Division of Research October 1984
Graduate School of Business Administration
The University of Michigan

AN EXTENDED RELATIONAL
DOCUMENT RETRIEVAL MODEL

Working Paper No. 394

David C. Blair

FOR DISCUSSION PURPOSES ONLY

None of this material is to be quoted or
reproduced without the expressed permission
of the Division of Research.

The flexibility of the relational logical model in data base system
design is well known, so the application of relational design structures
to non—datavrgtrieval situat?ons isnoEsurpr%sing. A‘recent spate of papers
applying relational logical structures and query languages to document,
or information, retrieval systems [Crawford, Macleod, 1979, 1981] demon-
strate the broad applicability of these techniques. These are not
entirely new ideas. The first information retrieval system to use a
relational logical structure, the Relational Data File, [Levien and
Maron, 1965, 1966] was primarily a document retrieval system, and a 1973
paper showed the efficacy of the early relational data manipulation
language SQUARE for querying document data bases [Blair, 1974].

The work to date in relational models of document retrieval has been
largely preliminary and has modeled only relatively simple document
retrieval situations., This paper will describe an extended relational
model for document retrieval and will discuss some retrieval considera-
tions of particular importance for document retrieval,

Document Retrieval: The Central Problem

One of the principal advantages which relational logical structures
offer over the earlier logical structures, hierarchical and net work
‘(CODASYL), is the comparative ease with which an inquirer using a rela-
tional data base can construct ad hoc queries--queries which are not
routinely or repeatedly asked of the system. The capacity to be able to
answer ad hoc inquiries easily is an advantage in data base management
systems, but not usually a necessity. For document retrieval, on the
other hand, the ability to answer ad hoc inquiries is a necessity.

[Blair, 1984]. Document retrieval systems have been implemented using

logical data base structures and query languages which preceded rela-
tional designs [Dattola}, but such systems are comparatively dif-
ficult to use in ad hoc inquiry and, resultingly, will be difficult to
use to implement all but the simplest logical models of document
retrieval,

Ad hoc inquiry is important for document retrieval systems because
of the tremendous variety in the way that people search for needed docu-
ments. Inquirers may want documents because they are authored by parti-
cular individuals, are published during a particular time frame, appear
in one or several journals, concern a particular subject, are written by
authors who are affiliated with certain institutions, are of a particular
type (e.g., article, letter, report, conference proceedings, etc.), or
any complex combination of such search categories. Document retrieval
systems which do not permit this kind of search flexibility greatly
reduce the chances of an inquirer's retrieving useful articles. But the
formulation of a wide variety of ad hoc queries is not the only important
capability of an advanced document retrieval system. Such a systeﬁ should
enable the inquirer to retrieve not just information about individual
documents but also information about the aggregate of documents ("meta-
information", if you will). Information such as, for example, "what sub-
ject headings are most frequently applied to documents authored by individ-
uals working at institute X". This is not specifically a request for
documents, but a request for important tacit information that may be deriv-
able from the document descriptions in the data base. The ability to
retrieve such tacit information is an important capability of an advanced

document retrieval system. The following discussion will show how such

tacit information may be retrieved through the use of relational logical
structures and Data Manipulation Languages.

Basic Relational Structure

The basic (normalized) relational structure of the initial document

retrieval facility would look like this:

Relation Name Attributes

CITATION DOCUMENT #, TITLE, DOCUMENT TYPE, PUBLICATION DATE,
JOURNAL NAME, VOLUME, NUMBER, PAGES

ABSTRACT DOCUMENT #, ABSTRACT

AUTHOR DOCUMENT #, NAME

DIRECTORY NAME (author's name), INSTITUTION

INSTITUTE INSTITUTION (name), TYPE, ADDRESS, PHONE

JOURNAL JOURNAL NAME, PUBLISHER

Such a set of relations would represent a basic document retrieval
schema, which could be enhanced in several ways. But before we look at the
enhancements we should look at some of the inquiries which the basic logi-
cal structure can support. For readability, I will use the SQL query
language [Date] when describing how actual queries would be constructed,
since SQL'is relatively understandable even to those with no familiarity
with relational query languages.

Typical Queries

1. What are the titles of articles written by Raymond Larsen?

SELECT TITLE
FROM CITATION
WHERE DOCUMENT # =
SELECT DOCUMENT #
FROM AUTHOR
WHERE NAME = 'Raymond Larsen'

2. Retrieve the abstracts of the articles written by Raymond Larsen.

SELECT ABSTRACT
FROM ABSTRACT
WHERE DOCUMENT # =
SELECT DOCUMENT #.
FROM AUTHOR
WHERE NAME = 'Raymond Larsen'

3. Where does Raymond Larsen work?

SELECT INSTITUTION
FROM DIRECTORY
WHERE NAME = 'Raymond Larsen'

4, What is Raymond Larsen's address?

SELECT ADDRESS
FROM INSTITUTE
WHERE INSTITUTION =
SELECT INSTITUTION
FROM DIRECTORY
WHERE NAME = 'Raymond Larsen'

5. Which authors of articles in our data base are affiliated with
the University of California?

SELECT NAME
FROM DIRECTORY
WHERE INSTITUTION = 'University of California'
A frequent service provided by many information centers is to send
individuals a list of the contents of specified journals or magazines.

