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Abstract

It is well known that under complete information the posterior distribution con-
verges to a degenerate distribution concentrated at the true probability distribution as
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the sample size grows. Suppose however that the sample possesses average properties
not shared in expectation by any probability distribution in the support of the prior.
In this case we show that the posterior distribution converges, as sample size grows, to
a degenerate distribution p* closest in relative entropy sense to the set of distributions
sharing these average properties. We show moreover that the empirical distribution
converges in probability to that empirical distribution v* closest in relative entropy
to the support of the prior. Both p* and v* can be obtained computationaly as so-
lutions of certain convex programming problems. Implications for decision making in
the presence of conflicting information are explored.

1 Introduction

Consider the problem of estimating a probability distribution when given only partial in-
formation on the distribution. When the partial information is based on a random sample
drawn from a population following the unknown distribution, a Bayesian construction might
provide the mode of the posterior distribution as a best estimate. However, when the partial
information consists instead of deterministic constraints on the known distribution, it seems
no one best estimate can be singled out from the set of distributions consistent with the
information. Jaynes in 1957 introduced a principle of mazimum entropy, that proposed to
choose that probability distribution ¢ of minimum entropy I(q) among those consistent with
the constraints. He justified this choice with a correspondence principle demonstrating that
if the generating distribution were the uniform distribution, then the maximum entropy esti-
mate was the most likely empirical distribution among those consistent with the constraints.
This principle has been generalized using the Kullback-Leibler separator I (¢,p), between
two distributions ¢ and p, to the principle of minimum relative entropy (Shore and Johnson
[1980]), where this latter principle reduces to the former when p is the uniform distribu-
tion. In general, there has been enormous interest in this interplay between statistics and
information theory within the communities of statistics (Sanov [1961], Vasicek [1980], and
Bahadur [1971)), information theory (Van Campenhout and Cover [1981], Jaynes [1956],
Johnson [1979], and Sampson and Smith [1984]), and operations research (Cozzolino and
Zahner [1973], Sampson and Smith [1982], Thomas [1979], and Wilson [1970]).

In order to make sense of the correspondence principle, some kind of superpopulation
model seems inescapable. That is, the maximum entropy distribution estimates the distri-
bution for a population generated through a random sample from a superpopulation following
a uniform distribution. On the other hand, the Bayesian construction, which chooses the
mode of the posterior would then be providing an estimate for the distribution of the su-
perpopulation based on knowledge about the population distribution, the latter regarded as
a sample drawn from the former. We intend to pursue this dual interpretation within this
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Specifically, we suppose that certain constraints are imposed on the population (or em-
pirical) distribution V™ for population size n as well as on the superpopulation distribution
P. The former is represented by a subset A of distributions known to contain V™ while the
latter is represented by the support Q of the prior distribution P over P. To avoid the trivial
case we suppose that A and © do not intersect. In section 2, the formal probability model
is presented. In section 3 we collect and refine some Large Deviation results, and in section
4 we prove results concerning uniqueness and continuity of the relative entropy minimizers.
These results are in preparation for section 5 which contains the main convergence results;
in Theorem 5.1 and Corollary 5.2, we show that the posterior distribution P", based on a
sample of size n, converges (as n goes to infinity) to a degenerate distribution concentrated
at the distribution p* in 2 that minimizes the relative entropy between A and Q. In Theorem
5.4 and Corollary 5.5, under mild regularity conditions, we extend the correspondence prin-
ciple within this Bayesian construction. We show that not only the mode but the conditional
distribution of V™ converges (as n goes to infinity) to a degenerate distribution concentrated
at the distribution v* in A that minimizes the relative entropy between points of A and 0.
Both v* and p* in Q2 are independent of the prior P and only depend on the geometry of A
and (). Both p* and v* can be computed as optimal solutions of certain convex programming
problems. In section 6, we discuss the implications of these results to decision making under
incomplete and conflicting information.

2 The Probability Model

Let the prior distribution P be an absolutely continuous probability measure with support
Q0 C S where S = {g|T%y¢ = 1,¢; > 0} is the relative interior of the m-dimensional
standard simplex in R™*'. The true distribution P is a random probability mass function
P € Q) with distribution P. Let z be a finite discrete random variable that takes on the
value a; € R with probability P; for: =0,1,...,m.

