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ABSTRACT

A flexible manufacturing system (FMS) is an integrated system of computer
numerically controlled machine tools connected with automated material hand-
ling. A set of production planning problems for FMSs has been defined (Stecke
[1983]), and this paper considers one called the loading problem. This pro-
blem involves assigning to the machine tools, operations and associated cutting
tools required for part types that have been selected to be produced simultan-
eously. The part types will be machined during the upcoming production period
(say, of one to three weeks duration on average) and according to a prespeci-
fied part mix. This assignment is constrained by the capacity of each
machine's tool magazine as well as by the production capacities of both the
system, and each machine type. There are several loading objectives that are
applicable in a flexible manufacturing situation. This paper considers the
most commonly applied one, that of balancing the workload on all machines.

This paper first discusses a nonlinear integer mathematical programming
formulation of the loading problem. The problem is formulated in all detail.
Then an efficient solution procedure is proposed and illustrated with an
example., Computational results are provided to demonstrate the efficiency of

the suggested special-purpose procedures.






A flexible manufacturing system (FMS) can be thought of as an automated
job shop consisting of computer numerically controlled machine tools, each with
automatic tool-changing capabilities. A computer also controls the movements
of parts between machines tools via some material handling system such as wire-
guided carts or conveyors. Descriptions of particular FMSs can be found in
Stecke (1977), Cavaillé, Forestier, and Bel (1981), Stecke and Solberg
(1981a), Barash (1982), and Stecke and Browne (1985).

The cutting tools required for all operations that might be performed by
a particular machine tool are stored in that machine's limited-capacity tool
magazine. The technological sophistication of the automatic tool-changing de-
vices virtually eliminates set—up time between consecutive operations for each
machine tool. However, a careful system set-up is required before production
begins, to best utilize potential production capacity. This planning phase
involves several production planning problems (see Stecke (1983)). In brief,
these problems are to: (1) select compatible part types for simultaneous
machining for the upcoming time period; (2) partition machines into machine
groups, each of which can perform the same operations; (3) determine production
ratios at which the part types should follow; (4) determine minimum inventory
requirements (pallets and fixtures) to maintain the production ratios; (5)
allocate operations and cutting tools to the limited capacity tool magazines.

This paper focuses on the fifth problem, called the FMS loading problem.

To expound a bit, this problem is to assign to the machines, the operations of
the selected part types and the tools necessary to perform these operations,
subject to the FMS technological and capacity constraints and according to
some loading objective, in a way that will best utilize the machines, or max-
imize production, when the system is running. Once this problem is solved and
the cutting tools are loaded into their assigned tool magazine(s), then the

system is ready to begin production.



-0—

Such loading problems associated with conventional manufacturing systems
require consideration of lot-sizing (because of long set-up times) or assembly
line balancing (during the design phase of a production line). The latter
sorts of loading problems may require solution only once a year.

However, because of FMS capabilities and flexibility, the FMS loading
problem need not be restricted by these considerations. Also, this problem
requires frequent solution (which can range from about a week to say three

weeks). In particular, a new FMS loading problem has to be solved whenever:

production orders change; or a part type finishes its requirements (space in
the tool magazine is now free for other part types/cutting tools); or a new
part type is to begin production (its cutting tools now have to fit in the
tool magazines somehow); or when a machine tool goes down, to name a few
situations. Because the technology associated with FMSs is still relatively
new, various aspects of the FMS loading problem have only recently been
studied. See, for example, Stecke (1977, 1983, 1985b), Stecke and Solberg
(1981b, 1985), Stecke and Schmeiser (1982), Kusiak (1983), and Stecke and
Morin (1985).

There are different loading objectives that can be followed, each appli-
cable in different situations. This paper focuses on the loading objective of
balancing the workload on all machines, while assigning each operation to only
one machine. While somewhat restrictive for an FMS, it nevertheless is the
most studied and applied objective, with conventional manufacturing methods
as well as flexible manufacturing. There is a very large literature on assem-
bly line balancing and balancing workloads in job shops and FMSs. Balancing
is appropriate for a flexible assembly system and an automated transfer line.
In these systems, parts flow unidirectionally from machine to machine, some-
times skipping machines. Stecke and Morin (1985) have shown that if each

operation is assigned to only one machine, balancing workload per machine
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maximizes expected production. Stecke and Solberg (1985) show that if func-
tionally similar machines are pooled into machine groups** of equal size, then
balancing workloads again maximizes expected production. Shanthikumar and
Stecke (1986) show that balancing workloads also minimizes work-in-process
inventory in FMSs that contain only one machine in a group. This is observed
in Stecke (1985a). We note that if an FMS is very reliable, sometimes it can
be treated deterministically and operated as a transfer line between periods
of change (such as when a new part type is to be introduced for machining or
an old part type has completed its production requirements or a breakdown has
occurred). Minimal redundancy in machine assignments might be allowed. In
some systems, there is no capacity available to allow pooling. A balancing
objective is relevant in such situations.

However, Stecke and Solberg (1985) show that for a more flexibly-operated
system having real-time control, in addition to advantages gained by pooling
machines into groups, performance is theoretically further improved by unbal-
anced rather than balanced partitions of machines into groups. Moreover, for
these better unbalanced partitions, expected production is maximized by a par-
ticular unbalanced assignment of workload per machine. We shall discuss pool-
ing further in §5.

Other loading objectives have also proved to perform better than balanc-
ing with respect to achieving maximum production for certain types of FMSs
(see Stecke and Solberg (1981b)). For example, if travel time from machine to
machine is long relative to processing time, or if the transporter mechanism
is a bottleneck, then minimizing the number of movements can be a better

objective than balancing. 1In fact, the objective of minimizing movements has

**Machines in a machine group are said to be pooled, are identically tooled,
and are assigned the same operations.
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proven better than balancing for a particular FMS, even when travel time was
not long and carts were not bottle&ecks (see Stecke and Solberg (1981b)).