Such a service could be easily provided in the sample data base model:

6. What are the titles of the articles appearing in April 8 issue
of Communications of the ACM?

SELECT TITLE
FROM CITATION
WHERE JOURNAL NAME = 'Communications of the ACM'
AND PUBLICATION DATE = 03/08/83
This request could be made by specifying the VOLUME and NUMBER of the
journal if that information is more readily available than the date. Some-

times, though, the inquirer may not even know the date or volume number of

the journal whose contents he wants. He may only want to know the contents

of the "most recent" copy of the desired journal which exists on the data
base. Such a request can be accommodated by using an arithmetic function
which exists in all major relational data base management systems:

7. What are the titles of the articles appearing in the most recently
received issue of Communications of the ACM?

SELECT TITLE

FROM CITATION

WHERE JOURNAL NAME = 'Communications of the ACM'
AND PUBLICATION DATE = MAX

Conjunctive queries such as the two above are known in the document
retrieval vernacular as "Boolean Queries'. Such queries are quite frequent
‘in document retrieval.

Another type of "current contents'" request occurs in response to the
inquirer who wants to see the titles of articles appearing in a specific
journal (or journals) over a period of time. Such an information need may
occur when an individual is doing a literature search for certain types of
articles, is catching up on his reading in a journal he has not seen in a
while, or is looking for a specific article whose title he can recognize but

whose date of publication he has forgotten:

8. Give me the titles of all articles published in Communication of
the ACM since 1980.

SELECT TITLE
FROM CITATION
WHERE JOURNAL = 'Communications of the ACM'
AND PUBLICATION DATE > 12/31/79
ORDER BY PUBLICATION DATE DESCENDING
The final statement in the above request insured that the titles will
be in chronological order with the most recent first.
For individuals who want to be informed regularly about the content of

‘journals which are added to the document data base, a complex Boolean

request could be kept on file for that individual which includes the names

of all the journals (and any other document parameters) of which he wants
to be informed. The request would merely be run at periodic intervals and
the results forwarded to the requesting individual. To insure that only
the contents of journals added since the inquirer's last request are re-
turned, the request should be made using the Acquisition Date rather than
the Publication Date as a search parameter, For example:

9. Give me the titles of all the articles published in Communications
of the ACM and Computer Journal since my last request (1/31/83).

SELECT TITLE

FROM . CITATION .

WHERE JOURNAL IN ('Communications of the ACM', 'Computer Journal')

AND ACQUISITION DATE > 1/31/83

Searching by acquisition date has three advantages: (1) The inquirer

is not overloaded with previously retrieved material; (2) The request can be
processed very efficiently since only a small part of the data base (those
articles added since 1/31/83) needs to be accessed; (3) It will retrieve

older journal articles which have only recently been added to the data base

(such as, in our example, a back issue of Computer Journal). This is not

possible if retrieval is based on Publication Date.
THE EXTENDED RELATIONAL MODEL

By adding several relations to the schema described on page 1 we can
greatly increase the kinds of queries which can be answered by the retrieval
system. The most important addition to the data base schema at this point
would be to introduce some kind of subject-access capability. This can be
done through the following relation:

KEYWORDS DOCUMENT#, KEYWORD, WEIGHT

This relation relates subject descriptions (keywords to specific docu-

ments, It also includes a weight (usually between 0 and 1.0) which reflects

how applicable a particular subject description is to a given document. For
example, a document might be represented as follows:

#4357 Special Computers 0.5
#4357 Programming 0.7
#4357 File Organization 0.9

.

This would indicate that document #4357 deals with programming and

file organization on special computers, and that it is largely about file
organization., With this kind of structure there is no limit to the number
of keywords which could be assigned to a particular document, but if we
look at existing systems we see that usually 6-10 keywords are typically
used to describe the subject content of a document.

Now we can retrieve documents from the system based on subject speci-
fications:

10. Retrieve the documents which concern "occupational retaining" and
have an assigned subject weight of greater than 0,7.

SELECT #*
FROM CITATION
WHERE DOCUMENT # =
SELECT DOCUMENT #
FROM KEYWORDS
WHERE KEYWORD = 'occupational retraining'
AND WEIGHT > 0.7
ORDER BY WEIGHT DESCENDING
(The "*" in the SELECT statement indicates that the entire tuple is to be
retrieved.)
It is very useful for a document retrieval system to be able to order
retrieved citations according to some priority (such as, above, where they
are ordered by descending keyword weight). One of the most persistent

problems in document retrieval is "ouput overload'"--the condition where too

many documents (i.e., document citations) are retrieved for the inquirer

to browse through to find the documents he/she wanté [Blair, 1980]. 1Imn
many modern computerized retrieval systems, a request like number 10 with
a single keyword specification may retrieve thousands (or, even tens of .
thousands) of document citations. All of the retrieved citations will
have had, by definition, the specified keyword assigned to them, but many
of the citations refer to documents which are only marginally concerned
with the subject indicated by the keyword. By ordering the retrieved
citations according to keyword weight, the inquirer insures that even
where large numbers of citations are retrieved, the ones that more closely
match the request are presented to him/her first. Consequently, even re-
trieved sets of thousands of documents may not be an impediment to effec-
tive retrieval since the citations which are more likely to satisfy the
inquirer will be ranked first. The "ORDER BY" and "GROUP BY" commandé in
SQL give the inquirer wide latitude inprioritizing output.

Because of the sociological nature of research and industry, the name
of an individual who works in a relevant area of research can be used as a
clue to find other relevant information on the data base, by using the
KEYWORDS relation in combination with the other relations to retrieve rele-

vant documents, For example:

11. Give me the titles of articles on "expert systems' which are
published by individuals who are affiliated with the same insti-
tute with which John Murphy is affiliated.

