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Abstract

With the increasing emphasis on flexible manufacturing systems, there is a need
to examine methods for their analysis and modeling. In this note we consider tan-
dem two-stage flexible flow shép systems (FFS), where at each stage there may be
more than one machine executing operations. We focus on the makespan objective for
which this scheduling problem is NP-hard in the strong sense. We propose a heuristic
based on Johnson’s algorithm, and prove that its worst-case behavior is at most 2. We

,also compare the mean performance of this heuristic with a number of other simple

scheduling algorithms, which proves a superiority of the proposed algorithm.
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1 Introduction

An important problem that needs to be addressed in the opgrat_ién of a flexible manufac-
turing system (FMS) is the scheduling of parts on machines (Stecke [11] and Kusiak [9]). As
the machines become more versatile, most of the operations on a part can be accomplished
by just one or two machine types (Jaikumar [7]). One type.of an FMS used in practice is a
flexible flow shop system (FFS - Sriskandarajah, Sethi [10]), where the routing of operations
is unidirectional (Blazewicz at al. [1]). As opposed to the classical flow shop, an FFS may
have more than one machine for at least one stage, processing operations of different parts
in parallel. One FMS like this is described in Blazewicz at al. [2]. In this last paper, a model
of an FMS has been introduced which enabled one to analyze a factory producing parts for
helicopters. In this model, the first stage corresponded to versatile (identical in the sense of
processing capabilities) machines and the second stage corresponded to an inspection stage
(which can be modeled by one machine). The algorifhms presented dealt with part schedul-
ing and vehicle routing assuming tlhe second stage can be postponed. In the present paper,
we remove this assumption and study scheduling algorithms for a two stage system.

Recently, Hoogeveen. at al. [6] proved that the problem of scheduling parts in such a
system in order to minimize schedule length is NP-hard in the strong sense. This means
that in general, even a pseudo-polynomial-time optimization algorithm is not likely to solve
the problem. (For FFS like above a branch & bound algorithm minimizing the maximum
completion time was developed by Brah and Hunsucker [3]). This indicates the usefulness
of the development of polynomial-time heuristic.algorithms along with the evaluation of
their accuracy. The first work in this direction has been done by Sriskandarajah and Sethi
[10], who analyzed flow shop problems with two stages. The first stage contained either one
machine or the same number of machines as the second stage. They analyzed the worst case
behavior of several heuristic algorithms.

In this paper, we investigate heuristic algorithms for the special open case of the above
model with parallel machines at the first stage, thus complementing the above results. Here,
the flexible flow shop consists of two machine stages [S1, S, |, with stage S; having m; > 2

parallel machines and S; having my = 1 machine. This problem setting examination is



scheduling algorithm based on Johnson’s procedure [§]. This procedure’s worst case behav-
ior is proven to equal two. Subsequently, three additional simple heuristics are evaluated
experimentally. These tests prove the superiority of the first algorithm.

We proceed with a formal problem description. There are n parts, T}, to be processed in
up to two operations in the FFS. For each part, there is specified a processing time vector
7; = [pj1,Pj2), where p;1 and p;2 denote the operation processing times of part T} in stages S
and Sy, respectively. The operations are nonpreemptable and it is assumed that the buffers
at each of the machine stages have sufficient capacity to hold all parts waiting for processing.
The optimality criterion here is schedule length (makespan), Cpq, = max;{c;}, where ¢; is
a completion time of part T} . According to the notation given by Graham at al. [5] and
modifications made by Sriskandarajah and Sethi [10], this problem is denoted as follows:

F2(mq =m,my =1) || Crige.

The outline of this paper is as follows. In Section 2, the first algorithm based on Johnson'’s
procedure is presented, and its worst case performance is analyzed. In Section 3, other
algorithms are presented and the average performance of all the algorithms is examined

empirically. Conclusions are provided in Section 4.

2  Algorithm 1

For the schedﬁling problem in question the following algorithm based on Johnson’s ap-

proach [8], is proposed.
Algorithm 1

STEP 1. Choose those parts for which the operation times p;; < pjs . Schedule these parts
on the m; machines at stage 5 in non-decreasing order of their processing times,
Pj1 .

STEP 2. The remaining parts schedule on the machines at stage S; in non-increasing order

of their processing times, p;s .

STEP 3. Schedule all of these parts on the single machine at stage S, in order of their

completion at stage S .



since there are more machines then one at this stage, it may fail to find an optimal schedule.

The worst case behavior of Algorithm 1 is stated in Theorem 1.

Theorem 1.

For the problem, F2(m; = m,my = 1) || Cuaz (m > 2). Let Cpnar be the schedule length

after applying Algorithm 1 and C” _ be the optimal schedule length. Then

mazr

Cmna:
Cn S 2

max

and this bound is the best possible.

