Division of Research December 1992
School of Business Administration
The University of Michigan

SCHEDULING PARTS THROUGH A TWO-STAGE
TANDEM FLEXIBLE FLOW SHOP

J. Blazewicz
Technical University of Poznan
Moshe Dror
The University of Arizona
G. Pawlak
Technical University of Poznan
K.E. Stecke
The University of Michigan
Working Paper No. 699






ABSTRACT

With the increasing installation of flexible manufacturing systems, a need exists to
investigate methods for their analysis and modeling. The type of FMS considered here is a
tandem flexible flow system (FFS), in which at each stage there may be more than one machine
executing operations. Here, we investigate input sequencing heuristics into a tandem two-stage
FFS for the performance measure of minimizing makespan. As this scheduling problem with the
schedule length criterion is NP-hard, one should investigate heuristic algorithms. For these, we
estimate their worst-case, as well as mean, behavior. In this paper, an open NP case of the
flexible flow shop problem is studied for which four heuristic algorithms are proposed and

analyzed.







1. INTRODUCTION

An important problem that needs to be addressed in the operation of a flexible
manufacturing system (FMS) is the scheduling of parts on machines (Stecke [1985]). As the
machines become more complicated, the FMSs are versatile, so that most of the operations on a
part can be accomplished by just one or two machine types (Jaikumar [1986]). One type of an
FMS used in practice is a flexible flow system (FFS), where the routing of operations is
unidirectional.

As opposed to the classical flow shop, an FFS may have more than one machine at each
stage, processing operations of different parts in parallel. Recently, Hoogeveen and Lenstra
[1992] prove that the problem of scheduling parts in such a system in order to minimize schedule
length is NP-hard in the strong sense. This means that in general, not even a pseudo-polynomial-
time optimization algorithm is likely to be able to solve the problem. This indicates the
usefulness of the development of some polynomial-time heuristic algorithms along with the
evaluation of their accuracy. The first work in this direction has been done by Sriskandarajah
and Sethi [1989], who analyze flow shop problems with two stages. The first stage contains
either one machine or the same number of machines as the second stage. They analyze the worst
case behavior of several heuristic algorithms.

Different input sequencing problems of FFSs are addressed by Kubiak and Sethi [1992]
and Smith and Stecke [1991]. The former finds JIT sequences to balance workloads. The latter
determines cyclic input sequences that balance workloads.

In this paper, we investigate heuristic algorithms for the special open case of the flow
shop scheduling problem with parallel machines at the first stage. Here, the flexible flow shop
consists of 2 machine stages [Sl’ SZ]’ with stage S1 having m; 2 2 parallel machines and 82
having m, = 1 machine. One real-life FMS like this is described in Blazewicz et al. [1991].

We begin in Section 2 by analyzing a scheduling algorithm based on Johnson's procedure
[1954], which minimizes schedule length for a two-machine problem. The heuristic's worst case
behavior is proven to be equal to two. Then three additional simple heuristics are presented.

These algorithms are evaluated experimentally. Next we define the problem formally.



There are n parts, Tj’ j=1....,n, to be processed in up to two operations in the FFS. For
each part, there is specified a processing time vector ﬁj = [pjl’ pj2]’ where pj1 and pj2 denote
the operation processing times of part Tj at S1 and 82, respectively. The parts are independent
and the operations are nonpreemptable. The optimality criterion here is minimizing the schedule
length, Cmax = mjgx{cj}, where cj is a completion time of part Tj' According to notation
proposed by Graham et al. [1979], with extensions given by Sriskandarajah and Sethi [1989], this
problem is denoted as follows:

F2 m, =m, m2=1 Cmax'

In this note, buffers at the machine stages have sufficient capacity to hold all parts
waiting for processing.

The outline of this paper is as follows. In Section 2, an algorithm based on Johnson's
algorithm is presented, and its worst case performance is analyzed. In Section 3, three other

algorithms are presented and the average performances of all of the algorithms are tested. A

summary is provided in Section 4.

2. ALGORITHM 1
The following heuristic Algorithm 1, which is based on Johnson's algorithm [1954], finds
a schedule of possibly minimal length.
Algorithm 1

STEP 1. Choose those parts for which the operation times pjl < pj2‘ Schedule these
parts on the m; machine at stage S1 in non-decreasing order of their processing

times, pjl'
STEP 2. The remaining parts are scheduled on the machines at stage S1 in non-
increasing order of their processing times, pj2.

STEP 3. Schedule all of these parts on the single machine at stage 82 in order of their

completion at stage Sl'




We see that the algorithm uses Johnson's strategy to sort parts at the first stage. However,
since there are more than one machine at this stage, it may fail to find an optimal schedule. The

worst case behavior of Algorithm 1 is analyzed in the following Theorem 1.