Suppose P is determined and fized in accordance with the prior distribution P and X is
then repeatedly observed within an experiment of n trials to yield a sample X, X,,..., X,.
That is, X1, Xa,..., X, are identically distributed with p.m.f. P and conditionally indepen-
dent when given P. Let N; be the random variable equal to the number of times outcome a;
is observed in the n trials for i = 0,1,2,...,m. The empirical distribution (based on n trials)
V™ is the random vector in R™*! whose ith component represents the relative frequency of
occurrence of outcome a; in n trials, i.e.,

vVt = (%’-,Z—Z}-,...,%).
Let A be a Borel measurable subset of S with Pr(V" € A) > 0 for n sufficiently large.
For Borel sets B C S, the posterior distribution P™ of P, when given the information that
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Vre A, is
PY(B) =Pr(P € B|V" € A)

and the sample distribution V™ of V" when given the information that V™ € A, is
V*(B) =Pr(V" € B|V" € A).

We consider in the next section conditions under which the posterior and sample distri-
butions, P" and V" converge as the sample size n increases.

3 Preliminary Large-Deviation Results

In this section we derive a Large-Deviation type result (Theorem 3.3) on the conditional
probability of the empirical distribution.

We begin by introducing the relative entropy I(v, p) between two distribution v and pin
S, which is defined by

I(v,p) =) vilog (vi/p:)
1=0

where log is here and elswhere taken to the base e. I(v,p) is also called the Kullback-Leibler
separator (Kullback [1959]) and the minimum
discrimination information (e.g. Brockett, Charnes and Cooper [1980]). Since I(v,p) is
nonnegative, and is equal to zero if and only if v = p, it is also referred to as the directed
distance from p to v. Although [ is not a metric (it is not symmetric, nor does it satisfy the
triangle inequality) we shall occasionally adopt this distance terminology to draw geometric
analogies for the results to follow.

For a given nonempty subset A C S, and a probability vector p € S, we denote by I(A,p)
the relative entropy (“distance”) between p and A, defined by

I(A,p) = infI(v,p).

The main properties of I(v,p) and I(A, p), needed for our purposes, are summarized in Ap-
pendix I. The main result in this section (Theorem 3.3) is preceded with a result on uniform
convergence of I(A",p)(Lemma 3.1) and a well known result on bounding the conditional
probability Pr{V" € A|P = p}(Lemma 3.2).

Since the empirical distribution V™ when multiplied by n yields an integer vector, only
a discrete lattice of points within the set A are possible values for V™. That is, the set A" of
possible values of V™ is given by

A"=ANS"



where S" = {¢ € S|ng; is a nonnegative integer for : = 0,1,...,m}. Since A" becomes
dense in A as n goes to infinity (for A a closed body,) it is not perhaps surprising that the
directed distance from p to A" converges to the directed distance from p to A. Lemma 1
below extends this result in Bahadur [1971] by showing that for closed Q this convergence
is uniform in p.

Lemma 3.1 Let  and A be subsets of S with Q closed and A a closed body (i.e., A is the
closure of its interior A°.) Then

I(A",p) — I(A,p)
uniformly over p €  as n — 0.

Proof: We first show that D(A",A) — 0 as n — oo where D is the Hausdorff metric
defined for compact sets F' and D by D(F,G) = max(h(F,G), h(G,F)) with h(F,G) =
max{d(z,G), ¢ € F} and d(z,y) being the Euclidian distance between z and y. Now
D(A™,A) = 0 as n — oo iff (1) limsup,_, A® C A and (2) A C liminf,_., A". Here,
for a sequence of compact sets {Fy,},limsup,_,., F, (resp. liminf, . F}) is the set of
all points z such that every open neighborhood of z is frequently (resp. eventually)
intersected by the F,. (Hausdorff [1957]).

Now, (1) follows immediately from the fact that A C A for all n and A is closed. As for
(2), let v € A and let N(v) be an open neighborhood of v. Now N(v) N A® # @ since A is
the closure of A° and therefore N(v) N A® being the intersection of two open sets is open.
It follows that there exists an € > 0 and z € N(v) N A° such that the open ball B,(z) of
radius € around z satisfies B,(z) C N(v) N A%. Let z" be the Euclidian closest point in
S™ to z. Since z € S,d(z",z) — 0 as n — 0o and hence there is an integer N such that
2" € B(z) for all n > N. But then z™ € A" since B,(z) C A° C A for all n > N for
some N. Also z" € N(v) for all n > N since B(z) C N(v). Hence A» N N(v) # @ for
alln > N and A C liminf,_, A". Therefore D(A",A) — 0 as n — co.

Choose ¢ > 0. Since A™ C A for all n, I(A®,p) > I(A,p) > I(A,p) — e for all p € Q and
for all n. It remains to show that (A" p) < I(A,p) + € for all p € Q for all n > N, for
some N,. Let v(p) € Argmin{I(v,p),v € A} # 0 since I(v,p) is a continuous function
over the compact set A. Since D(A™,A) — 0 as n — oo, for all § > 0, there is a N} such
that D(A", A) < 6 for all n > Nj. In particular, for all v € A there are ¢*(v) € A™ for
all n > Ny such that d(¢"(v),v) < é.