SELECT TITLE
FROM CITATION FIRST
WHERE FIRST.DOCUMENT # = ANY
SELECT DOCUMENT #
FROM CITATION SECOND, KEYWORDS
WHERE KEYWORDS.KEYWORD = "expert systems"
AND SECOND., CITATION NAME = ANY
SELECT NAME
FROM DIRECTORY FIRST
WHERE FIRST,INSTITUTION =
SELECT INSTITUTION
FROM DIRECTORY SECOND
WHERE SECOND,NAME = "Murphy, John"

(The "WHERE FIRST.DOCUMENT # = ANY" command indicates that titles should
be retrieved whose document #s are "any" of the ones found by the follow-
ing SELECT commands. The CITATION FIRST and CITATION SECOND specification
is a SEQUEL convention which allows the results of one search of the
CITATION relation to be used as arguments for a second search of the
CITATION relation.)

Sometimes a subject search must be "reversed" for those inquirers who
are familiar with the literature of the data base but are not familiar with
the exact subject descriptions being used (even a minor spelling error in
keyword specification might lead to poor retrieval results). To 'get into"
the system an inquirer might retrieve the keywords which are used to index
a document in which he is interested and which is already on the data base.
He would then use those retrieved keywords to formulate a conventional sub-

ject request to the system to retrieve other documents on the same subject.

12. Give me the keywords used to describe the document "Process control
in shop-floor automation" by Molly Bloom.

SELECT KEYWORD
FROM KEYWORDS
WHERE DOCUMENT # =
SELECT DOCUMENT #
FROM CITATION, AUTHOR
WHERE CITATION.DOCUMENT # = AUTHOR,.DOCUMENT f#
AND CITATION,TITLE = 'Process control in shop-floor
automation'
AND AUTHOR.NAME = 'Molly Bloom'

This search could be combined into one query as follows:

13. SELECT TITLE
FROM CITATION
WHERE DOCUMENT # =
SELECT FIRST.DOCUMENT f#
FROM KEYWORDS FIRST
WHERE FIRST.WEIGHT > 0.5
AND FIRST.KEYWORD = ANY
SELECT SECOND,KEYWORD
FROM KEYWORDS SECOND
WHERE SECOND,DOCUMENT # =
SELECT DOCUMENT #
FROM CITATION, AUTHOR
WHERE CITATION.DOCUMENT # = AUTHOR,.DOC #
AND CITATION.TITLE = 'Process control in
shop-floor automation
AND AUTHOR ,NAME = '"Molly Bloom'

1

The principal disadvantage of query 13 is that the inquirer loses some
- of the query-formulation control which he would have if he conducted the

search as a two-stage process,

INFERENTIAL RETRIEVAL IN RELATIONAL DATA BASES
A relational document retrieval system does not just contain documents,
it also contains a great deal of valuable information of an inferential or

tacit nature. For example, an inquirer may want to know what the major

journal sources are in the field of "flexible manufacturing" so he will be
certain to keep up to date on their articles:

14, SELECT UNIQUE JOURNAL NAME, COUNT(DOCUMENT #)
FROM CITATION
WHERE DOCUMENT # = ANY
SELECT DOCUMENT #
FROM KEYWORDS
WHERE KEYWORD = 'flexible manufacturing'’
ORDER BY COUNT(DOCUMENT #) DESCENDING

The command "COUN?(DOCUMENT #)" keeps a running total of the number
of documents which have appeared in a given journal and have been assigned
the subject description "flexible manufacturing". The "ORDER BY . . ."
command insures that the output will consist of a rank ordering of journal
titles arranged in descending order by how many articles on "flexible manu-
facturing" have appeared in them. Often, an inquirer can infer a lot about
what kind of research may go on at a particular institution just by looking
at the kinds of publications, memos, or reports which are produced by indi-
viduals affiliated with that institution. By tabulating the information in
certain ways, some interesting relationships may be revealed. For example:

15. Rank the institutions by how many authors they have who publish
in 'flexible manufacturing'.

SELECT UNIQUE INSTITUTION, COUNT(UNIQUE NAME)
FROM DIRECTORY
WHERE NAME = ANY
(SELECT NAME
FROM AUTHOR
WHERE DOCUMENT # = ANY
SELECT DOCUMENT #
FROM KEYWORDS
WHERE KEYWORD = 'flexible manufacturing')
ORDER BY COUNT (UNIQUE NAME) DESCENDING

The results of the above search could be compared to the total number
of authors at each institution to get an idea of the percentage of concen-

tration that an institution has in 'flexible manufacturing'.

The subject terms which have been assigned to documents in the data

base can also be used to derive a rough "subject profile" of the research

at a particular institution by asking the following query:

16.

List the different keywords which have been assigned to articles
produced by individuals affiliated with the General Motors Insti-
tute, and count the number of documents to which each of these
keywords have been assigned.

SELECT UNIQUE KEYWORD, COUNT (DOCUMENT i)
FROM KEYWORDS
WHERE DOCUMENT # = ANY
(SELECT DOCUMENT #
FROM AUTHOR
WHERE NAME = ANY
SELECT NAME
FROM DIRECTORY
WHERE INSTITUTION = 'General Motors Inst.')
ORDER BY COUNT (DOCUMENT #) DESCENDING

Occasionally, it may be important to use the information on the data

base to generate a list of institutions who might be interested in receiv-

ing information on a particular area, This might be done with the follow-

ing query:

17.

Get the names and addresses of all research groups who have at
least one member who has published a recent (1981 or after) paper
on 'integrated manufacturing'.