Theorem 1. For the problem, F2 m, =m2 2, m, = 1 Cmax’ let pjl and
pj2’ j = 1...n, be the part processing times on machines at stages Sl and 82, respectively. Let
Cmax be the schedule length after applying Algorithm 1 and Cfnax be the optimal schedule

length. Then

C
max .
—Max ¢ .

C
max

this bound is the best possible.

Proof: A lower bound on the optimal schedule length cannot be less than the following:

*! . n *! .
Cmax = max{mjln{pjl}+ _lejZ’ Clmax + mjm{pjz}}, ' (D)
J:

where C;"m ax is a lower bound on an optimal schedule length for stage S I
1 n
— 2pjl, max{pji}}.
J=1 J

Condition (1) describes the only two possible cases for the worst schedule at either the first or the
second stage. Of course, we can define other terms to describe the optimal schedule length (for
example, m'flx[pjl + pj2})' Then, for some instances we could get better results than using
condition (1) only. However, all other cases reduce to condition (1) for Algorithm 1 within the
bound of value 2.

If we can find any parts that satisfy the inequality from STEP 1 of Algorithm 1, then the
schedule produced by Algorithm 1 would not generate the worst case. The worst case occurs
when we cannot find parts which satisfy the inequality from STEP 1. Because parts are assigned

in non-increasing order of pj2’ in the worst case we can first schedule the longest operation time



parts (pjl) at stage S T which would give the maximum idle time at the beginning of the second
stage. This situation is described by equation (3) and is illustrated by Example 1.

On the other hand, if the longest operation time part can be scheduled at the end of stage
S1 and if the processing times, pj2, of the parts are small, then this provides the second case of
the worst schedule. This situation is described by equation (9) and is illustrated by Example 2.
All other cases can be reduced to these two cases.

Now we consider the two possible cases that can follow from equation (1).

Case 1:

Assume first that the lower bound is
* 1 _ n
Chnax =min {pjl} t 2 Pjp- @
J =1
We see that it is the best lower bound of the schedule length. From Algorithm 1, the worst case
occurs when the schedule length Cmax fulfills the following equation:

n
2 sz- 3)

C =max{p.1} +
] . =1

max

This is the upper bound of the schedule length for Case 1. This is because if the max {pjl} is
scheduled at the beginning of the schedule, then this gives the maximum idle time at the

beginning at stage SZ'

Hence

% !

max ]
J J
Thus
mE}X{Pil}“mi.n{le}
Cg}ax <led rJ1 . “4)
Cmax min{p.1}+ Y Pir

Let us denote:

..}1=B d i .41 =E.
mgix{pﬂ} an mj}n {le}




We can assume without loss of generality for n>m that

n

2 p i2 2 B. )
=l
If condition (5) were not true, then Case 1 would reduce to Case 2.

We now have

Cmax _1,37E

*!
max B+e

Thus

C . s
—INaX <2, and this is the worst bound in this case.

max
C
Now we show an example for which —14X approaches 2.
max
Example 1:

We define two types of parts with processing times, respectively, of:

1
p:=|m-1, —|, i=1...m;
pJ [ m—l] ]

ﬁ.: =[i, -1——8], j=1...m2;
J Im m

ande<%.
m

A schedule constructed from this data by Algorithm 1 is shown in Figure 1.



-6-

(m-1) (m-1) +m/m=m

L .1
: Pl =
(] p_]l' =m-1

Sl i

m
S, S VYA I [ 1 [ 1]

[ "
idle time ( m_-l)m (E-_E)m

Figure 1. Schedule Constructed by Algorithm 1, for Example 1.

We see that for this schedule,

_ 1 1 2
Cmax = m—l+m(—n:)+(r—n-—s)m
= dm4+— - mZe. )
m-1

On the other hand, an optimal schedule for this data is shown in Figure 2.
1

El_ m
J
1 w1
. Bi=m
: pji=m 1
S . (m-1)
m
s, T 1T v TT1T]
T T T
idle time
1 1 2 1
() (z-&)m?  (=7m

Figure 2. The Optimal Schedule for Example 1.




Thus, the optimal schedule length is

Cmax”;;*(;;‘g)m +(m)m

=i+m—m2£+—r-n— @)

m m-1

Dividing equation (6) by equation (7), we have:

2m+i—1—m28
max 1m—l
Cmax m+—+—r§1———m2€
m m-
As £ =0, then
m 1
2m+—-1 2m +——
max - lm—l = m=-1_ 52 asm— .
C m m 1
max m+—+—- m+—-—-+—
m m-1 m-1 m

Case 2:

Case 2 occurs when the second part of equation (1) is greater than the first part. We then

have:

%!