Now since I(v, p) is continuous on A x © (see Appendix I(d)), which is compact, I(v, p)
is uniformly continuous over A x Q. In particular, for all € > 0 there is a 6, independent
of p € @ such that if d(v,v') < § for v, € A then |I(v,p) - I(V/,p)| < €. Let N, = N,
so that d(¢"(v(p)),v(p)) < éc for all n > N,. Then I(¢*(v(p),p) — I(v(p),p) < € for all
p € Qfor all n > N,. Hence I(A™,p) — I(A,p) < I(¢"(v(p)),p) — I(v(p),p) < € for all
p € Q for all n > N,. Therefore I(A",p) < I(A,p) + € and the result follows. =
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The following well known lemma provides bounds on the probability of finding the em-
pirical distribution in A C S, when given P, in terms of the directed distance from P to
A",

Lemma 3.2 Let A be a subset of S andp € S C R™*!. Then there ezists a positive constant
y(m), depending only on m, such that for all n

m — l)log n log*y(m)]

exp{-n[I(A",p) + ( } < Pr(V" € AP = p)

2 n n
< exp{-nlI(A",p) - miBEL L)y

Proof: See Bahadur [1971,p.18]. =

Combining Lemmas 3.1 and 3.2, we get the following important large-deviation result.

Theorem 3.3 Let Q) and A be subsets of S with Q closed and A a closed body. Then
%lnPr(V" € A|P =p) — —I(A,p)

uniformly over p € Q) asn — oo.

Proof: From Lemma 3.2,

m — l)logn_log7(m))

log(n + 1)
2 n n )

1
~(I(A p)+( < ~logPr(V" € A|P = p) < —(I(A", p)-m—2"

for all n, and hence

I(A,p) = I(A™, p) — (Z5t)ie8n 4 lea(m) < Lin pr(yn ¢ AP = p) + I(A, p)
< I(A,p) = I(A®,p) + mlesz+l)

for all n. From Lemma 3.1, I(A",p) — I(A,p) uniformly over p € Q as n — oco. Let
¢ > 0 and choose Ny, N,, N3 large enough so that

€
lI(A,p) = I(A", p)| < 3

for all p €  and for all n > N,

_(m; 1)1ogn . log y(m) S __26_

n n




for all n > N,, and
mlog(n +1) <€
n 2
for all n > N;. Let N = max(Ny, N, N3). Then
1
—€< ;logPr(V" EAP=p)+I(Ap)<e
foralpe Qandalln > N. &

Theorem 3.3 states that for large n,
P(V" € A|P = p) = exp{—nI(A,p)}.

Hence for p ¢ A, the probability of finding the empirical distribution in a set A decays
exponentially in its directed distance from p. Thus the likelihood of finding the empirical
distribution in the closer to p of two sets is overwhelmingly greater then that of finding it
in the more distant one. By demonstrating that the convergence is uniform over closed 2,

Theorem 3.3 is an extension of large deviation theory that began with the classic work of
Sanov [1961].

4 Uniqueness and Continuity of the Relative Entropy
Minimizers

The convergence results in the next section make use of uniqueness and continuity properties
of the optimal solution sets

{p*|p* = arg min,ea I(v,p)}, {v*|v" = arg minyeq I(v,p)} and
{(v*, p")|I(v*,p*) = minpxgq I(v,p)}.

In this section we study these properties. The first lemma gives necessary conditions for
nonuniqueness of the solution of

min I(v,p).

Lemma 4.1 Let A,Q be convez subsets of S. Consider the problem (P)

: = v;
(P) i {I(v,p) = gv log( "1
If (0,p) and (v*,p*) are both solutions of (P), then
2% ali=01,...,m (1)
pi i



Proof: Let I* = I(v*,p*) = I(%,p) = min I(v,p). Since I is a convex function on R} x R%
(see Appendix I (a)) and the feasible set of (P),A x Q, is convex, it follows that the
set of optimal solutions of (P) is convex. In particular then Y0 < o < 1,(v*,p%) =
(av* 4 (1 —a)5,ap" + (1 — a)p) is an optimal solution, i.e.,

I{a) = I(v*,p*)=1", all0<a<].
The latter equation implies
I'0)=0 (2)
ie.,
I'0) = TR g {(av} + (1 - a)v,) log( Sprat: §:>}|a-o
= Lizo{(v] — 0) log(i/p:) — v} — % — (p} —Pz)( i/pi)} =
Hence, using 3°%; = Y v} = 1, and (2),
Lizolvi log(v:/p:) — (vip}/B:} = I" + 1 = 0. (3)
Consider the one-variable problem
max{v; log(vi/p;) — vip/pi}-
The unique optimal solution of this strictly concave problem is

L
pi

v; =
and the corresponding optimal value is

v; log(vi /pi) — v}

Hence

"= 1= (o7 Tog(ofp7) — 7} = ma(" o log(uu/5:) = w(5E/5)

1=0

> ) {v; log(3i/ i) — (8:p /i)},if ©; # b, for some j,
1=0

= I"-1by (3),
which is a contradiction. Hence o; = &; = v}p;/p} Vi = 0,1,...,m proving (1). =

The necessary conditions for nonuniqueness can generate sufficient conditions for unique-
ness. This is done in the next three results. The first result is for the two-dimensional case

(m=1).