In Stecke (1983), both the grouping problem (how to best partition m
machines into g groups) and the loading problem are defined and mathematically
formulated as nonlinear integer programming problems. The nonlinear terms
result, in part, from considering the possiblility of assigning several
operations, having some common tools, to the same machige. Several loading
objectives, each applicable to different types of FMSs, are also defined and
formulated. The approach taken to solve these problems was to linearize the
nonlinear terms. Several linearization methods were applied (those of Balas
(1964), Glover (1975), and Glover and Woolsey (1973, 1974)). The lineariza-
tions resulfed in much larger constraint formulations. Then the linearized
formulations were applied to data from an existing FﬁS and run to optimality,
taking minutes on a CDC 6600 using a standard MIP code. The nonlinear integer
formulations can handle any reasonably-sized FMS loading problem.

However, in addition to the computer time, the manual linearization pro-
cess is too time-consuming and unwieldy to warrant frequent application. The
procedure could not be easily implemented by management. In addition, the
linearized integer problems get large quickly. Either a nonlinear integer code
or an integer code (if linearization is performed) is needed. What is fequired
is an efficient and easy to use optimum-producing code. The advent of these
new technologies provides opportunities for operations researchers to develop
efficient tools that an FMS manager can use to solve his/her everyday produc-—
tion planning and operating problems. It is this goal--to develop a usable,
efficient, specialized and self-contained procedure to solve a particular
version of the FMS loading problem—-that spurred the research presented here.

The approach taken in this paper is to bypass the manual linearization

step, and to solve the nonlinear problems directly and automatically. A
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sequence of subproblems is defined. In brief, each subproblem is solved by an
efficient branch and bound procedure that first solves a simple, relaxed
assignment problem, then checks for feasibility, and finally modifies the
assignment to correct violated constraints. The modification of the assignment
is obtained by solving very small integer problems via branch and backtrack
for each machine where a constraint is violated. The optimum solution to the
relaxed problem provides a lower bound to the original problem that is used
both to fathom nodes in the binary enumeration tree and to select a node for
further branching. An intelligent selection criterion is used to choose the
most suitable branching variable. Only one of the loading objectives of
Stecke (1983) is used, that of balancing the assigned workload on each machine
tool., Each operation is assigned to only one machine tool. This is by far
the most widely applied loading objective.

The paper is organized as follows. 1In §1, the nonlinear integer formula-
tion of the particular FMS loading problem, which is to balance the assigned
workload on each machine tool, is reviewed. The proposed solution method is
described in detail in §2. An example that illustrates the procedure is
provided in §3, while computational results are given in §4. §5 summarizes
the results of the paper and discusses the extension of the procedures to

another loading objective.

1. MATHEMATICAL FORMULATION
After the variables and notation are defined, the constraints and

objective function of the considered FMS loading problem will be reviewed.

1.1 Variables and Parameters
The subscripts, some preliminary input parameters, and the decision vari-
ables of the FMS loading problem are provided in Table I. Additional notation

will be provided as required, when the solution procedure is described.
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TABLE I

Notation

Parameters and Subscripts:

I

Decision

X,. =
1]

{i | i=1,...,b}
set of operatioms

={j | j=1,e0.,m}

set of machine tools

processing time of operation i on machine tool j

number of slots required in a tool magazine for holding the cutting
tools of operation i

capacity of the tool magazine of machine tool j

number of slots saved as a result of having common tools when
operations i and k are assigned to the same machine tool

count of the number of spaces (slots) occupied by the tools

contained in the intersection of the sets of tools required
by operations i and k

number of slots saved when the operations in subset B are
assigned to the same machine tool

index set of compatible part types that are to be produced simul-
taneously on the system of machine tools in the upcoming production
period

production ratio (relative to the remaining part types in P-{k})
at which operation i of part type k will be produced

relative workload, or utilization, of machine tool j

Variables:
1, if operation i is assigned to machine tool j;

0, otherwise.
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1.2 Constraint Formulations
The constraints of the loading problem are as folloﬁs.
First, each operation must be assigned to at least one machine tool of
the machine type required by the operation. Throughout, each operation is

assigned to only one machine tool. Then

m
Yy x,. =1, 1i=1,...,b. (1)

It follows that x

13 = 0 if operation i cannot be performed by the machine

type specified by machine tool j. 1In this case, pij = o,

Second, the tool magazine capacity constraints, which relate the number
of tool slots required by the operations assigned to each machine tool to the
total number of slots in each machine's tool magazine; in their simplest form,

are

Y od.x.. <t., J=l,eee,m.

However, this capacity constraint is only sufficient to insure that the tools
required by the operations that are assigned to machine tool j can all be
contained in its tool magazine. If the tools that are common to several
operations and the slots that are saved by a suitable positi&ning of the tools
are taken into consideration (see Figure 1 to demonstrate the latter), the

capacity constraints are then more accurately expressed by:

i ~> o

dixij + TCj(x) S_tj, j=l,ese,m, (2)

i=1

where
b
c,(x) = § (Dt Yw mx .,
! p=2 B iep 1
¥v8 C1
2|8|=p



or
= ) (—1)‘B‘+1 Wy min{x,.}, j=l,e..,m. (3)
¥8C I ieg
3 |B|>2

Note that TCj(x)_S 0, for all j. The nonlinear terms of equation (3) arise
from the tool slot overlap. For example, if you've taken out common tools
from all pairs of 3 operations, some tools may have been taken out too much

and so have to be put back in.

FIGURE 1. Tool Magazine.

A third constraint type is required to specify the relative workload

assigned to machine tool j:

rj = a,p J=lyees,me

I ~mT

i=1 ijxij’
Throughout, the subscript k is dropped from the production ratios Ait These
are relative ratios at which the selected part types are to be maintained during
production. Methods to help determine these, for situations of both dependent
and independent demand, are provided in Stecke (1985a). When all rj are equal,
the system is perfectly balanced. However, perfect balance is usually impossi-
ble to attain because of the discreteness of the pr;cessing times.