Proof: 1t is rather obvious that an optimal schedule length cannot be less than the following

bounds:
Cr*nax 2 n’?n{pﬂ} + Zpﬂ (1)
7=1
Cmaz 2 C1 + min{p;o} (2)

where CF is an optimal schedule length at stage S, .

We consider two main cases, depending on the value of the schedule length produced by

Algorithm 1. Each of these cases contains two subcases.
Let min;{p;; } + Y51 Pia = 21 ; max;{pj1} = 22 ; min;{p;;} = §.

From (1) and (2) we see that:

Case 1. The schedule length Cpq, satisfies the following relation:

Cma:c < mjax{pﬂ} + Zpﬂ (5)
: Pt
Case 2. An inverse inequality holds

Crnaz > mJaX{le} + > pja (6)

i=1



Now, we will analyze the two cases separately.
Case 1.

Define two subcases

Case 1.1: Ty > Ty

Case 1.2: z1 < Ty

Case 1.1. From (5) we have:
Crmaz < T2 + (21— 6).
From (3) we have
Cras 2 21

Combining these two inequalities we get

Cmaz<1+_2:§_<2

ch, ’

since 6 can be made arbitrarily small.

Case 1.2. From (5) we have:
Cma:v S ) + (zl - 6)

From (4) we have

C;Laa: 2 T
Thus,
Cmaz Iy =6
C:;la.z S 1 + 2 - 2
Case 2.

Consider now the second case, i.e., inequality (6) is fulfilled.

Denoting z3 = 3°7_; pjo, We have
Cmaa: > 2o+ 3
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Again two subcases may occur.

Case 2.1. We have
T3 _>_ T9. (8)

We will prove first that in this case schedule length is bounded from above by Cf + 23 .
Proposition 1

If Cpiaz > 9 + 23 and z3 > x4, then

C’maa: S Ci“ + T3. (9)

Proof: Two extreme subcases depend on the schedule obtained at the first stage (S1) of the

flowshop system.

a) The schedule at S; is an optimal one (cf Fig.1).

O S S (z3 )
0 Cik Omaa: 6

Figure 1.

Clearly, even in the worst case at the second stage (as depicted in Fig. 1) inequality (9)

must be fulfilled.

b) The schedule at S; is the worst possible, i.e., Cy is the longest.
Taking into account the worst possible behavior of a schedule for parallel processors, as
analyzed by Graham [4], the longest operation ( of length z, ) will be processed at the end
of stage Sy . (If the longest operation at S; belonged to a part fulfilling a condition of Step 1



of Algorithm 1, then it could not be scheduled at the end of stage S; according to Algorithm
1. Therefore the schedule at S; would not be the longest possible.) Following Algorithm 1 and
its second step, a corresponding operation of the same part is the shortest (of length py,) from

among those scheduled in this step at stage S; (cf. Fig. 2), i.e., p2 = min;{pjs : pjo < Pj1} -

P
A = max{py, 3 — z2}
Sl .
P, (z2) Ty
S : SIS S S S (¢s) T
" t
0 %01 Cl A C'ma:r
Figure 2.

Since the mean value by which an optimal schedule length Cf is decreased on m—1 processors

at 5y is -2+ , we can assume that the processing of operations starts at stage S, at moment

C} — =2 at the latest.

£2_ and we have:

If 23— 22 > pya , then no idle time at S; appears beyond C7 —

m-—1
C’maxSCf—mle+x2+w3—m2<0{‘+x3. (10)
Otherwise (if 23 — 2, < pg2 ), an idle time at S, appears a;1d
* z .
Cmaa: < c’1 - _2_ ] + 2 +pq2- (11)

Then again, if pg < =%, (11) may be written as
Omax < Cik + 3
since T3 > Tg .

On the other hand, i.e., if pjs > =%, operations T, assigned to the machine at stage S,
according to Step 2 must be longer than Ty, (or at least equal to). Thus, pjz > -2+ for these

operations and the sum of their processing requirements is equal at least to x5 , since there
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are at least m — 1 such operations. (If there were less then m — 1 operations of this type
then inequality (7) could not be satisfied and we would have Case 1.) Hence, the idle time
at S, doesn’t appear beyond moment O — =2+, pgy < 3 — 25 and schedule length Cpg is

constrained as in inequality (10). This completes the proof of case b.

Any intermediate case (between extreme cases a and b) will not lengthen the schedule
beyond bound Cf + z;3 . For any other a,ssignment. of tasks to processors at stage S; will
shorten Cy and thus g, - ( If another long task is assigned to P,,_; , we can repeat the above

reasoning for the set of processors Py, ..., P, _;. ) This completes the proof of Proposition 1.

a

Following Proposition 1, we can now estimate the ratio g':“" . For z3 < Cf, we have
&

ma

Cmaz < C;+‘T3 < 9
Crmaz — Cf+4minj{pj2} —

where the bound C*

maz Was given in formula (2).