Corollary 4.2 Let A,Q be convez subsets of S C R?, with ANQ = 0. Then problem (P)
has a unique solution.

Proof: Suppose there are two distinct solutions (A*,p*) # (), 5). Since ANQ = 0, \* £ p*
lLe.,

A # p5: (4)
By Lemma 4.1, we must have

At+Ai=1,  po+p =1

Consider the system of linear equations

pp =X 0 0 Ao
0 0 7 =X || p
1 0 1 0 ||\
0 1 0 1 p

Il

(6)

—_——0 O

Notice that (Ag,pg, AT, p7) is a solution, as well as, by (5), (Ao, fo, A1, p1). But this is a
contradiction since (4) implies that the coeficient matrix in (6) is nonsingular. =

An important special case of the problem (P) is where Q( or A) consists of a single
probability mass function. In this case uniqueness is also obtained.

Corollary 4.3 If one of the sets A, C S C R™ is a singleton, and the other is conver,
and ANQ =0, then problem (P) has a unique solution.

Proof: Let 2 = {p°}. If problem (P) has two solutions they are of the form (v*,7°) and (%, 7°).
and by Lemma 4.1 they must satisfy

- _
v; Vg

<== Vi=0,1,...,m.
oo ’

Hence v* = v and the two solutions coincide. u

The third corollary gives a reasonable general sufficient condition for uniqueness. For
its formulation we need the notion of a strictly convez set. Thus a convex set C is strictly
convex if int C # @ and Yz,y € C and 0 < A < 1 it follows that Az + (1 — A)y € int C.

A typical example of such sets are level sets

C ={z € R"f(z) <~}

where f is a strictly convex function and v > inf(f).
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Corollary 4.4 If one of the sets A, Q is convez and the other is strictly convez and ANQ = 0,
then problem (P) has a unique solution.

Proof: Suppose (v*,p*) and (7,p) are distinct solutions of (P). Then by Lemma 4.1 we
must have

v" # v and p* # p.
Suppose that € is strictly convex. Let

1 1
0= +3), B=50"+9)

and note that (9,p) € A x Q is also an optimal solution of (P), i.e.

b

1(%, p) = min I(v,p)=I"
Since {1 is strictly convex, p € int Q. Also AN Q = @ implies that & ¢ Q. Hence there
exists 0 <y <1 such that the point p, = y0 + (1 — 7)p € Q. Therefore (9,p,) € A x Q
and so
I < I(0,py) <9I(0,0) + (1= )I(3,p) =7 -0+ (L =) I* < I",

a contradiction. Thus no two distinct solutions exist. The same proof goes through if A
is assumed to be strictly convex. u

If none of the three sufficient conditions in Corollaries 4.1 through 4.3 hold, problem (P)
may indeed have more than one optimal solution. This is illustrated by the following.

Example Consider the special case of problem (P):

2
UGIII\I;JP%Q ?;‘; vi log(vi/pi)

where A = {v € R*|up+2v1+v, <4/3,v >0, v; =1} and Q= {p € R3|po+2py +p; >
3/2,p20,Tpi =1}

Hence A and Q2 are convex subsets of R3, AN Q = §, but neither A nor Q are strictly
convex (or a singleton).

It is easily verified from the Karush-Kuhn-Tucker conditions that

and



are both optimal solutions.
Note that the necessary condition (1) is satisfied here:

*

V; 'l_),'

—=—=,1:=0,1,2. =»

L

P Di

The discussion of the uniqueness has been limited so far to the case where both A and Q
are convex sets. Without this assumption, the uniqueness hypothesis which is needed for
the convergence results in Section 5 is as follows:

Al Vp € (, there is a unique solution v(p) where

v(p) = arg min I(v, p)
and

A2 There is a unique solution p* where
p" = argmin I(v(p), p).
P€Q

However, under the convexity assumption, the uniqueness condition A1 N A2 is equivalent
to the uniqueness of the optimal solution to problem (P).

Lemma 4.5 Let A and Q be convez, then A1 N A2 holds if and only if condition B holds:

B The problem min,ep ,eql(v,p) has a unique solution.

