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SUMMARY

The effect of electromagnetic fields upon the stability
of a conductive viscous fluid with a negative temperature gradient
is investigated. The numerical relationship between the imposed
electromagnetic field and the critical temperature-gradient has
been found. In most cases considered, convection is inhibited
by the electromagnetic field, but the effectiveness cof the inhi-

bition has been found to depend very markedly on the mode of

convection.



CHAPTER I

PRELIMINARTES

1. Introduction

The stability of a horizontal layer of fluid under a negative
vertical temperature gradient was studied by Rayleigh(l), Jefferys(z),
Southwell and Pellew<3) and others. The stability of an infinitely high
column of fluld with a negative vertical temperature gradient has been
investigated by Hale<h), Taylor<5), and Yih(6). These authors relate the
temperature gradient () to the dimensions of the fluid-container, the
viscosity (v), the thermal diffusivity (k), and the expansivity (o) of
the fluid, and to gravitational body-force per unit mass (g), at the
point of instability. Chandrasekhar has found that the stability of
an electrically conducting fluid can be affected by the presence of
an electromagnetic field. TIn this work, the instability studied by
Hale, influenced by imposed electromagnetic fields, is investigated.
The relationship between the imposed magnetic field, the magnetic diffusivity
(n) of the fluid, and the other pertinent vafiables affecting the stability
of an infinitely high colum of viscous fluid (of various crosswsections)
is soﬁght. For the fluid contained between two walls, three cases will
be discussed, with the imposed magnetic field being either in the direction
of the (vertical) temperature gradient, or normal to the walls, or per-
pendicular to both of thése directions. For the fluld contained in.a
circular vertical tube, the imposed field is also vertical. For the fluid

contained in a rectangular vertical tube, the effect of a vertical electric

current on the stability of the fluid is investigated.

-1-



Instability of a quiescent fluid occurs, in general, if the loss
of potential energy associated with a certain mode is larger than the energy-
dissipation for this mode. The effect of viscosity is therefore to inhibit
the instability of quiescent fluids. It will be shown in this work that
an imposed magnetic field, which will give rise to electrical currents and
therefore energy-dissipation in case convection takes place, also has a
general stabilizing effect, which is different for different modes of
convection.

2. Governing Equations

For stationary fluid, the equation governing the Xz= dependent

imposed temperature (T) distribution is:
VT = 0 (1)

in which
dx ° dx S i °©
1 2 3

1s the Laplacian, where Cartesian coordinates xj, xp, and X3 are chosen,
with X3 axis being vertical. The equations of equilibrium for a stationary
fluid under the action of an imposed current B?and magnetic field ﬁ?is:

O=-vp+u3’xﬁ)+pog(l-aT) (2)
where p is the pressure and Po is the density of the fluid at some reference
temperature TO.

The equation of magnetic diffusion [see Reference 7, Equations (1-1C)]

is:
) B= ol x B) (3)

(2.
5t



-
where u is the velocity of the fluid. Therefore, in the case of no motion,

Equation (3) reduces to:

-
(S -1F) F=0 (3)
ot
If the perturbation scalar quantities are denoted by prime,
p' and T', and perturbation vector quantities by small letters, 51 B?andj3

- -,
(unprimed or capital letters denote the mean quantities p, T, H, and J),

Equations (1) ta (3) become:

%% (T+T') =& V?(T+T') ) (k)
b [+ (W) -vW] T = W(ptp') + (T x (H+ 1)
a ot
+o 8 [1 oM (5)
and
aT-nvz H+h - % [Lx (F+1)] : (6)

Subtracting Equations (1) to (3) from Equations (4) to (6) and neglecting
products of perturbation quantities and the effect of expansivity on in-

, J v
ertia, one has (SE - KVQ) T = - pug

e T Y

a - vV2 u= -Up'+ pu[Jdxh + jxH] - ey gaT' (8)

O
Aa
N~

and

(£-nv2>ﬁ=w($xﬁ*> y

in which, since T has only a vertical gradient

B = QI and. o = éz— =0 .

aX 5 ax 1 aX 2
The equations of continuity for velocity and magnetic fields are:
_.9
V.u =0 ) (10}

V.h =0 (11)



and the Maxwell equation relating current to the magnetic field is:
- -
knj =V xh (12)

Equations (7) to (12) govern the phenomenon under investigation.

3. Boundary Conditions

In all cases considered in this work, fluid is assumed to be
contained within solid boundaries. At such a boundary, the condition of
no slip demands that all velocity components vanish.

Furthermore, continuity of heat flow, as well as temperature

at the solid-fluid boundary requires (see Figure 1) that:

1 Mm%
T T )
oT '* oT!
* =

where the k's are the coefficients of thermal conductivity, and where
asterisk denotes that the quantity involved is a functior or a constart

pertaining to the solid.