SELECT INSTITUTION, ADDRESS
FROM INSTITUTE
WHERE INSTITUTION =
SELECT INSTITUTION
FROM DIRECTORY
WHERE NAME =
SELECT NAME
FROM CITATION
WHERE DATE > 12/31/80
AND NAME =
SELECT NAME
FROM AUTHOR
WHERE DOCUMENT # =
SELECT DOCUMENT #
FROM KEYWORDS
WHERE KEYWORD = 'integrating manu-
facturing'

ASSOCIATIVE SEARCHING USING THE RELATIONAL MODEL
One of the most important facilities of a good document retrieval sys-—
tem is its associative searching capability., This permits the inquirer to
discover semantic relationships between the subject index terms which have
been assigned to documents on ghe data base. One of the simplest and most
useful statistics for infering semantic relationships between subject terms
(keywords) is the percentage of co-occurrence of assignment of these terms.,
This percentage expresses a probability that if keyword "X'" is assigned to
a particular document, then there is a calculatable probability that keyword
"Y" will also be assinged to that document., This probability is merely the
percentage of times that keyword "Y" has been assigned to documents which
have keyword "X" assigned. (Note that the probability of "Y" being assigned
given the assignment of "X" is not the same as the probability of "X" being
assigned given the assignment of "Y".,) The primary use of associative
searching is to semantically '"broaden" an inquirer's subject search. For
example, if an inquirer exhausts his search for documents with the keyword
'flexible manufacturing' he can retrieve a list of co-occurring subject
terms by using the following relation:
THESAURUS KEYWORD, COOCCURRING TERM, PERCENT
A typical query might be:
18. Retrieve the keywords which co-occur with the keyword "Air pollu-
tion' which have a probability of co-occurrence greater than .040.
Rank these terms by decreasing probability of co-occurrence,
SELECT COOCCURRING TERM, PERCENT
FROM THESAURUS
WHERE KEYWORD = 'Air pollution'
AND PERCENT > .040

ORDER BY PERCENT DESCENDING

The output of such a search might look something like:

KEYWORD COOCCURRING TERM PERCENT

Air Pollution Dust 479
Waste Disposal .384
Water Supply 231
Quarrying .132
Noise .132
Poison .126
Environment 101
Pesticide .089
Occupational Safety .081
Gas Industry .063
Chemical Industry 061
Education 057
Natural Resources .045

Such a list has two principal uses: (1) It can, as mentioned before,
be used by inquirers who want to find semantically related keywords (the
assumption being that keywords which have a high probability of co-occurr-
ing are semantically related). (2) It can be used by indexers to assist
them in the indexing process (an indexer would only have to identify the
keyword which identifies the main subject of the document to be indexed,
and could then select the appropriate secondary subject categories from the
list of keywords which co-occur with the principal keyword).

An inquirer could expand his or her search without consulting a co-
occurrence list by entering the following formal query:

19. SELECT TITLE

FROM CITATION

WHERE DOCUMENT # = ANY
SELECT DOCUMENT #
FROM KEYWORDS FIRST, KEYWORDS SECOND
WHERE FIRST.KEYWORD = 'shop automation'
AND SECOND.KEYWORD = 'integrated manufacturing'
AND FIRST,.DOCUMENT # = SECOND.DOCUMENT #

A simple disjunctive query could be handled as follows:

21, Retrieve the titles of all the documents which have been indexed

with either keywords 'shop automation' or 'integrated manufactur-

ing'.

SELECT TITLE
FROM CITATION
WHERE DOCUMENT = ANY
SELECT DOCUMENT #
FROM KEYWORDS
WHERE KEYWORDS IN
('shop automation', 'integrated manufacturing')

Subject searching is a non-deterministic process in which several
topic alternatives often must be described in an inquirer's query. These
alternatives are represented by complex conjunctive and disjunctive Boolean
combinations of keywords. For example:

22, Retrieve the titles of all the documents which are indexed with
either 'shop automation', 'computerization', or 'automation', and
either 'integrated manufacturing' or 'flexible manufacturing'.
(This query is the conjunction of two disjunctive sets of three
keywords and two keywords, respectively)

SELECT TITLE
FROM CITATION
WHERE DOCUMENT # = ANY
SELECT DOCUMENT #
FROM KEYWORDS FIRST, KEYWORDS SECOND
WHERE FIRST,DOCUMENT # = SECOND.DOCUMENT f#
AND FIRST ,KEYWORD IN ('shop automation', 'computerization',
'automation')
AND SECOND.KEYWORD IN ('integrated manufacturing', 'flex-
ible manufacturing')

A general formulation is possible for constructing Boolean subject
queries, providing a format for even the most complex keyword queries:

SELECT FIRST.DOCUMENT #
FROM KEYWORDS FIRST
KEYWORDS SECOND

KEYWORDS Nth
WHERE FIRST.DOCUMENT # = SECOND.DOCUMENT #
AND SECOND.DOCUMENT # = THIRD.DOCUMENT #

AND N-1.DOCUMENT # = Nth.DOCUMENT #
AND FIRST.KEYWORD IN ('xxxx',...,.'xxxx")
AND SECOND.KEYWORD IN ('xxxx',..., 'xxxx')

AND Nth.KEYWORD IN ('xxxx',..., 'xxxx')

The logical format of this kind of query can be represented in the
propositional calculus as follows:

(Ka vk vv Kn) - (Ké v Kb o WV Kn) I

1 P 1 2 P 2
(KaV‘KbV' . .vKn)
r r r
[where the symbols "v'" and ":" represent disjunction and conjunction, re-
J s

spectively, and "K" stands for a keyword.]