Proof: (B == Al N A2) Suppose Al is false, i.e., there exists p € Q and vy, v; € Q, v, #
v such that v; € Argmin,ep I(v, ). But this is impossible since I (+,P) is strictly convex,
and hence possesses a unique solution on the convex set A. Suppose then that Al holds

but not A2, i.e. for some p},p;, € Q,p; # p}, p! € Argmingeq I(v(p),p). Let v = v(p?).
Then

I(v},p}) = I(v3,p3) = min I(v, p). (7)
For otherwise there exists (v,p) € A x Q such that
I(3,p) < I(v(p), p)- (8)

Now, I(v(p;),p;) < I(v(p),p) since p} = argmin I(v(p),p) < I(5,5) < I(v(p}),p;) by
(8), a contradiction. Hence (7) holds, but this is in turn a contradiction to B.

11



(A1 N A2 = B) Suppose B is false and let (v;,p;) and (v}, p%) be both solutions of
Minyep peq I(v, p) with

(v1,p7) # (v3,P3)- (9)

By Lemma 4.1, E—Z% = %2% Vi. Hence, (9) implies

G AR A8
Now, by Al,v} = v(p;) and so both p} and pj are solutions of min I(v(p), p), with p} # p3,
but this contradicts A2. =

Whenever assumption Al holds, the mapping
p — argmin I(v, p)

is single-valued and defines a function v(+)|2 — A. The last lemma is a general result, directly
applicable to the question of the continuity of the function v(p).

Lemma 4.6 Let X be a compact subset of R*and Y C R™. Consider the function f|R™ x
R™ — R and assume that f is continuous on X x Y and that Vy € Y, there ezists a unique
solution

z(y) = argmin f(z,y).
Then, z(-) is a continuous function on Y.

Proof: Let y, — y and suppose, for some open neighborhood N(z(y)) of z(y), that Z(Yn, ) ¢
N(z(y)) for all k. Passing to a subsequence if necessary, we have z(y,,) — z’ for some
z' € X, by compactness of X. Also I(z(y),y) < I(z,y) since z(y) is the unique minimizer
fory. Let e = f(a',y)—f(z(y),y) > 0. Let ky be such that |f(z(y), yn, )= f(2(y), )| < €/2
for all k > ky, which is possible since f(z,-) is continuous on Y. Let k be such that
|f(z',y) = f(2(Yn,), Yn)| < €/2 for all k > k; which is possible since f is continuous on
X xY. We have f(2(y),yn,) = f(2(yns)s ym) < 1f(2(9),9n,) = F(2(¥),0)] + f(2(), y) -
fF@y) +1£(2',y) = f(2(yni), )| < €/2 — €+ €/2 = 0 for k > max(ky, k,). Hence for
such k, we have f(z(y),yn,) < f(€(Yn, ), Yn,) which is a contradiction to z(y,, ) being the
unique minimizer of f(-,y,,) on X. =

5 Convergence of the Posterior and Empirical Distri-
butions

Roughly speaking, if we are given that the empirical distribution is in A, Theorem 3.1 tells
us that we would find the highest likelihood for it being in a neighborhood of the point
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v(p) closest (in relative entropy distance) to p € Q. Since this likelihood increases as p gets
closer to v(p), we should expect that P has the highest probability of being near the point
p" closest to A. This is indeed the case as expressed in the following.

Theorem 5.1 (Posterior Convergence) Let the prior P be an absolutely continuous prob-
ability measure with support @ C S where Q is a closed set. Let A C S be a closed body
with ANQ = 0. Suppose v(p) = argmin,es I(v,p) is unique for all p € S and p~ =
arg minyeq I(v(p), p) is also unique. Then

P =% p*asn — 0o
in the sense that P"(N(p*)) — 1 as n — oo for all open neighborhoods N(p*)of p*.
Proof: We have

Pr(V* € A|[P ¢ N(p*)) < sup Pr(V*eA|P=p)

P€N-N(p*)
< sup exp{-n(I(A"p) - ml()_g@_—}-_ll)} by Lemma 3.2,
p€EN-N(p*) n
| 1
< sup exp(—n(I(A,p) - mm) since A™ C A for all n.
PEQ-N(p*) n

= exp{-n(I(v(p),p) - mwfzi))}
where

A .
peArg min  I(v(p),p)

which exists since I(v(p),p) being a composition of continuous functions (see Lemma
4.6) is continuous over the compact set 2 — N(p*).
Also,

Pr(V* € A) = /n Pr(V™ € A|P = p)dP(p)

m2— l)loin - 1Ogjz(m))}dp(p) by Lemma 3.2.