Finally, there are the integrality constraints:

X35 = 0 or 1, for all i, j. (4)
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1.3 Problem Formulation
The production rate of a particular type of FMS, a deterministic transfer
line, is limited by the throughput of the bottleneck machine, which is
specified by the largest rj. This is the intuition behind the common belief
that balancing workloads corresponds to maximizing the production rate.
The approach taken here to balance the FMS is to minimize the workload
of the bottleneck machine. Let § be an upper bound on the machine workloads.

Then the problem is to find {xij|i=1,...,b, j=l,ee.,m} to:

Problen (P)
minimize §

subject to (1),I(2), (3), (4), and

b

X a.p,.x.. <8,
jop I ij™ij

j=lyeee,ms (5)
2. SOLUTION METHOD

The solution procedure can be summarized as follows. In §2.1, a sequence of
subproblems is defined by fixing the maximum workload, §, (in equation (5))
to be 62 for each subproblem £. The sequence of solutions converges to an
an e-optimal assignment. If 6% is the optimal solution of problem (P), then
an e¢-optimal solution, Ge, is such that [6* - 6€| £ €. To decrease the size of
the subsequent problems, we set 62 to be the midpoint of an interval that con-
tains the optimal § of Problem (P). Then a check is made to see if § is greater
‘
(or not) then 62. The solution of each subproblem is used to decrease the
interval size: depending on this solution, either the lower bound increases or
both the lower bound increases and the upper bound decreases. An efficient
branch and bound procedure is developed in §2.2 to solve each subproblem opti-
mally. First, a relaxed integer problem is solved (in §2.2.1) and feasibility

is checked. Then the assignment is modified in the least-cost way for violated
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constraints by using a branch and backtrack procedure on very small single-
machine integer problems. The optimal solution of this relaxed problem

provides a lower bound on the solution of the original problem to allow node
selection and fathoming. Finally, the criterion for selecting the branching

variable is described in §2.2.2.

2.1 Subproblem Generation

Problems (Pég) are a sequence of subproblems, each finding a feasible
solution of (P), that converges to an e-optimal solution to Problem (P).
Rather than settling for an arbitrary feasible solution, the procedure uses an
auxiliary objective function for each subproblem, to find a solution that
allows a maximum reduction of the interval containing 62 in the subsequent
subproblem. Also, each subproblem, (PGQ)’ is defined by a fixed workload
upper bound, 62.

Problem (Pﬁg) is reformulated from Problem (P) as follows. For a fixed §,

maximizing (§ - rj) for all j can be achieved by

m m b
maximizing (m$ —.Z rj) <{===> minimizing 'i .2 a;P; 3% 5
J:l J=]_ l=1
Thus, the problem is to find Xij to:

Problem (P, )
J)
mob
minimize Z = 2 2 a
j=1 i=1

1P1%15

subject to (1), (2), (3), (4), and
b

) a,p,.x,, <8

s s e N ) j=]., ce ey juny (5')
jop 113713 L

The subproblems are generated as follows. Let LV and UV be a lower bound

and upper bound, respectively, of 52. (Initially, LV = 0 and UV = »,)
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Fix 62 = (UV + LV)/2. (Initially, 60 = ®,) An optimal solution to Prob-
lem (sz) is found. If a solution exists, then UV is updated to equal the
largest machine workload associated with this solution. The auxiliary’objec—
tive helps to reduce this largest machine workload. Also, LV is set equal to
.§ r./m, if .§ rj/m > LV. The reasoning behind this updating of LV is
%:ivided in A;;indix C. 1If a feasible solution does not exist, then LV is
updated to equal 62.
The procedure is terminated when the difference between UV and LV is
smaller than €, An e-optimal solution is sufficient because:
l. processing times are allocated among machines in discrete quantities;
and
2. processing times may fluctuate slightly because of behavioral anom-
alies and because of adaptive processing capabilities of machine
tools.
€ is set equal to Wi? {aipij/m}. The choice of € is motivated as follows.
Let x and x' iétho feasible solutions of Problem (P). The distance

between x and x', as measured by the objective function of Problem (Pﬁz)’ can

be evaluated as:

d(x,x') = |max r.(x) - max r.(x')
] j

Define e* as:
ex = min {d(x,x') | x,x' are such that d(x,x') > 0},
when (P) is feasible.

Since the set of feasible solutions is finite, e€* is greater than zero
(unless all feasible solutions are optimal!). Clearly, for all € £ e*, an
e~optimal solution is optimal if one exists. Increasing the number of
machines tends to increase the number of feasible solutions, and hence

decrease e€*, To account for this,
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€ = min {aipij/m}
1,]
provides a reasonable heuristic approximation of €*, An accurate value of
e* is very difficult to calculate, and unnecessary in any case.

The generation of subproblems required to solve the FMS loading problem

is precisely described by the following algorithm.

The Solution Algorithm

STEP 1. INITIALIZATION:

Set LW =0, 0WW=o, § =0, §, =, and

0

aipij}
m L ]

€ = min {
i,]
STEP 2. SOLUTION:
Find an optimal solution, x, of Problem (PGQ)
(to be described in §2.2).
STEP 3. UPDATE BOUNDS:
If a solution exists, set UV = max {r,} and
m J
LV = Max {1, () r,)/un} ;
j=1

otherwise, set LV = 62.
STEP 4. CHECK STOPPING THRESHOLD:
If UV - LV > €, set 62+1 = (UV + LV)/2 and go to STEP 2;
otherwise, go to STEP 5.
STEP 5. STOP:
If §, = », then no solution exists; otherwise, the

2

solution found last is e-optimal.