This particular logical pattern is, of course, conjunctive normal form,
and while many Boolean expressions are not in conjunctive normal form, they
all can be transformed into conjunctive normal form without loss of meaning
or well-formedness., This means that any Boolean retrieval query can be re-
presented in the above format. For example:

. v K

<Ka Kb) c
which is not in conjunctive normal form, can be represented by the equiva-
lent logical construct:

K vK) . v K

(k, v) (6 VK
Or, in another example, the Boolean query:

(Ka . Kb) v (KC . Kd)
can be represented by the equivalent conjunctive normal form expression:

(Ka v Kc) (K v K) (Kb v K) (Kb v Kd)

Those readers familiar with propositional logic will, no doubt, have ob-
served that the expression}'(KA . KB) v (KC . KD)", while not in conjunctive
normal form, is in disjunctive normal form. Since all Boolean expressions
can be non-loss transformed into either conjunctive or disjunctive normal

form, it appears that the recommendation to convert all complex Boolean SQL

queries into conjunctive normal form is somewhat arbitrary. This is not
the case. Conjunctive normal form expressions are more easily represented
in SQL than disjunctive normal form expressions., The general SQL format
for disjunctive normal form expressions looks like:

SELECT UNIQUE FIRST.DOCUMENT
FROM KEYWORDS FIRST
WHERE FIRST,DOCUMENT # = ANY
(SELECT ~Nj,DOCUMENT #
FROM KEYWORDS Ny
KEYWORDS (Nj+1)
®
[]
[]
KEYWORDS (N7+4;)
WHERE ~ N;.DOCUMENT # = (Np+1) .DOCUMENT #

AND (N1+l).DOCUMENT # = (Nl+2).DOCUMENT #
'y
°
°
AND (N1+Ml—l).DOCUMENT # = (Nl+Ml).DOCUMENT i
AND N1 .KEYWORD = "KA "
1
AND (Nl+l).KEYWORD = "KB "
° 1
)
°
AND (N + M) .KEYWORD = "KN "
OR 1

SELECT ~ N,.DOCUMENT #
FROM KEYWORDS. Ny
KEYWORDS . (No+1)
o
L]
®
KEYWORDS . (No-+19)
WHERE ~ N,.DOCUMENT # = (N,+1) ,DOCUMENT #

AND (No+1) .DOCUMENT # = (N9+2).DOCUMENT #
[}
[]
®
AND (N3 -1) .DOCUMENT # = (No+M,) .DOCUMENT f#
AND ~ (N_+1) .KEYWORD =""KA "
AND (No+1) JKEYWORD = "KBZ"
° 2
®
®
AND (N 44) .KEYWORD = "K_ "

2

OR

LJ
L
L]
OR
SELECT N, .DOCUMENT #
FROM KEYWORDS . N,
KEYWORDS . (Np+1)
o
L
e
WHERE ~ Nj.DOCUMENT # = (N,+1).DOCUMENT #
AND (N,+1) .DOCUMENT # = (N,+2) .DOCUMENT #
o
L4
L
AND (N, M, -1) .DOCUMENT # = (N,+4,) .DOCUMENT #
AND N,.KEYWORD = "K, "
n
AND (Np+1) .KEYWORD = "K_ "
° n
o
L]
AND (N + M) .KEYWORD = "I(Nn")

This is clearly a more complex query format than the one for conjunctive
normal form (q.v.). The minor inconvenience of converting an expression
from disjunctive normal form to conjunctive normal form would be more than
offset by the comparative ease of transforming conjunctive normal form ex-
pressions into SQL (or any other relationally complete DMLs) commands.

From this discussion of SQL query formulation we can see that while
SQL is a "friendly" language, some Boolean queries may be translated into
SQL commands only with great difficulty. To facilitate query construction
complex Boolean queries should be reduced to their simplest form before they
are translated into SQL commands. For example, the laws of propositional
logic enable us to reduce the Boolean expression:

(Kp * Kg) v (Kg * Kp) v (Kp » Kp) v Ky

to:

K K K [vid. Appendix A]
(p q)vr[PP

This, in turn, is translatable into the conjunctive normal form expression:

(Kp v K. ¢ (Kq v Kr)
This is a much easier expression to translate into SQL than the original
one,
STORAGE STRUCTURE CONSIDERATIONS IN THE DOCUMENT RETRIEVAL MODEL

One of the problems with data bases which contain documents (as opposed
to data bases which contain only data) is that becauce of the many different
attributes of documents (e.g., author, title, data, journal, keywords, etc.)
one document may be represented by 10-15 different tpples. This means that
the size of the document data base will increase Quite dramatically as
-documents are added to the collection (though this increase may be
slowed by the careful use of data compression facilities and the
judicious linking of the physical instantiations of the document attri-
butes). If we assume the above logical structure and a mean subject index-
ing depth of 6 keywords, then the addition of one document to the collec~
tién results in a (theoretical) éddition of at least 12 tuples to the data
base (the number of tuples which must be added to the physical instantia-
tion of the THESAURUS relation depends on how many of the new documept!s
keywords are new to the vocabulary of the data base). This rapid growth
of document data base size can cause problems both in the physical storage
of attribute data and in the searching of the data base by inquirers.,

The largest relation in the data base will be the KEYWORDS relation
which needs a tuple for each assignment of a subject term to a document.
With a data base of 10,000 documents and a mean indexing depth of 6, we

would expect to have a vocabulary of 3,400-7,000 unique subject terms, and

a total number of indexing assignments of 59,880 (vid. Appendix B). The
latter figure will be the number of tuples in the KEYWORDS relation.

The total number of tuples in the THESAURUS relation is equal to the
number of unique co-occurrences of indexing terms in the data base (i.e.,
the number of distinct pairs of terms which appear together indexing a
particular document). Given a data base of 10,000 documents and a mean
indexing depth of 6, the estimated number of tuples for the THESAURUS re-
lation would be 32,600 (vid. Appendix C).