On the other hand, if 23 > C} then

Cmaz < ci‘l +z3 < 9

Chaz — catmini{p;} =~

and the bound for C*

maz Was given in (1).

This completes the proof for Case 2.1.

Case 2.2. We have

.

T3 < Ty (12)

In this case we will prove that the schedule length is bounded from above by C} + z, .

Proposition 2.2

If Craz <22+23 and 3 < 25, then

C’ma.z' S Of + Zq. (13)



Proof: Again, as in Proposition 1 we will distinguish two extreme cases depending on the

schedule at stage S .

a) The schedule at Sy in an optimal one (cf Fig. 1).

It is obvious that in this case
Cmaz _<_ Cik +$3 < Cf +.’1?2.

b) The schedule at Sy is the worst possible and we have the situation depicted in Fig.2,
but now A = pg, .

We see that

z
Ciez < CT — T—n-%T + 3 + Pg2. (14)

Assuming now that p;; > -, Algorithm 1 would assign (at Step 2) operations in

nonincreasing order of their processing times pj, , which therefore must be greater than or

equal to py2. The total processing requirement of these operations is at least

ﬁ(m - 1) = Z9.

This contradicts (12) and thus
)
-1

<
pq? m

Using (15) in evaluating Cinaz (14), we get

Gma:z: < Cik + 3.

This completes the proof of case b. Any intermediate case can be handled analogously as -

in Proposition 1.

Now, the estimation of the worst case bound g’."“ is as follows. If zo < C} we have

mazx

Cmazx Cl'+$2 2.
C:nax - G;-l-ml'nj{pﬁ} -

otherwise

Cnlﬂl‘ C]*--'-xz
Chaz — $2+mlnj{pj2} —




because Cy,,, > z2 + min;{p;2} .
This completes the proof of Case 2.2.
Now we will show that the above bound is achievable.

Example:

We define two types of parts with processing times, respectively:

1) pz = [m, %] , a=1,..,m;
2)?)7,':[#,%—6], b=1,..,mm;

A schedule constructed by Algorithm 1 is shown in Figure 3.

m m+1
Pl . Da1 =m
Dol = %
Sl .
P,
Sy : S S S S S S
° (e he - oy

Figure 3. A schedule constructed by Algorithm 1 for the Example.

We see that for this schedule,

Conaz =2m +1 — mZe.

On the other hand, an optimal schedule is shown in Fig. 4.



% m+1
|
P, 1 Par =M
P =
51 .
P
Sz .
0 ? b
E-am (m
Figure 4. An optimal schedule for the Example.
Thus, the optimal schedule length is
Croe = —1—+m+1—m26. (17)
m

Hence, dividing equation (16) by equation (17), we have:

1 .
Cmaz _ 1 1_m2 2 f
o+ or m — 00
Chaz It—gtym—me —

This completes the proof of Theorem 1.
a

As will be shown in the next Section, mean behavior of Algorithm 1 is better then 2. Its

superiority over some other simple heuristics will be also shown.

3 Computational Experiments

To test the mean behavior of Algorithm 1, an extensive experiment has been carried
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out. Besides Algorithm 1, three other algorithms have been tested. They have the same

framework, but a different ordering of tasks at stage Sy . Their action is described below.
Algorithms 2,3,/

STEP 1. Schedule tasks on machines at stage S; in SPT (respectively, LPT, random) order

of their processing times, p;; .
STEP 2. Schedule all of these tasks on the single machine at stage S; in order of their

completion at stage S; .

These four algorithms have been tested experimentally. The computational data are

described as follows:

o All of the parameters are randomly generated using a uniform distribution with the

following ranges:

1. number of tasks n (ranges are given in Tables 1 and 2)
2. processing times. Two subcases have been distinguished:

— arbitrary generation of processing times (see Table 1) p;1 and pjs, in the range

of 1 to 10 and 1 to 100, respectively;

— processing times at stage S, depended on the number of machines at stage -

Sy (see Table 2), pj1, in the range of 1 to 10 and 1 to 100; and p; = 5—%.

o The number of problem instances generated for each-parameter range was 1000.

o The computer installation was a Hewlett-Packard 9000/750.

The results are gathered in Tables 1 and 2. In these tables, the numbers of instances gen-
erated for each range of parameters are equal to 1000. For each algorithm and each parameter
range, a number of cases is shown for which a solution generated is equal to the optimum
(the parameter best). Moreover, mean values over 1000 instances of the ratio CA /CLB" are

reported (parameter mean), where CL3” is a lower bound for the optimal schedule length (ob-
tained as a maximum from equations (1) and (2), where Ct > max{max;{pj1}, - ¥ pj1 }
). We see that for an arbitrary generation of processing times of parts, the machine at the

second stage becomes a bottleneck and all of the algorithms become almost optimal and the

11



Table 1: The ratio CA _/CEB” for four algorithms and arbitrary processing times of parts at

max

both stages.