The initialization of 60 to be infinity is equivalent to dropping the
utilization constraint (5) of Problem (Paz), which allows an initial test for

problem feasibility.
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2.2 Solving Subproblem (Pﬁz)

Finding a feasible solution to an integer problem is as computationally
complex as finding an optimal solution (Karp [1975]). However, stopping an
optimization problem early with a feasible solution is actually much quicker
in practice. Hence, it might seem that finding a feasible solution of (sz),
without updating LV, could suffice in STEP 2. However, computational experi-
ence has indicated that, in this case, the number of generated subproblems
(Psg) is very large and most of them are infeasible, i.e., time-consuming to
deal with. It would be much more efficient to find optimal solutions. Decreas-
ing the size of interval [LV, UV] is then important. Consequently, many sub-
problems (PGQ) (mostly the infeasible ones) are no longer considered (because
of the improved LV). This is proven in Appendix C.

Problems somewhat similar to (PGR) have been considered by Sandi (1975),
Ross and Soland (1975), Caie, Linden, and Maxwell (1980), and Graves and Lamar
(1981). The main difference here is the inclusion of the highly nonlinear
terms in TCj(x) of constraint (3).

(Pﬁg) is solved via branch and bound (see Garfinkel and Nemhauser (1972)
and Salkin (1975)). The binary enumeration tree for the branch and bound
procedure consists of nodes which are partial assignments. At each node, a
lower bound of the objective function is obtained by solving very small zero-
one problems. At every step, the node with the least lower bound is selected

from the list of dangling nodes for further branching.

2.2.1 Calculation of the Lower Bound at Node K during Solution of a

Relaxation of Problem (PSQ)

Let FK be the set of operations that have been assigned at node K:

K K

= {iel | there exists j;€J such that Xy, = 1},
i

F
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where xK is the partial solution at node K. Z(xK) is the value of the partial
solution.

We consider the nonlinear tool magazine capacity comstraints, (2) and
(3), and the workload comstraints, (5), to be the "complicating” constraints of
Problem (P62)’ and the remaining constraints, (1) and (4), to be "easy” con-
straints. Our relaxation of Problem (Pﬁz) consists of dropping the complicat-
ting constraints. Thus at node K the relaxed problem is the following simple

integer program:

Problem (P R)K
Sy

m
minimize Z = 2 2 a,p,.X;.
j=1 ie(I-pky 11
v K
subject to ) ., =1, ie(I-F) (1)
. 1]
j=1
Xij =Qor 1, jeJ and ie(I—FK). (4)

The solution to problem (PSQR)K is that each unassigned operation is assigned
to the machine tool which results in the least load.
. *K K., . . .
A solution (x ) of (PazR) is easily found for each unassigned operation

ie(I—FK) from the index jieJ such that:

. . K
a;p;; = min {ap, | (1,5) ¢ 673,
i jed

where
K= {1, | x?j = o}.

*K

*
Then the solution (x K) is defined by x, *K

= = ! * 3
1, and Xij 0 for j i and

id¢ FK. In the case of a tie, the algorithm selects the first minimum
{aipij}'

A first estimate of the lower bound of the objective function is thus:
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¥ = 265 + 27K = 2(:FU <Ky

) )

i3, T 3;Pys
ieF Ji  idrk I3

P

.

a,
Kl

If (xK) completed by (X*K) satisfies the constraints (2), (3), and (5),
then it is an optimal solution of (Psz). Otherwise, for each machine whose
corresponding constraints are violated, we must modify the assignment with the
least possible increase of the objective function in order to find a feasible
solution to Problem (PSg)' In addition, the lower bound is improved.

Let
I? be the set of operations assigned to machine j in the solution
(x*K); 1?(1 = (see Figure 2); and

J'K be the set of machines for which either the capacity constraint

or the workload constraint or both are violated.

We define for all i e I?:
c, = the minimal incremental cost that would result from a reassign-

ment of operation i

_ _ . . Ky,
= min {aipik aipij | & # iy and (i,k) e G};

k i
b. = the overflow of the violated capacity constraint, i.e., the
J additional number of slots that are required in the magazine
of machine tool j
. * *
= 2 d,xg, + 2 d,x,g + TC_(xK Ux K) - t.;
iefK * M gkt 1 J J
aj = the workload overflow of machine j

' K ' *K
a.p..X,. + a,p,.x,, - 6 .
iEFK itij ij i%FK itij ij 2

. K . .
For each j € J' we must reassign one or more operations to other

machines. Let yij be the reassignment variable to be used in the reassign-

ment problem, (PRj)K, for each machine j € J'K at node K. The problem is:
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Problem (PR,J.)K

ninimize Z. = 2 c.Y..
jerk 1713
J
subject to ' d.y.. + TC'(y) > b,
? iE:IIS i1 37750
J
. : *
TC!(y) = ) (-1)|B|+l Wy max {yi.}( )
37 wC K ieg
3S|B|>2
a,p,.y.. 2 @,
e 1P 2%
J
= i e TK
yij 0or 1, 1te,

where the decision variables, yij’ are:
1, if operation ieIK must be reassigned to
yij = another machine;
0, otherwise.

OB

FIGURE 2. Subsets of Assigned Operations at Node K.

(*) .
The proof that the maximum operator is correct here is provided through the
derivation of the TC&(y) term in Appendix A.
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*
The lower bound is improved by adding to Z(XK:L)X K), the sum of the
*
objective function values Zj(y K) obtained by solving problems (PRj)K for all

jeJ'K:

* . *
ek = 25y + 2x"%) + Y z.(y 5.
jegrkJ

The reassignment problems, (PRj)K, for each machine jeJ'K are solved by
a branch and backtrack procedure (Balas [1965]). This procedure is very quick

because of the small size of the single-machine problems, (PRj)K.