In aggregate, then, the total number of tuples needed to build a data
base of 10,000 documents is estimated to be 129,480 (vid. Table 1).
Clearly, to implement a document retrieval system on a relational data base
requires a substantial commitment of available resources. This may not be
a problem on a data base management system running on a large mainframe
computer or a smaller computer with a backend data base machine (such as,
a VAX with Britten Lee's IDM 600), but to implement a working document
retrieval system on a smaller computer (perhaps even a micro-computer) and
and still maintain the same retrieval capabilitiés will require some

changes in our basic model.

Relation Tuples
CITATION 10,000
ABSTRACT 10,000
AUTHOR 10,0001
DIRECTORY 5,0002
INSTITUTE 1,0003
SOURCE 1,0004
KEYWORDS 59,880°
THESAURUS 32,600
TOTAL 129,480

1. Assumes only single-author documents.

2, Assumes only 5,000 unique authors in the data base.

3. Assumes many authors will be affiliated with the same institution.
4, Assumes many documents will be published in the same journal.
5. Tuples in the KEYWORDS relation will be equal to the total number of

index term assignments in the data base.
Table 1

REDUCING STORAGE STRUCTURE

One of the observed characteristics of document retrieval systems is
that retrieval patterns often follow a Pareto Distribution. -~ That is,
about 20% of the documents on the data base will account for approximately
80% of the retrieval activity. In other words, a small "core'" of documents
will be retrieved repeatedly. Since the THESAURUS relation contains infor-
mation about the statistical (and, by inference, semantic) relationships
between assigned index terms, these relationships may be accurately modeled
by using co-occurrence data from just the '"core" documengs rather than all
the documents on the data base. The core documents can be easily identi-
fied by maintaining a count of the number of times each document on the
data base is retrieved. The core documents are those which have been
retrieved, or retrieved a number of times above an established cut-off
value. 1In our example, if we assume that the core documents represent 20%
of the data base, then the THESAURUS relation can be constructed on data
from 2,000 documents rather than 10,000. Using the same methods which we
used above, we find that we would only need an estimated 1,500 index terms
to describe the subject content of these core documents, assuming a mean

indexing depth of 6 (vid. Appendix B). The approximate number of unique

co-occurrences which are likely to occur for 1,500 terms and 2,000 docu-
ments is 7,550 (vid. Appendix C). This is the number of tuples needed to
build a THESAURUS relation using data from only the core documents. The
total number of tuples estimated to exist in the reduced data base is
104,430--a reduction in storage space of 197%.

If greater reductions in storage space are required it would probably
not be wise to base the THESAURUS construction on a subset of the data base
smaller than the set of core documents. Further reductions in storage
structure size can be effected by reducing the mean indexing depth of key-
word indexing (although, naturally, this may not be an easy or desirable
policy to implement). If we were able to reduce indexing depth from 6 to
4 then the following changes would occur: 1. The KEYWORDS relation would
be reduced from, approximately, 59,880 tuples to 39,824. 2. The THESAURUS
relation would be further reduced from the core document level of 7,550
tuples to 3,570. In aggregate, the data base would now contain an esti-
mated 80,394 tuples as compared with 104,430 tuples (core documents only,
mean depth of 6) or with the original data base size of 129,480 tuples (all
documents, means depth of 6). This would represent a 38% reduction from
the full data base size.

The notion of a core of comparatively highly retrieved documents can
also be a useful tool for inquirers. We can add a RETRIEVAL relation to
the data base defined as follows:

RETRIEVAL DOCUMENT # TIMES (retrieved)

An inquirer would greatly speed up his search by limiting his requests

for documents to those documents which have been retrieved one or more

times, e.g.,

SELECT . . .
FROM . . .
WHERE . . .

. ~

AND DOCUMENT # = ANY

SELECT DOCUMENT #

FROM RETRIEVAL

WHERE TIMES > O
This would insure that the inquirer would see the more highly retrieved
(and, by inference, more useful) documents first. This would mitigate the
problem of output overload, which we discussed before. If the inquirer-
did not find all the documents he wanted, he could then expand his search
to the rest of the data base by dropping the final SELECT clause.

The RETRIEVAL relation could also be used as the basis for ranking
output. The inquirer would merely include a command in his document
request to rank the output by the number of times the documents have been
retrieved. This assumes that the more highly retrieved documents are more
likely to be useful to the inquirer.

Conclusion

Recent research has shown that data base management systems are effec-
tive tools for constructing operational document retrieval systems. This
discussion has argued that the retrieval requirements of document retrieval
systems can be supported most effectively by the relational model, espe-
cially if a system capable of more advanced document retrieval techniques,
such as associative or inferential retrieval, is desired. The logical
structure for implementing the advanced or extended document retrieval
model was discussed at length, and several storage structure issues have

been addressed which are of particular importance for the design of docu-

ment retrieval systems.

Appendix A

1. K K K =K K «K)vK
(K, * KD v K R V(R KD VK

20 (K, K v R KD v R K v R - D) [identity]
3.0 K, KD v K LK) VIR v D) - K)) [distribution]
be @ KD v R KD v LA K] [identity]
5. (K, KD v K KD VK [identity]

[repeat steps 2-5]

9. (K *«K) vk
(P q) r
10. X vK) +*« (K vK distribution
(R, vE) (K VE) []
Another example:

F= [0, - KD v (& KD K, - K) v ® - K)vE K .K))

C
Set ¥, = (K, - E;) v (E£ * K)

and, F, = (E; . Kb) v <Ka . KC) v (Ka) §£ . Kc)