No|mi|n |ppe2 | Alg 1. | A.2(SPT) | A.3(LPT) | A. 4RND)

best | mean | best | mean | best | mean | best | mean
2-20 | 1-10 | 960 | 1.005 | 963 | 1.005 | 9 |1.122 | 55 | 1.101
2-20 | 1-100 | 949 | 1.006 | 959 | 1.005 | 7 |1.120 | 56 |1.098
2-50 | 1-10 | 962 | 1.006 | 968 | 1.005 [ 15 | 1.132 | 205 | 1.087
2-50 | 1-100 | 911 | 1.012 | 933 | 1.007 | 16 | 1.143 | 89 | 1.101
2-100 [ 1-10 | 975 | 1.002 | 977 | 1.004 | 7 | 1.117 | 135 | 1.088
2-100 | 1-100 | 956 | 1.005 | 960 | 1.005 | 5 | 1.120 | 51 | 1.100

S Ot W LN
DD DD DN DN NN

* best - the number of optimal instances for which an algorithm produces an optimal schedule.

ratio hardly exceeds 1.3, even for 7'n1 = 2 . However, if the processing times at the second
stage depend on a number of machnes at the first stage (a more realistic case), then the
algorithms behave quite.differently. The best percentage of solutions close to optimum have
Algorithms 1 and 2 (SPT). Algorithm 2(SPT), however, generates worse schedules (as in
the case of LPT) for the case in which the first operations are equal or almost equal. The

worst is Algorithm 3 (LPT); it is even worse than a random (arbitrary) assignment of parts ‘
to machines at stage 57. This could be expected, because LPT assignment at the first stage

increases idle time at the second stage.
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Table 2: The ratio C4, /CLB" for four algorithms and processing times of parts at stage S,

mazx

depending on the number of machines at stage S; .

No |m; |n Di1 Alg. 1. A.2(SPT) | A.3(LPT) | A. 4RND)

best | mean | best | mean | best | mean | best | mean
1 {2 (220 |1-10 | 458 |1.060 | 378 | 1.079 | 7 |1.302| 12 | 1.132
2 | 2 220 |1-100 | 456 | 1.058 | 376 | 1.076 | 8 | 1.302 { 17 | 1.130
3 | 2 |250 |1-10 | 685 | 1.040 | 566 | 1.059 | 20 | 1.271 | 645 | 1.136
4 1 2 |2-50 |[1-100 | 437 | 1.070 | 348 | 1.092 | 15 | 1.314| 35 | 1.158
5 | 2 {2100 [ 1-10 | 778 | 1:025 | 680 | 1.039 | & | 1.256 | 50 | 1.116
6 | 2 [2-100 | 1-100 | 465 | 1.059 | 380 | 1.075 | 6 | 1.301 | 14 |1.130
715|520 |1-10 |493 | 1.087 | 569 | 1.082 | 47 | 1.201 | 218 | 1.141
8 | & | 520 |1-100 | 112 | 1.203 | 84 |1.267 | 12 | 1.388 | 28 | 1.268
9 | 5 |550 [1-10 | 759 | 1.038 | 814 | 1.034 | 16 | 1.252 | 174 | 1.112
10 | 5 [5-50 | 1-100 | 458 | 1.060 | 378 | 1.079 | 7 |1.302 | 12 |1.132
11 | 5 | 5-100 | 1-10 | 456 | 1.058 | 376 | 1.076 | 8 | 1.302 | 17 |1.130
124 5 | 5-100 | 1-100 | 685 | 1.040 | 566 | 1.058 | 20 | 1.271 | 64 .| 1.136

* pjs - is randomly generated from 1 to pj; /my for all instances.
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4 Summary

In this paper, a special case of the flow shop scheduling problem has been analyzed in
which the first stage contains parallel identical machines, while the second stage contains
only one. An algorithm based on Johnson’s strategy has been proposed and its worst case
behavior proved to be 2. Then, three other very simple heuristics have been proposed and
all of the algorithms have been tested experimentally. The mean behaviors of Algorithm 1
(based on Johnson’s approach) and of Algorithm 2 (based on the SPT rule) were the best
and close to optimal, with a superiority of Algorithmyl for the case of a non-bottleneck
second stage.

Further investigation should include different criteria (for example, mean weighted com-
pletion time or tardiness). Other details that could be included are the finite buffers between

stages or automated guided vehicle routing.
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