2.2.2 Selection of the Branching Variable

*
The selection of which variable among the Xi?- to branch on is one such
i

*K .
that yij- = 0, since these variables correspond to operations which will not
i

* *
be reassigned. Intuitively, it is better to choose i and ji so that the
%
objective function of (Pég) would increase more if i were assigned to a
0* 3 3 * *
machine other than ige Hence, the branching variable, Xij- , can be found by
i

using the following priority indices:

*K

o = 0},
iji

*
i" € Arg max {ci | v
i

However, some preliminary computational experience has indicated that it
is important to comsider also both the remaining number of slots and the amount
of work capacity available at each machine tool at node K to gef a better
choice of the branching variable. Tests with various sets of examples have
shown that convergence towards the e-optimal solution is, in most cases,

* %
faster by using the following rule: select X, . such that:

Ji

* .
i € Arg max {c, / [d,/(t.. - 2 d)+ap /(- 2 ap )]},

i 1 1Ji gepK VAji & epk Kk Kig

Ji Ji
*K K . . .
such that yij- = 0 and where Fj- is the set of operations already assigned to
i i

machine ji at node K.
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This selection rule introduces an intelligent weighting of the reassign-

ment penalties, c The ci's are divided by a sum of:

i.

1. a tool-storage-saving factor, which is the number of tool slots
required by operation i per number of slots remaining in machine
tool ji's tool magazine;

2. a utilization-saving factor, which is the workload required for
operation i on machine tool ji per unit of work capacity remaining.

This branching rule gives a lower reassignment priority to those machine tools
that are already significantly loaded or tooled, among those machine tools
that are candidates for reassignment of the operationms.

Once the branching variable is chosen, two nodes (two new candidate
problems) are generated and the parameters associated with problem (P6Z) are
updated to account for the new partial solutions at both nodes X + 1 and K + 2.

Once problem (Pﬁg) is solved, the bounds of the maximum workload 62 are
updated. Then a check is made to see if the interval size is less than e. If
not, the next subproblem (P52+1) is solved. Otherwise, the e-optimal solu-

tion has been found (if a solution exists).

3. EXAMPLE
To illustrate the branch and bound procedure, consider the following
example consisting of three machine tools and eight operations. The data,

including the weighted operation times, are provided in Table II below:

TABLE II

Three-Machine Tool, Eight-Operation Data

J 1 2 3 4 5 6 7 8 t5
1 3.0 4.0] 2.5| 6.0] 4.0] 2.0| 2.4f 5.0]] 20
2 3.4] 3.5| 3.0 5.5} 4.1| 3.0f 2.0] 4.7]| 20
3 2.8] 4.21 2.7] 6.0] 5.0] 2.5} 2.6] 5.2|| 20
dj 6 7 6 | 10 8 5 4 9 *
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An entry (i,j) in the table represents the term aipij' Moreover, assigning
operations 1 and 2 together can save two slots in a tool magazine, assigning
operations 1 and 4 to the same machine can save three slots, operatiops 3 and
5 can save two slots, operations 5 and 7 can save one slot, and operations 7

and 8 can save two slots.

The Solution Algorithm

STEP 1. INITIALIZATION:
Set LV = 0, UV =, 60 = o, and
e = 2/3 = 0.67.

STEP 2, SOLUTION OF (Pao):

Node K = 1:

By inspection of Table II, the solution of (PGOR)I is
%] k1 x] _ K1 _ *1 _ %1 _ ¥l _ ¥l _
X13 = X9y T ¥3p T Xy T ¥s) T X6 T ¥y T g2 T

*
and all other Xi; = 0.,

1,

The lower bound is
! =2l = 2.
However, this solution is not feasible for (Pao) because the
capacity constraint on machine 2 is violated (d2 + d4 + d7 + d8 - Vg
> t2). To solve the problem, we solve a reassignment problem for

machine 2:

(R
minimize Z2 = .5y22 + .5y42 + .4y72 + .3y82

subject to

7y22 + 10y42 + 4y72 + 9y82 - 2 max {y72,y82} > 8

y.. = 0 or 1, for all i,j.

1]
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Problem (PRZ)l is solved by a branch and backtrack procedure (see Figure 3).

*
The optimal solution is yz; = 1 and all other yij are 0. Then Z2 = ,5, and the
tighter, improved lower bound is now 27.5.
First Feasible Solution Ye2* |
With 2= .5
Fathomed - No Feasible Fathomed

Solution Can Be Better
Than The First Found

FIGURE 3. Branch and Backtrack Tree for Problem (PRZ)I.

The branching variable is X749 because:

]'=
2

and the process is repeated (see Figure 4).

*
7 = Arg mgx {ci/[di/tzi] such that A 0},

FIGURE 4. Branch and Bound Tree for Problem (PGO).
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Node K = 2:

*
2 = {7} ¢ = {(4,2)}, because y4; =13 X% = {x

]

79 1}.

The solution of (P60R)2 is

k) _ k) _ kD _ k) _ kD _ k) _ kD _
%13 = %99 T F31 T %41 T %51 T %1 T %2

*2
and all other x., = 0.
1]

* *
Note that setting x4§ to 1 rather that XA% provides the same minimum
*
aipij = 6. The algorithm arbitrarily selects the first minimum (x4§=1).

The lower bound is
*
LB2 = Z(xz) + 72(x 2) = 27.5.
This solution is not feasible for (PSO) because the capacity

constraint on machine 1 is violated (d3 + d4 + d5 + d6 = Vg > tl).

We solve a reassignment problem for machine 1:
2
(PR))

minimize Z1 = .2y31 + Oy41 + .ly51 + .5y61

subject to

6yq; + 10y,, + 8y, + 5y,, — 2 max {y,,,¥c,} > 7
31 41 51 61 31751

y.. =0 or 1, for all i,j.

1]

The optimal solution, found by branch and backtrack, is yzl = 1 and

*
and all other y;) are zero. Then Zl = 0. The branching variable

is x, ——see Figure 4.

Node K = 3:

P = b; ¢ = {(7,2)}; © = {x

79 = 0}

The solution of (PSOR)B is

*3 %3 %3 %3 %3 %3 *3 *3

X13 = Xgp T X3y T Xy = Xgy = Xy = X = Xgy =1,
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*3
and all other x.,, = 0.
1]

The lower bound is

3 *3

LB Z(x 7) = 27.4.