1. Fl = (Ka . Kb . kc) v (Ka . Kb 'vKC) v (ka '-KbT::KC) v (Ka . Kb . LC)
[change to complete disjunctive normal form]
'=_' . _-—‘l— . . .—0_
2. Fl (Ka Kb Kc) v (Ka Kb Kc) v (Ka Kb Kc) v (Ka Kb Kc)

[complement of Fl]

= "= e X L] '.-_- X X '—
3. Fl (Fl) (Ka v Kb v Kc) (Ka v Kb v KC) (Ka v Kb v Kc) (Ka\beszc)
[complete conjunctive NF of Fl]
4, F2=(Ka-Kb-Kc)v(Ka-Kb-KC)v(Ka-Kb-Kc)v(Ka-Kb-Kc)
[change to complete disjunctive NF]

5. Fé=(i€a-ib.Ec)v(Ka~Kb-Kc)v(Ka.Eb.Kc)v(Ka.Kb.E)

C

[complement of FZ]

1

6. F2 = (Fé) = (Ka v Kb v KC) . (E; v E£ v E;) . (R; v Kb v E;) . (E;\7E£\7Kc)

[complete conjunctive NF of F2]

O

10.

11.

12.

13.

14,

15.

F0

(Ka.vach) . (Kavfbv_'ﬁc) . (Eavach) . (EavavEC)

. (Ka v Kb v KC)r(Ka v Kb v Kc) [conjunction of 3 and 6]

F' = (Kavach) . (Kavav'IEC)

F=(F')'=(‘f<‘a-1<b~"ﬁc)v(‘i<‘a-"1€b-1<)

=] =l =w®| o=l =]

=

[complement of F]

Cc

[complete disjunctive NF of F]

c I R v - K)]

Al - K) vET - L& - K) v KT

S, vE) - ® v E)T - K vE) - K v EK)
AL & VR (K, vK) - 11}

L& vE) -+ (K vER)]

(K, vK) - (K vK)[simplifed version of F]

Appendix B

Many factors influence the growth of an indexing vocabulary, and while
estimates of vocabulary growth are difficult to make they are possible to
do if we take into consideration certain observed processes which occur in
the development of information retrieval systems.

Each indexing term in the vocabulary is assigned to documents within
the data base a certain number of times. If we take these individual term
assignment frequencies and rank them from the highest to the lowest values,
we often find that they conform to a hyperbolic or Zipfian [23] distribution
[Van Rijsbergen, Arthur D. Little]. Thus,

Ny

NA = i%qui = Fl (In (2NT + 1) - 0.116)

Where Nj = the total indexing assignments in the data base, Ny = the total
number of unique terms in the vocabulary, F; is the assignment frequency
of term i, and'Fl is the assignment frequency of the most frequently as-
signed subject term in the data base (i.e., term of frequency rank 1).

In our example, since we know the mean depth of indexing is 6 and the
number of documents in the data base is 10,000, we can estimate Nj with the
following equation [derived from Bird]:

t - mi
Ny= It (e Gp ()
i=1

Where t = the maximum number of vocabulary terms assigned to any document
'in the data base (with a mean depth of 6 we would expect a maximum depth
of about 14 or 15), m = the mean depth (here, 6), and Np = the number of
documents in the collection (here, 10,000). Setting t = 15, Ny = 59,800
(this will be the number of tuples in the KEYWORDS relation]. Now, by
substitution:

NA = 59,800 = Fl (ln (2NT + 1) - 0.116)

Because the rank-frequency distribution is hyperbolic, then if the
distribution were perfect, F; would be equal to Np. In empirical studies
it was found that F; is somewhat less than a perfect distribution would

predict, and Ny somewhat greater [Groos]. If we solve for a value of
Np slightly greater than F; we find that:

NT = 7,000

f

6,350

As it turns out, 7,000 will be an estimate of the maximum reasonable
value for Np. The Zipfian distribution is an accurate model for the growth
of indexing assignments when new subject terms are added to the system
vocabulary at a fairly constant rate. This is the case for the early
stages of data base growth, and for all growth in data bases which cover
areas like chemical research, pharmacology or patents. For most data bases,
though, the term assignment frequency distribution is Zipfian only in the
early stages, and the addition of new vocabulary terms falls off as new
documents are added to the data base [Lancaster, McClelland, Blagden]. This
is because most of the new documents deal with the same subjects that older
documents on the data base deal with. This kind of vocabulary growth is
log-normal rather than Zipfian and is best ‘modeled by [Wall]:

N, = [3,000 log,, (¥, + 7,100)]- 11,000

With Nj = 59,800, then the predicted size of the vocabulary would be 3,480,
Thus, we can estimate that the likely size of our indexing vocabulary (NT)
would be between 3,480 and 7,000 terms (where ND = 10,000 and mean depth
=6)o

* For small values of m, Nj can be estimated more easily as the product
m x Np. This approximation becomes less accurate as m increases.

Appendix C

The number of co-occurring index terms in a data base can be estimated
in much the same way as index term assignments were estimated (Appendix B).
With 10,000 documents and a mean indexing depth of 6, the approximate total
number of index term co-occurrences (NC) can be determined by using the fol-
lowing equation [derived from Bird]:

i

t -m, ,m
¢ , (&) G (N
Where t = the maximum number of vocabulary terms assigned to any document
in the data base (here, 15), m = the mean depth (here, 6), and N, = the

number of documents in the collection (here, 10,000). Setting t = 15, N, =
358,411. ¢

Nc is the total number of co-occurrences which have occurred in the
data base index term assignments, but the number of tuples estimated to
exist in the THESAURUS relation is equal to the number of unique co-
occurrences of terms which exist in the data base (i.e., no matter how many
times (>0) index terms T; and T: are both assigned to the same documents it
will require only two tuples in the THESAURUS relation to model their rela-
tionship).