— *' 3
Crnax "Clmax+m}n{pj2}' @®)

*
In the worst case, a schedule length, C; .., at stage S1 (a list schedule) is related to an

optimal schedule as follows (see Graham [1966]):

Clmax - (2 _E)Clmax :

In this worst case, from Algorithm 1, we have:

1) * .
Cmax = (2 ——-)C 1max * m}n {ij}' _ )

m



This is the worst case of Algorithm 1 for Case 2, where the largest part (max {pjl }) is scheduled

]
at the end of Stage 1.

On the other hand, we have:
*! *
Cl max S Clmax )

Dividing equation (9) by equation (8), we have:

1) *! .
2-—|C +min{p.,}
Ima . 2
Crmax ( m * J !
*! - *! .

Ciax Clmax+ml.n{pj2}

Let us denote mi.n{pil}=e. If e— 0, then

J

9%@1 <2-1.

max m

*! *
From equation (1), we know that Cmax < Cmax’ and thus

Cmax ¢, 1
c T om

max

Example 2:

We define two types of parts whose processing times are:
pj=[1,28], j=1...m(m-1);

pj=[m,e], i=1

and € < bLm’ where b > 2.

In Figure 3, the worst case behavior of Algorithm 1 is shown.




m-1
1 se
Pj'1=1
. 3 pj‘i=m
51
m LN ] m J
Sy 1[/['[[ LI Ill[lll/l///////////////IJ
1 2¢ * m(m-1) €

Figure 3. Schedule for Example 2 Developed from Algorithm 1.

Ife= ﬁ, then 2¢€ * m(m - 1) < m, and from Figure 3, we have

Cmax=m-1+m+e=2m-l+e.

An optimal schedule is shown in Figure 4.

Sl 1 e 00
m m
) VR NE l[/[l/ll/!rl

(m-1)*2e ¢
Figure 4. Optimal Schedule for Example 2.

The optimal schedule length is:

*

Cmax=m+28(m-1)+ €.

(10)



-10-

Dividing equation (10) by equation (11), we obtain

Crax __ 2m-1l+e bm

* = .
Crax m+2e(m-1)+¢ m+2——2—+—1——

Asb — o, then € = 0. Then form — oo,

C
—ax <7,

C

Hence from Case 1 and Case 2, we conclude that the worst case performance for the

considered Algorithm 1 is:

—MaX <2, and this bound is the best possible. N
max

3. COMPUTATIONAL EXPERIMENTS
In addition to Algorithm 1, three other algorithms are tested. They have a similar

framework, but a different ordering of the operations. These algorithms are now described:

Algorithms 2. 3. and 4
STEP 1. Schedule the operations on the machines at stage S1 in SPT (LPT, random,
respectively) order of their processing times, pjl'
STEP 2. Schedule all of these operations on the single machine at stage 52 in order of

their completion at stage S I

These four algorithms have been tested experimentally. These computational
experiments are now described as follows.

All of thé parameters are randomly generated using a uniform distribution with the
following ranges:

1. The number of operations, n, is from 1 to 1000.

2. The number of machines at the first stage, m, is from 1 to 50.

3. Two cases of processing times are distinguished:




-11-

a) Processing times are generated randomly according to pjl from 1 to 1000 and
pj2 from 1 to 1000; or
b) The processing times at stage 82 depend on the number of machines at stage S1
as follows: Pj1 from 1 to 1000 and P from 1 to 1000/m.
Other data of the computational experiments are as follows:
- The total number of problems generated is 50,000.
- The computer installation used is a SUN station IPC. -
- The ratio, Cgaxlcr*;ax’ is evaluated, where C:;ax is a lower bound on the optimal

*
schedule length, C . and Cr?lax is the performance of Algorithm A, where A is

1,2,3,0r4

The results are provided in Tables 1 and 2. In these tables, the numbers of cases are

shown in which the ratio, CA /C

max/Cmax- has been reached for each of the four algorithms. The

best results are highlighted in boldface.

Table 1.

%!
The Ratio Cﬁaxlcmax for the Four Algorithms and

Arbitrary Processing Times of Parts at Both Stages.

Ratio: Heuristic/Best Lower Bound
Algorithm 1 Alg. 2 (SPT) Alg. 3 (LPT) Alg. 4 (RND)
Mean 1.008 1.006 1.0979 1.0880
Std. Dev. 0.0104 0.0096 0.0153 0.0330
Best1 49,647 49,726 1,139 6,051

1. This is the number of times that each Algorithm obtained the best lower bound out of all

50,000 problems tested.