m — l)logn B log‘y(m))
2 n n

> [ exp{-n(I(A"p) +

> [ en{-n(I(a"p) +(

}dP(p)
since {c(p*) C Q, where
Qe(p’) =0N{q€S|lgi—p;| <efori=0,1,2,...,m}.
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By Lemma 3.1, I(A",p) — I(A,p) uniformly over p in the closure of Q,(p*), so that for
all 6 > 0 there exists an N5 independent of p € Q,(p*) such that

I(A™,p) <I(A,p) +6

for all n > Nj and all p € Q(p*).
Therefore, by the above inequality, we get

Pr(V* e A) 2 /Qe(p')exp{—n(I(A,p) +6+ (22 I)IOgn log7( )}dP(p)

2 n
> [ exp{=n(I(v(p(e),5(e) + 5+
(Bo2en Lty p g (1)

for all n > Ny, for all § > 0, where

ple) € Argpergel(np )I(v( p);P)

and ((p*) is the closure of Q,(p*). Hence

Pr(V™ € A) > exp{=n(I(1(3(e)), 3(¢)) + 6 + (Tmt) 8% _ 1087(m) s 50 o) 5 g

2 n n

for all n > Ny, for all €,6 > 0 since P is absolutely continuous over .
Hence, using the two inequalities proved above,

Pr(V" € A|P € N(p*))Pr(P & N(p*))
Pr(Vr € A)
exp{-n(I(v(p), p) - m =} (1 — P(N(p"))
—exp{-n(I(v(p(e)), 5(e)) + & + (Z52)(2B2) — By p(Q, ()

m—1logn

= exp{=n(I(v(p),p) ~ 1(v(5(e)), (e)) = 6 - (——)

log1(m) __log(n+1), | 1= P(N(p")
T TR

Pr(P g N(p")|V" €A) =

for all n > N, for all §,¢ > 0.
Now choose € > 0 sufficiently small so that I(v(p),p) > I(v(p(€)), p(€)) which is possible
since I(v(p),p) is a continuous function of p € S and p* = arg min,eq I(v(p), p) is unique.
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Let 6 = (I(v(p), p) — I(v(p(€)), B(€)))/2 > 0.
Then

m) (m—1) logn log(n + 1)

1 -P(N(p*))
(BT

P(QC(I). )

Pr(P¢ N(p")|V" € A) < exp{—n(5+log1(

for all n > N;.

Hence limsup,,_, ., Pr(P & N(p*)|V" € A) 0.

But trivially liminf,—.. Pr(P & N(p*)|V™ € A) > 0, so that lim,_., Pr(P ¢ N(p*)|V" €
A)=0.

Theorem 5.1 states that when v(p) and p* are unique (i.e. A1NA2 holds), the posterior

distribution when given the information that the empirical distribution lies in A degenerates,
as the sample size grows, to a distribution concentrated at p*. Moreover this p* being the
closest point to A in Q depends only on the geometry of the sets A and Q and is otherwise
independent of the prior P. An interpretation is that a decision maker who initially believes
Q to contain the possible distributions of the superpopulation should, in light of strong
empirical evidence that the distribution is in A, adopt the view that P equals p*.

Of course, the probability of finding the empirical distribution in A (when A and Q do

not meet) goes to zero as the sample size diverges to infinity. However for sufficiently large
finite values of the sample or population size n, P will, with arbitrarily high probability,
be near p*. Hence the theorem entails an observable prediction. If one were to generate a
series of large populations as samples from superpopulations with distribution P chosen in
accordance with P over 2, then for a population whose distribution lay in A, it is nearly
certain to have been drawn from a superpopulation with distribution near p*.

Using the uniqueness results of section 4, we derive from Theorem 5.1 the following result.

which expresses explicitly sufficient conditions under which P* == p*.

Corollary 5.2 Let the prior P be an absolutely continuous probability measure with support
Q0 C S where Q is a closed convez set. Let A C S be a closed convez body with AN Q = §.
If either Q or A is strictly convez or a singleton, or if S C R?, then

P =% p* asn — oo

in the sense that P*(N(p*)) — 1 as n — oo for all open neighborhoods N(p*) of p*. »

From the above results, in the presence of convexity or uniqueness conditions, the uncer-

tainty about the true distribution P as expressed by P unambiguously results in certainty
that P is p* in the face of incomplete but conflicting information on a large sample of ob-
servations. This convergence to a known distribution in the presence of only partial sample
information and a general nonparametric prior is quite striking.
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We turn now to consider the behavior of the empirical or population distribution V" as n
increases. We begin by demonstrating in Lemma 5.3 below that V™ converges in conditional
probability to v(p), when given that P = p.

Lemma 5.3 Let A,Q C S with Q closed and A a closed body. Assume that for all p € (),
v(p) = arg minyep I(v,p) is unique. Then

Pr(V* € N(v(p)[V" € A,P =p) =0
uniformly over p € () as n — oo, where N(v(p)) is an open neighborhood of v(p).