[

This solution is not feasible for (PGO) because the capacity con-
straint on machine 2 is violated (d2 + d4 + d8 > tz). We solve a

reassignment problem for machine 2:
3
(PR,)
minimize .5y22 + .5y42 + .3y82
subject to

7y22 + 10y42 + 9y82 26

Yi9 = 0 or 1, for all i, j.

*
The optimal solution found by branch and backtrack is y83 =1 and

* * *
yzg = y4g = 0. Then Z2 = .3 and the improved lower bound is now
LB3 = 27.7.

The branching variable (from node 3) would be X,,.
However, the selected dangling node to branch on is node 2

(because LB2 < LB3-—see Figure 4).

Node K = 4:

|
p—
»

P = 17,635 ¢ = ((5,2), (5,0} % = (x, -
The solution of (PGOR)A is

kG kb4 k4 */ x4 . %4
X|3 = Xgy = Xg) = X3 = X5y = Xgy = 1,
*4

and all other x,, = 0.
1]
The lower bound is

*
LB4 = Z(x 4) + Z(xh) = 27.5.

This solution is feasible for (PGO).
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Node K = 5:

P = (7} & = {(4,2),(6,1)}; x° = { 1 0}.

X797 5 %61 T
The solution of (PGOR)S is

X5 k5 k5 k5 %5 %5 %5 1
X135 T Xgp T Xy Ty T Xy T X3 T gy T
*5
and all other x.,, = 0.
1]
The lower bound is
%
1B = 2(x°) + Z(x’) = 28.
This solution is not feasible for (PGO) because the capacity con-

straint on machine 1 is violated (d3 + d4 +d. - w

5 35 > tl)' We

solve a reassignment problem for machine 1:
5
(PRI) :
minimize .2y31 + Oy41 + .ly51
subject to
yij =0 or 1, for all i,j.

The optimal solution is y.> = 1 and yi> = yi> = 0. Then Z, = 0. Th
e optimal solution is y,; =1 and y,; = y5; = 0. Then p = 0 e
branching variable from node 5 would be X300
However, the selected dangling node to branch on is node 4
4 5 . . . ¥, 4,
(because LB® < LB’ ——see Figure 4). Since the solution (x " [Jx ) is

feasible, we stop.

STEP 3. UPDATE BOUNDS:
m
UV = max {r.} = 10.2; LV = ( ). r,)/m = 9.16.
i j=1
(Notice the drastic improvement in the size of the
interval [LV, UV].)
STEP 4. CHECK STOPPING THRESHOLD:
UV - LV = 1.04 > € = .67; then 61 = (UV + LV)/2 = 9.68 and

go to STEP 2.
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STEP 2. Apply the same procedures used for (PGO) to obtain, again at the
fifth node, the following feasible solution of (Psl):
X5 _ k5 _ k5 _ k5 _ k5 _ k5 _ k5 _ k5 _
137 %2 T %31 7T %43 T %52 T %61 T %2 T %an
and all other x,, = 0.
1]

1,

STEP 3. UPDATE BOUNDS:
UV = 9.6; LV = 9.3.
STEP 4. CHECK STOPPING THRESHOLD:
UV - LV = .3 < e = .67,
STEP 5. STOP:

61 { », The e-optimal solution is given in Table III.

TABLE III

The e-Optimal Solution

Machine Operations Workloads
Tools

1 3, 6, 8 9.50

2 2, 5, 7 9.60

3 1, 4 8.80

4., COMPUTATIONAL RESULTS
The algorithm has been implemented in FORTRAN IV. The ten problems of
Table IV were run on a PERKIN ELMER computer. The 45 problems of Table V were
run on an AMDAHL 5860. The problems have been solved to optimality in very
short CPU times.
Our experimental plan is now described. The size of the problems of Table

IV vary from 3 to 9 machine tools, which is the range of most FMSs. The number
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of operations to be assigned range from 7 to 48. For the problems of Table

V, the number of machines range from 4 to 15 and the number of operations
range from 10 to 40. 1In most of the problems, the operation times are differ-
ent on different machine tools, similar to the processing times described in
Table II of §3. However, two of the problems of Table IV contain machine tools
for which the operation times on those machines are identical. Im particular,
Problem Number 10 of Table IV consists of 3 machine types: 4 machine tools of
1 type, 3 of another type, and 2 of the third type. Also, Problem Number 26
consists of 3 machine types: 4 of one type, 2 of another, and 1 of a third
type. These problems, although not all real examples of FMSs (some are),
provide a representative range of the sizes of the problems that would have to

be run frequently to retool and reconfigure an FMS.

TABLE IV

Computational Results on a PERKIN ELMER

Number Number Number Number CPU

Problem of of of of Time
Number | Machines | Operations Nodes | Subproblems |(seconds)
1 3 10 2 0.484
2% 3 8 79 3 3.839
3 3 12 19 3 0.548
4 4 7 65 3 1.109
5 4 12 23 5 3.095
6 4 24 47 5 3.592
7 5 20 182 6 10.103
8 6 24 157 5 10.306
9 6 48 237 6 38.531
10* 9 13 61 3 2.203

* In these problems, operation processing times are identical on all
machine tools of a particular machine type.
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TABLE V

Computational Results on an AMDAHL 5860

Number Number Number Number CPU
Problem of of of of Time
Number Machines Operations Nodes Subproblems |(seconds)
11(1)* 4 127 23 5 0.145
12(1)* 4 12 91 5 0.456
13(2)* 4 12 27 5 0.065
14(2)* 4 12 26 4 0.114
15 4 15 252 6 1.745
16(3)* 5 10 83 3 0.114
17(3)* 5 10 64 4 0.114
18(4)* 5 12 47 5 0.221
19(4)* 5 12 333 7 0.465
20(5)* 5 14 253 5 1.010
21(5)* 5 14 291 5 1.507
22(6)* 6 12 70 4 0.113
23(6)* 6 12 39 5 0.118
24(7)* 6 14 41 5 0.121
25(7)* 6 14 53 5 0.209
26 7 10 59 5 0.237
27(8)* 7 12 58 6 0.121
28(8)* 7 12 67 5 0.204
29(9)* 8 12 52 4 0.107
30(9)* 8 12 1,424 16 2.871
31(10)* 8 14 159 5 0.256
32(10)* 8 14 145 5 0.354
33(11)* 8 15 213 6 0.486
34(11)* 8 15 1,092 12 3.673