. A
The Ratio Cmax/Cmax

-12-

Table 2.

%

for the Four Algorithms and Processing

Times of Parts at Stage S2 Depending on the Number of Machines at Stage S1.

Ratio: Heuristic/Best Lower Bound
Algorithm 1 Alg. 2 (SPT) Alg. 3 (LPT) Alg. 4 (RND)
Mean 1.1112 1.1129 1.337 1.1330
Std. Dev. 0.0950 0.0950 0.0797 0.0833
Best 9,392 9,168 11 115

1. This is the number of times that each Algorithm obtained the best lower bound out of all
50,000 problems tested.

We see from Table 1 that for an arbitrary generation of processing times of operations of
parts, the machine at the second stage becomes a bottleneck. All of the algorithms become
nearly optimal and the ratio nearly never exceeds 1.3. Algorithm 1 and the modified SPT
heuristic are both by far thé best.

However, when the processing times at the second stage depend on the number of
machines at the first stage, then the algorithms behave quite differently. The best percentage of
solutions close to optimum are still Algorithm 1 and a close second, Algorithm 2 (modified
SPT). The standard deviation for none of the algorithms is high. The worst algorithm in both
situations is Algorithm 3 (LPT). LPT is even a bit worse than a random assignment of
operations to the machines at stage Sl' This could be expected, because an LPT assignment at

the first stage can increase the idle time at the second stage.

4. SUMMARY
In this paper, a special case of the flow shop scheduling problem has been analyzed in

which the first stage contains parallel identical machines, while the second stage contains only




-13-

one machine. An algorithm based on Johnson's strategy has been proposed and its worst case
behavior is shown to be 2. Then, three other simple heuristics have been proposed and all four of
the algorithms have been tested experimentally. The mean behaviors of Algorithm 1 (based on
Johnson's approach) and of Algorithm 2 (based on the SPT rule) were the best and close to
optimal.

Further investigation along these lines would be useful. Such research should include
different criteria (for example, mean weighted completion time or tardiness). Other details that
could be included are the usual finite buffers between stages or automated guided vehicle

routing.

ACKNOWLEDGMENTS

The authors gratefully acknowledge helpful comments made by Ervin Pesch on an earlier
draft of this paper. Kathy Stecke would like to acknowledge a summer research grant from the

Business School of The University of Michigan.



-14-

REFERENCES

Blazewicz, J., H. A. Eiselt, G. Finke, G. Laporte, and J. Weglarz, "Scheduling Tasks and
Vehicles in a Flexible Manufacturing System," International Journal of Flexible
Manufacturing Systems, Vol. 4, No. 1, pp. 5-16 (August 1991).

Hoogeveen, J. A., J. K. Lenstra, and B. Veltman, "Minimizing Makespan in a Multiprocessor
Flowshop is Strongly NP-hard," Working Paper, Eindhoven University of Technology,
The Netherlands (1992).

Jaikumar, R., "Postindustrial Manufacturing," Harvard Business Review, Vol. 64, No. 6
(November-December 1986).

Johnson, S. M., "Optimal Two- and Three-stage Production Schedules with Set-up Times
Included," Naval Research Logistics Quarterly, Vol. 1, pp. 61-68 (1954).

Kubiak, W. and S. P. Sethi, "Optimal Just-In-Time Schedules for Flexible Transfer Lines,"
Working Paper, Memorial University of Newfoundland, Faculty of Business
Administration, St. John's, Canada, A1B 3X5 (July 1992).

Graham, R. J., "Bounds for Certain Multiprocessing Anomalies," Bell Systems Technical
Journal, Vol. 45, No. 9 (November 1966).

Graham, R. J., E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnoy Kan, "Optimization and
Approximation in Deterministic Sequencing and Scheduling: a Survey," Annals of
Discrete Mathematics, Vol. 5, pp. 287-294 (1979).

Smith, T. M. and K. E. Stecke, "On the Robustness of Using Balanced Part Mix Ratios to
Determine Cyclic Part Input Sequences Into Flexible Flow Systems," Working Paper, No.
658, Division of Research, The University of Michigan, School of Business, Ann Arbor,
MI (May 1991).

Sriskandarajah, C. and S. P. Sethi, "Scheduling Algorithms for Flexible Flowshops: Worst and

Average Case Performance,” European Journal of Operational Research, Vol. 43, pp.
143-160 (1989).

Stecke, K. E., "Design, Planning, Scheduling, and Control Problems of Flexible Manufacturing
Systems," Annals of Operations Research, Vol. 3, pp. 3-12 (1985).