Proof: Let € > 0. If N(v(p)) = A — N(v(p)) = 9, then

Pr(V* ¢ N(v(p))[V" €A,P=p)=0<¢
for all n.

Suppose then N(v(p)) # 0. Let 6§ = I(N(v(p))) - I(A,p) > 0 since v(p) is unique.
By Lemma 3.3, we can choose Ny, so that for alln > N; and all p € Q,

log Pr(V™ € N(v(p))|P = p) < ~I(N(u(p)),p) + §/3

and choose N; so that for all n > N; and all p €

log Pr(V™* € A)|P =
Now choose N3 so that
loge/™ > —5/3
for all n > Nj.
Let N = max(Ny, Ny, N3). Then for all n > N and all p € Q,

log Pr(V" € N(v(p))|P =p) logPr(V" € AP = p) .
n n

~I(N(v(p)),p) + I(A,p) + (2/3)6 = —6/3 < log '™

Hence Pr(V" ¢ N(v(p))[V" € A,P = p) = Pr(V"™ € N(v(p))|P = p)/Pr(V" € AP =
p)<eforalln>Nandallpe Q. &

Theorem 5.4 (Convergence of the Empirical Distribution) Let P,Q, and A be as in
Theorem 5.1. Consider the conditional sample distribution V*(B) = Pr(V* € B|V" ¢
A) for all Borel sets B C S. Then

d
V' = 1" asn — o0

in the sense that V*(N(v*)) — 1 as n — oo for all neighborhoods N(v*) of v*.

16



Proof: Let ¥ > 0. Let € > 0 be small enough so that A,(v*) C N(v*). Choose § > 0 so that
v(p) € A¢ja(v*) for all p € Qs(p*), which is possible by Lemma 4.6.
Now choose N; so that
Pr(V™ & Aepa(v(p))[V™ € A, P = p) < v/2
for all n > N, for all p € Qs(p*) which is possible by Lemma 5.3. Then
Pr(V* g A(v*)|V" € A,P =p) < v/2

for all n > Ny, and p € Qs(p*).
Now

Pr(V" ¢ N(v*)[V" € A) < Pr(V" ¢ A (v*)|V™ € A)
= Jaspr) Pr(V™ € A(v*)IV" € A, P = p)dP(p|V" € A)
+fQ"Qd(P') Pr(V" ¢ AE(V")|V" € A, P= p)d’P(pr" € A) (11)
The second term on the right hand side of (10) is bounded from above by

A gy TPV € 4) = Pr(P £ Qs(p7)|V" € 4) < 7/2
—ieg\p

for n > N; for some N; by Theorem 5.1. The first term on the RHS of (10) is bounded
from above by

/m-)(”/ 2)dP(p|V™ € A) = (1/2)Px(P € Q4(p")|V" € A) < 7/2

for all n > Ny. Let N = max{Ny, N;}. Then Pr(V* € N(v*)[V* € A) < yforn > N.
Hence Pr(V* g N(v*)|[V* € A) — O0asn — co.

When the uniqueness condition A1NA2 holds, Theorem 5.4 states the following. Suppose
we generate a large population by drawing a random sample from a superpopulation whose
distribution P has been determined in accordance with a prior distribution P over Q. If the
distribution of that population exhibits characteristics that depart from those characteristic
of the superpopulation (i.e. V™ € A), then that population’s distribution is almost certain
to be nearly v*. There is a similar classical interpretation of this result for the case when
P = p" is known. This special case extends the result of Vasicek [1980] and is related to that
of Van Campenhout and Cover [1981].

Once again from Lemma 5.3, we obtain the following corollary.

Corollary 5.5 Let P,Q, and A be as in Corollary 5.2. Then
Vr =% 0" asn — oo

in the sense that V*(N(v*)) — 1 as n — oo for all open neighborhoods N(v*) of v*.
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6 Discussion and Conclusion

If we adopt the viewpoint expressed in the introduction that P is the distribution for the
superpopulation and V™" is the distribution of a large population of n members drawn from
this superpopulation, then the following observation flows from Theorem 5.1 and 5.4. When
given the partial information that the population exhibits aggregate properties not shared
by the superpopulation (i.e., that its distribution lies in A), then it is nearly certain that
its distribution is close to v*. Moreover, the unknown distribution P, known to lie in , is
nearly certain to be near p*. It follows that in a problem of inference under conflicting and
incomplete information, it is essential to identify which information relates to the population
as opposed to the superpopulation. The reason is that because of the asymmetry of I(q, p),
v* and p* are not invariant when A and () are interchanged. For example, if we let A be
the set of distributions with mean at most u and € be the singleton p*, then v* is given by
that member of the discrete exponential family containing p* that has mean u (see Sampson
and Smith [1985]). In particular, if p* is a binomial distribution, then v* is that binomial
distribution with mean wu.