-27-

TABLE V (Continued)

Number Number Number Number CPU
Problem of of of of Time -
Number Machines | Operations Nodes | Subproblems [(seconds)
35(12)%* 9 15 28 6 0.116
36(12)* 9 15 26 6 0.127
37(13)* 9 20 53 5 0.232
38(13)* 9 20 47 5 0.251
39(14)* 10 20 338 7 1.046
40(14)* 10 20 338 7 1.188
41 10 25 904 12 5.278
42 11 20 369 6 1.250
43 11 20 369 6 1.371
44(15)* 11 24 542 8 3.154
45(15)* 11 30 443 9 6.370
46 11 30 223 7 5.529
47(16)* 12 20 754 12 2.269
48(16)* 12 20 854 12 2.376
49(17)* 12 35 88 6 1.476
50(17)* 12 35 618 9 12.922
51(18)* 13 36 771 10 13.674
52(18)* 13 36 771 10 15.111
53 14 35 656 10 7.655
54 15 30 732 10 5.309
55 15 40 849 11 16.163

*In these problems, operation processing times and the number of slots for
holding the tools of each operation are identical on all machines of a par-
ticular machine type. The larger problem number of each pair (marked in
parentheses) has a relatively smaller capacity of the tool magazine.
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The computational results of these 55 problems are provided in Tables IV
and V. In general, the algorithm performs better when the processing time of
each operation is different on each machine tool or when the machine tools are
of different types. This is because when there are many identical machine
tools, there are many similar, equivalent solutions and the algorithm will not
be able to prune the branch and bound trees as efficiently as otherwise. Such
differences in performance can be seen by comparing Problem Numbers 1 and 2 of
Table IV, both having 3 machines and 8 operations. For Problem Number 2, which
has identical machines, the CPU time of 3.84 seconds compares unfavorably with
.48 seconds. However, Problem Numbers 10 and 26 also consider identical ma-
chine tools and the CPU time is reasonable. A heuristic method to handle these
particular types of systems having identical or pooled machines is currently
being developed.

0f the 45 problems that are reported in Table V, there are 18 pairs, which
are noted in the parentheses. The larger problem number of each pair has a
relatively smaller tool magazine capacity. These problems all take longer to
solve because the smaller magazine capacity is harder to satisfy. In these
cases, the run times appear to be somewhat dependent on the ratio of tool maga-
zine capacity tq the number of slots required. In addition, increasing problem
size increases both the number of subproblems as well as the number of nodes
considered, as might be expected. However, all of these 45 problems were
solved in less than 16 seconds of CPU time. It appears that run time would
not limit the solution of practical problems.

These computational results are encouraging. The program is easy to
apply, specialized, and self-contained. (This contrasts with the original
solution procedure (Stecke (1983)), which is unwieldy and time consuming when

performing the linearizations. Also it requires the availability of a mixed
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integer code). The CPU times are low enough to allow the frequent (one to

three weeks, say, on average) re-solving of the FMS loading problem.

5. SUMMARY AND FUTURE RESEARCH NEEDS

This paper provides a self-contained and easy to use branch and bound
approach for allocating operations and cutting tools to limited-capacity
machine tools. This special purpose algorithm is tailored for FMS applica-
tions. Significant computational results demonstrate the efficiency of the
algorithm. The focus here is on only one of several loading objectives,
that of balancing the workload per machine while assigning each operation
to only one machine.

However, the procedures described in §2 can be generalized to one of the
pooling objectives of Stecke (1983). Prior to describing that extension, we
recall some advantages of pooling. A group of pooled machine tools are similar
and identically tooled. "Similar" means that all machines in a group can per-
form the same operations with identical processing times. Some advantages
from the increased flexibility resulting from machine pooling include:

. an improvement in the utilization of machine tools;

. an increase in productivity;

. a decrease in the mean flow time of parts in the system;

+ a decrease in waiting times;

. a reduction in in-process inventory.

Redundancy in the case of machine breakdowns is automatically provided
with pooling. The processing sequence has several possible routes and the
system can automatically cope with machine breakdowns and congestion. Machine
pooling enhances the flexibility of real-time control and hence the production
capacity of the FMS.

The efficiency of grouping several single-servers into one multi-server
queue is established (Kleinrock (1976)). However, because of tool magazine

capacity constraints, maximum grouping (i.e., pooling all machines into a

single group) is generally infeasible because no machine's tool magazine can
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store all tools necessary to perform all required operations. In addition,
machines of different types usually cannot belong to the same group.

The algorithm presented in §2 can be adapted to certain FMS situations
with pooled machines. However, the tool magazine capacity constraint is
harder to satisfy because each machine tool in a group must be able to perform
any operation assigned to the group. The corresponding cutting tools are
duplicated at each machine. Hence, the tool magazine capacity constraint for
a group of machines is identical to the capacity constraint of any single
machine in the group.

To use the procedures described in §2, the objective function of Problem
(Pdg) is modified to fit a pooled machine situation. If the objective is to
balance the workload per machine, this quantity is obtained by dividing
the workload assigned to a group by the number of machines in the group. This

version of the FMS loading problem is:

Problem (PG)
b a.p..X.
minimize [maximum ( J —E—EE—EED]
k i=1 %k

subject to:

~109

X., =1, iel
k=1 ik
b
2 d Xik. + TCk(X) _S tk.’ k=1,nuo,g
i=1
X = 0 or 1, iel and k=1,...,8,

where
g is the number of machine groups;

Sy is the number of machine tools in group k;

o8 is the capacity of the tool magazine for any machine of group k;*

TCk(x) is given in equation (3).
The algorithm presented in §2 can solve problem (PG) provided that the number

of machine tools in each group (Sk’ k=1,+4.,8) is known.