Unlike index term assignments, there are no comparable studies of how
term co-occurrences are distributed. It is not unreasonable, though, to
assume that the character of the distribution of index term co-occurrences
is similar to the distribution of index term assignments. By assuming that
the distribution of term co-occurrences is hyperbolic or Zipfian, we can
estimate the number of unique co-occurrences which should occur in our hypo-
thetical data base.

Nc is comparable to N) (Appendix B) and can be substituted for it in
the equation we used to represent the distribution of index term assign-
ments:

358,411 = Fl (In (2NT + 1) - 0.116)

We can cveinterpret F; as the number of co-occurrences of the most frequently
co-occurring term on the data base, and we can reinterpret Ny as the number
of uniquely occurring term pairsi(or, co-occurrences). Solving the above
formula for equal values of Fq and Np we find that Np = F; = 32,600. (Un-
like our solution for index term’assignments we have no evidence that Fj
will be somewhat less than Ng). Np, of course is the value which represents
the number of tuples estimated to be in the THESAURUS relation.

Unlike index term assignments, we would not expect the number of new
unique term co-occurrences to fall off as markedly as the number of new
terms added to the vocabulary does during data base growth. This is because

even if new terms are not added to the vocabulary, new pair combinations
can be generated almost indefinitely (with a vocabulary of between 3,480
and 7,000 terms (Appendix B), the total number of possible unique pair
combinations is:

p 3,480

9 > P 7,000

) = 10,854,400

> 49,000,000

At most, the 32,600 term co-occurrences estimated to occur in the hypothet-
ical data base represent only .37 of the possible terms combinations.,
Clearly, the growth in the number of new unique term co-occurrences is not
rigidly dependent on the addition of new terms to the vocabulary, though
there is undoubtedly some relationship between the addition of new vocabu-
lary terms and the occurrence of new term pairings.

10.

11.

12.

13.

14.

15.

Bibliography

Arthur D. ILittle, Inc. Centralization and Documentation. Cambridge,
Mass., 1963.

Bird, P.R. "The Distribution of Indexing Depth in Documentation Systems."
Journal of Documentation, v30:4, December 1974, pp. 381-392.

Blagden,'J.F. Management Information Retrieval: A New Indexing Language.
Iondon: British Institute of Management, 1969. (2nd edition, 1971).

Blair, David C. "The Data-Document Distinction in Information Retrieval."
Communications of the ACM, v27:4, pp. 369-374, April 1984.

Blair, David C. "Searching Biases in Large, Interactive Document Retrieval
Systems.” Journal of the American Society for Information Science,
v31:4, pp. 271-277, July, 1980.

Blair, David C. "“SQUARE (Specifying Queries As Relational Expressions)
as a Document RetrievalLanguage" unpublished working paper, University
of California, Berkley, Spring 1974.

Chamberlin, D.D., et. al. "SEQUEL 2: A Unified Approach to Data Definition,
manipulation and control," IBM J. Research and Development, v20, 1976,
pp. 560-575.

Codd, E.F. "A Relational Model of Data for Large Shared Data Banks,"
Communications of the ACM, v.13, 1970.

Crawford, Robert G. "The Relational Model in Information Retrieval."
Journal of the American Society for Information Science, v32:1, pp.
51-64, 1981.

Date, C.J. An Introduction to Database Systems. Addison-Wesley, Reading,
Mass., 3rd ed. 1981.

Dattola, R.T. "FIRST: Flexible Information Retrieval System for .Text."
Journal of the American Society for Information Science, v. 30:1,
pp. 10-14, 1979.

Fairthorne, Robert A. “"Empirical Distributions (Bradford-Zipf-Mandelbrot)
for Bibliometric Description and Prediction." Journal of Documentation,
v25:4, December 1969, pp. 319-343.

Groos, 0.V. "Bradford's Law and the Keenan—-Atherton Data." American
Documentation v19:1, 1967, p. 46.

Jacquesson, Alain and William Schieber, "Term Association Analysis on a
Large File of Bibliographic Data, Using a Highly-Controlled Indexing
Vocabulary." Information Storage and Retrieval, v. 9, pp. 85-94, 1973.

Lancaster, F. W. Vocabulary Control for Information Retrieval. Informa-
tion Resources Press, Washington, D. C., 1972.

l6.

17.

18.

19.

20.

21.

22,

23.

Levien, R. E, and M. E. Maron. A Computer System for Inference Execution
and Data Retrieval." The RAND Corp., RM-5085-PR, September 1966.

Levien, R.E. and M.E. Maron. "Relational Data File: A Tool for Mechanized
Inference Execution and Data Retrieval." The RAND Corp., RM-4793-PR,
December 1965.

McClelland, R.M.A. and W.W. Mapleson. "Construction and Usage of Classified
Schedules and Generic Features in Coordinatted Indexing." ASLIB
Proceedings, v. 18, pp. 290-299, 1966.

Macleod, I.A. "The Relational Model as a Basis for Document Retrieval
System Design." The Computer Journal, v. 24:4, pp. 312-315, 1981.

Macleod, I.A. "SEQUEL as a Language for Document Retrieval." Journal of
the American Society for Information Science, v. 30:5, pp. 243-249,
1979.

Van Rijsbergen, C.J. Information Retrieval. Butterworths, London, 1979,
2nd ed.

Wall, E. "Further Implications of the Distribution of Index Term Usage."
Proceedings of the American Documentation Institute, vl, pp. 457-466,
1964.

Zipf, G.K. Human Behavior and the Principle of Least Effort. Cambridge,
Mass.: Addison-Wesley, 1949.