On the other hand, if we assign Q2 to be the set of distributions with mean at least u
and A to a small neighborhood around the point v*, then p* is no longer a member of the
exponential families. In fact, p* is given by

x

Vg

t ————fori=
p; /\(i—u)+10” 0,1,...,m

where X is the unique root of certain mth degree polynomial equation [see Appendix II].

In Sampson and Smith [1982, 1985], the information provided by “expert judgement”
that the mean is at most u is ascribed to A so as to obtain the exponential family estimate
v* for the “true” distribution.  is set to the singleton {p*} where p* is interpreted as
the “decision maker’s prior”. From the results of this paper, this estimate is justifiable
only under the interpretation that the decision maker’s prior was in fact used to generate a
population with mean at most u. Hence within this interpretation, the informal use of the
Bayesian term “prior” by Sampson and Smith is rigorously justifiable. They also show that
vg = u + o(u) independently of p*, the so-called rare event approximation. Although »* in
that context merely represented the closest point in A in relative entropy to p*, Theorem 5.4
now provides a rigorously substantiated and empirically observable claim.

The duality expressed by v* and p*, the former a classical and the latter a Bayesian
viewpoint, is rich in paradoxes. For example, given two pieces of incomplete but conflicting
information, which should play the role of A and which of 2?7 At least within the model
of this paper, the answer seems to pivot on a) which information is primary (2) and which
secondary (A) and b) for which population is the estimate desired, the “population” or

18



“superpopulation”? The estimate v* is appropriate for the former while p* is appropriate
for the latter.
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Appendix I

Properties of the Relative Entropy Functional:
Let p, ¢ be probability vectors in

S={ze R"Ii:c; =1,z;>0,:=0,1,...,m}
i=0
The relative entropy functional I: S x § — R is defined by
I(v,p) = évi log(vi/pi).
We also denote by R7*! the positive orthant: {z € R™*!: z > 0}.
(a) I(v,p) is (jointly) convex on RT+! x RT+1.

(b) I(v,-) is strictly convex on RT*! (Vv € RT*') and

I(-,p) is strictly convex on R}*! for all p € R™*!.
(c) I(v,p) > 0(Vp € S,v € S) with equality if and only if p = v.
(d) Iis continuous on R}*! x RTH1.

(e) Let A be a convex subset of R™*!. Then the function I(A,p) = inf,ey I(v,p) is a
convex function of p on RT*1.

Proof:

(a) The two variables function
f(vi, pi) = vi log(vi/pi)

| Yvw o =1/p;
H_[_I/Pi vi/ p? ]

is clearly positive semi-definite. Indeed, Vz = (z,,z,) € R?, we have zTHz = (% -
zﬁp@)z > 0. But I(p,q) = =%, f(v:, ;) and hence is convex.

1s convex since its Hessian

(b) f(-yp:) is strictly convex on R, for p; > 0 and f(g,-) is strictly convex on R, for
¢; > 0 and hence (b) follows.
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(c) Applying the gradient inequality to the strictly convex function g(z) = I (z,p), we
obtain

I(p,v) > I(p,p) + (v — p)T 7 I(p, p) with equality if and only if p = v,

Le.,

I(p,v) 20+ > (vi—pi)- 1 =0since p,v € S.

(d) This follows from the general fact that a convex function is continuous in the relative
interior of its domain. Here ri (dom I) = R}*! x R™+1.

(¢) The pointwise infimum of a jointly convex function over a convex set is a convex

function. (See e.g. [Rockafellar 1970, p. 38-39]). QED
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Appendix II

Let @ = {p € S| ZiLopi = u} and A = {v"}. The closest point p* € Q to v* is the optimal
solution of

min {Zv log(v/p:) = Zv log p; + constant}

1
eRm+ 1=0 1=0

subject to
() 2o ipi = u
(ll) 2:—0 pi = 1.

Let A € R be the Lagrange multiplier of constraint (i) and 4 € R the Lagrange multiplier
of constraint (ii). The optimality condition for p* are then (i), (ii), and

(iil) vf/pf —iA—pu=0:=0,1,...,m
The solution of (i)-(iii) is

At —u)+1

where A is the unique solution of

(iv) Zo sz = 1

We note that (iv) is equivalent to the mth degree polynomial equation
m
Z ak/\k = 0,
k=0

where the coefficient aj is given by

=33 20— Zv.,

i 41 J=

where i; € {0,1,...,m},4; #4,41,5 = 0,1,...,k = 1.
As a specific example let m = 2, and u = 1. Then

L] * *
/\_02 vO * t_]‘—vl x __ %
1o Po 2% T y L =Y
1
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