Trait-Method . Z EpMI2QL CuM®I

(A) T2 T)

Promotion-MSQ 91 1.00 100 .00 .00 .00 .00 .00 .00 .00
Pay-MSQ .92 1.00 .00 1.00 .00 .00 .00 .00 .00 .00
Co-workers-MSQ .91 1.00 .00 .00 1.00 .00 .00 .00 .00 .00
Supervision-MSQ .97 100 .00 .00 .00 1.00 .00 .00 .00 .00
Promotion-JDI 91 1.71 .65 .00 .00 .00 .50 .00 .00 .00
Pay-JDI 93 1.71 .00 65 .00 .00 .00 .50 .00 .00
Co-workers-JDI .87 171 .00 .00 .65 .00 .00 .00 .50 .00
Supervision-JDI  1.09 1.71 .00 .00 .00 .65 .00 .00 .00 .50

Trait-Method : In®Pr In®ET
(®1) (D2)
Promotion-MSQ 1.00 18
Pay-MSQ .63 1.00 17
Co-workers-MSQ .20 .17 1.00 23
Supervision-MSQ .49 .36 .37 1.00  (symmetric) .05
Promotion-JDI .00 .00 .00 .00 1.00 18
Pay-JDI .00 .00 .00 .00 .63 1.00 17
Co-workers-JDI 00 .00 .00 .00 .20 .17 1.00 23

Supervision-JDI .00 .00 .00 .00 .49 .36 .37 1.00 .05
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Table 6
f th m nvergent Validity in Confirm Factor Anal
M vs. M2 M3 vs. My Number of Number of

significant inconsistent

trait factor trait factor
Study Yd2(df) Yd2(df) loadings loadings
Alderfer, 1967 214.6* (20) 106.3* (11) 0/10 0
Dunham et al., 1977 4949.6* (22)  2401.5% (22) 16/16 0
Gillet & Schwab, 1975  670.9* (14)  253.3* (14) 0/8 0
Johnson et al., 1982 451.2* (20) 194.1* (20) 10/10 0
McCabe et al., 1980 (1)  724.3* (20)  428.5" (20) 10/10 0
McCabe etal., 1980 (2) 891.6" (20)  363.0" (20) 10/10 0
Soutar & Weaver, 1982 1215.5" (20) 186.8" (11) 7/10 0
Spector, 1985 460.1* (20)  208.0* (20) 10/10 0
Pierce & Dunham, 1978  623.9" (14)  211.9* (14) 8/8 0
Sims et al., 1976 1003.8% (14)  248.2* (14) 8/8 0
Meier, 1984 16174* (12)  573.7° (12) 99 0

* p < .05,
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Table 7
Confirmatory factor analysis Direct product model

Model Conv.  Discr. Model Conv. Discr.
Study fit validity  validity fit  validity validity
Alderfer, 1967 Accept Fail  Mixed Reject  Fail  Pass
Dunham et al., 1977 Reject Pass Pass Reject Pass  Fail
Gillet & Schwab, 1975 Reject Fail Fail Accept Pass  Pass
Johnson et al., 1982 Accept Pass Pass Reject Pass  Pass
McCabe et al., 1980 (1) Accept Pass Pass Reject  Pass Pass
McCabe et al., 1980 (2) Accept Pass Pass Accept Pass  Pass
Soutar & Weaver, 1982  Accept  Mixed  Mixed Reject Pass  Pass
Spector, 1985 Accept Pass Pass Reject Pass  Pass
Pierce & Dunham, 1978  Accept Pass Pass Rej:ect, Pass  Pass
Sims et al., 1976 Accept Pass Pass Reject Pass  Pass
Meier, 1984 Accept Pass  Mixed Reject Pass  Pass

Note. The qualitative conclusions summarized here should be interpreted, and tempered if

necessary, in conjunction with the findings for goodness-of-fit of models and other
diagnostics as discussed in the text.
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Table 8

Study Trait-only model  Trait-method model ~ Trait-method model
compared with compared with compared with
the null model the null model the trait-only model

Alderfer, 1967 90 1.00 11
Dunham et al., 1977 74 82 .09
Gillet & Schwab, 1975 96 1.00 .04
Johnson et al., 1982 .89 1.01 12
McCabe et al., 1980 (1) 97 1.01 .05
McCabe et al., 1980 (2) 99 1.00 01
Soutar & Weaver, 1982 98 1.00 02
Spector, 1985 - 1.00 1.01 .01
Pierce & Dunham, 1978 93 1.00 07
Sims et al., 1976 94 99 .06

Meier, 1984 .98 1.00 .02
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Figure Caption

Figure 1. An illustration of the confirmatory factor analysis model for MTMM designs with

three traits and three methods.