*This assumes that the tool magazine capacities of all machines in group k are
identical. If not, ty is the smallest of these capacities.
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The objective function of problem (PG) may not be appropriate when the 5,
are not all equal. Stecke and Solberg (1985) show that when group sizes are
unbalanced, workload per machine should also be unbalanced--in particular,
each machine tool in a large group should be loaded more heavily than each
machine in a small group, to maximize expected FMS production. This is shown
using a closed network of multiserver queues (see Solberg (1977)). This model,
although qualitatively robust (see Dukhovny and Koenigsberg (1981) and Suri
(1983)), does not always provide reliable quantitative information. The
optimal, unbalanced workload per machine of each group can be determined by
using this model. There is not enough evidence to date that these workloads
are also optimal for real FMSs having deterministic processing times. More
research validating this point is needed before an unbalanced loading objective
can be implemented on a shop floor. However, the unbalancing phenomenon is
qualitatively and theoretically true. A similar efficient branch and bound
algorithm, or perhaps another procedure, could be developed for this situation

as well as for other loading objectives.

APPENDIX A

DERIVATION OF THE TCj(y) TERM IN PROBLEM (PR?)

Suppose that at node K, for a particular assignment of operations,.i,

the tool magazine capacity constraint is violated for machine j; then we have:

b
Ydx,, +TC(x) -t, =b, >0,
i=1 1 1] 3 NI
where
— + —
ch(x) = 3 (—1)'Bl Le. min {xij}

¥B CI ieB
3|B[>2

= 3 (‘1),B|+1 Wg s
vBCI,



-32-

where
K A
=] %, -1
I? contains the indices of the operations assigned to machine j (see
Figure 1).
To obtain a feasible solution that satisfies this tool magazine con-
straint, one or more operations in I? must be reassigned to other machines.

K

If the set of reassignment variables is {yij I ie I.}, then the number

of slots required by the operations remaining on machine j is:

12)' dx,, - ) _dy.. + ) _ (1) |B|+1w min {1-y, .} (A1)
j=p 14 ielg.( 1743 vsgg.( B el 1]
3|8|>2

The last term dictates that the amount of tool slot capacity previously taken
(or returned), as measured by w,, is now returned (or taken), if there is at
least one operation i in B that is reassigned (yij = 1). The last term in

equation (Al) can then be expressed as:

) - ) - |Bl+1 = ) — 1
TC; (%) VB(%I;(( 1) vy r;aeulclj( ly;5) = 76560 - TCH(Y),
SlB|22

since

min {1-y, .} =1 - max {y,.}.
. 1j i 1]

i

To insure a feasible solution that satisfies the tool magazine constraint

of machine j, we have:

J

W ~o

+ TC,(X) - TC' <t,,
J(X) J(y) <

J

i=1

which directly implies that:

) o dive. + TCHy) > b.. ||
ieII; 4 3=
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APPENDIX B

EFFICIENT STORAGE OF DATA ASSOCTIATED WITH
COMMON TOOLING CONSIDERATIONS

Computational time is decreased by providing a suitable means of storing
the data pertaining to slots in a tool magazine that are saved when:
l. several cutting tools are common to two or more operations; and

2. the larger tools are positioned correctly in a tool magazine.

Let
p = number of subsets, B, of operations for which space can be saved
in a tool magazine
b = total number of operations
A = p x 3 array containing the relevant cutting tool overlap

information
B = {11, 12,-.-,1|B|}c

Consider row L corresponding to some subset, B, of operations. Then A

consists of the following entries:

A(L,1) = |B|
A(L,2) = index that characterizes subset B
|B] _
=1+ ) (ik - 1) o b|B| k
k=1
A(L,3) =w

B.
A(L,2) provides a unique ordered numeration of the elements of a multi-
dimensional matrix in order to get a one-~dimensional vector.
This information, which is stored compactly in A, can be used efficiently

during enumeration as follows:

Suppose that a set, Bj’ of operations has been assigned to machine tool j.

Then
|B|+1
w

TC.(B,) = (-1)
33 VBZQBj

3|B[>2

If another operation k (¢B ) is now also assigned to machine tool j, then
J
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) - -plBln
e, (BU kD) = 16,8 + | DU v

VBCSB,
3|B|>2

where VB U{K} is read from array A, if this entry exists.

This approach to the calculation of the TCj's can be somewhat burdensome
computationally if many subsets of operations are listed in A. The maximum
number of rows in A (which is p) could be up to 2b - b -1, 1In practice, the
number of rows of A is not very large because only tools common to two or

three operations need be considered.

APPENDIX C

UPDATING LV WHEN (PGQ) IS FEASIBLE
Problem (P52) is to find an optimal solution, x*(Gz), minimizing
m

m
Z = 2 2 a,p;.X,. =
j=1 =1+ A

II.MB

r,(x)
j=1

under the condition: xe D(&y),
where D(Gz) is the set of feasible solutions satisfying constraints (1), (2),
(3), (4), and (5').
Assume that (Pdg) has an optimal solution, x*(Gz). Updating LV, by setting
7 (8

m

2)

LV = -1
m

I o~83

rj(x*(Gﬁ)), is valid if we prove the following.

i=1
72*(s

m

)

Proposition: Let 6% < 62. If x*(éé) exists, then Gi'z

Proof: Note that 6£ < 62!==> D(Si) S.D(Sg), because of constraint (55.
Hence, if x*(GE) exists, then
PPN *
Z (62) >z (62).

But ¥ § = Leeoom,  r(5M(80)) <8, (from (5))
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This implies that
*eon '
Z (61) <m 8y
/0 *
z°(8)) 27°(8))

1
Hence, Gz 2 p 2 e Q.E.D
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