—~—

S

TR

Y

fluid solid

Figure 1. Solid Fluid Boundary.



If k¥ < <k,
OT' _ k¥ oT'* _ o
SEI k 5xl ?
oT'*
being finite.
Bxl
If k% > > &k,
T' = T'* =0,

as throughout the wall T'¥ = 0. It 1s worth noting that the boundary

!

conditions T' = O or gz—-= O can be imposed, in practice, not only by
X
1

the choice of proper wall material, but also by varying the thickness
of the wall.

The boundary conditions to be imposed upon electromagnetic
quantities can be formulated by the use of Maxwell equations. Due to
the continuity of magnetic flux,

w h, = p¥ h¥,

1 1
on the boundary. Continuity of tangential components of the magnetic

field demands that:

h = h¥*
2 2
and
h, = h¥
3 3
on the boundary. The last two conditions imply that:
dh, Oh dhf  Oh
ll-,ﬂjl-_- ( 2 - 3): ( 2_. 3):1{.3‘[3’*}
dx, Ox dx, Ox 1
3 2 3 2

or continuit& of current. Since the velocity vanishes on the boundary,

continuity of the electric field demands that:

*
2 x2



and

Q|

Jy =1 J*
37 5% 73

on the boundary.

Phenomena under consideration will be accompanied by the
accumulation of surface charge on the boundary. Surface charge, as
well as displacement current, can justifiably be neglected in this
work, as it is electrodynamical in its nature and deals mainly in
time independent cases.

Here again, if o's and p's are of comparable size, variations
of electromagnetic quantities would penetrate into the wall. But if
p* > > flux continuity is maintained by hi << hl. It can be shown
that generally the magnetic fileld h¥ is not parallel to the boundary,

1
and hence hl > > h2 and h > > h3, or simply

on the boundary. Also, 0% > > ¢ implies

j = 9 j% and j =2
o= 5% I 0*3*3

at the boundary, while current continuity demands: = ji there.

1
Again, if ji is not parallel to the boundary:

do
on the boundary.



CHAPTER II

VERTICAL MAGNETIC FIELD: FLUID BETWEEN WALLS
The effect of imposed, uniform vertical magnetic field (H3)
on the stability of a conductive fluid contained between two walls and
heated from below will be investigated. The destabilizing factor, in
this and other cases investigated invthis work, is the negative temper-

ature gradient.

L. Reduction to Ordinary Differential Equations

Since the imposed magnetic field is uniform, the mean current

is zero. The equations of motion are therefore, in this case:

> D s
pO (;‘t VV2) ui FX:L—(P +uﬁh3)
H3 ahi
and the equations of magnetic diffusion are:
(2 - A n, =m, (1)-(6)
ot * 3 ox
3
The equations of continuity are:
Ju,
Bxi
e (8)
0x, /
i

where i = 1, 2 and 3. The disturbance temperature is governed by

(F?:_KVZ)T'=_BU3° (9)

The boundary conditions for the velocity at the sollid wall are:

u =0 at x =+4d.
i 1 -

-7~



Assuming the wall to be highly conductive electrically but insulative thermally,

- s o oT' _ -
= 33 = 0 and SEI =0 at xl =+ d.

j2
This is a rather artificial case, as walls which are very conductive
electrically are not normally insulating thermally. It must be remembered,
however, that instability under consideration is gravitational in its nature,
and gravitational instability can be induced by an adverse density gradient
caused by a variation of concentration of solute. The mathematical
formulation for the problem in that case remains the same, but an electri-
cally conductive wall impermeable to mass diffusion is now not at all
artificial. For convenience, density gradient shall be considered as
effected by temperature varlation, bearing in mind that any artificiality
in the boundary conditions may disappear when the density gradient is
induced otherwise.

A two-dimensional case will now be considered; it will be assumed
that u, = O identically, and that all variatioms of pertinent quantities with
respect to X, are zero.

The boundary condition on 33 can thus be simplified to:

by = 0 = Shy _Ohy _OMp 2o atx =+4d.
S, O, ox .

The differential equation governing h2 is:

(5% - nVQ) hy = 0 .

A time-dependent solution for h2 is in general non-trivial. However,

if the solution for h, is of the form h, = ﬁg'(xl, x,) exp (7t), 7y will

3

always be real and negative (see the more rigorous proof given later).

Consequently, h_  will be taken to be identically zero.

2



Cross-differentiation of Equations (1) and (3) produces:

3t &3 5}(1 Ly 5}(3 Bx3 le
oT!
-p_ go— - (10)
o Bxl

Since the fluid flow and the magnetic field are both two-demensional,
the equations of continuity (7) and (8) permit the use of the stream
functions ¥V and X such that:

L

h
- A h and 3
1—5%’3 B'x—l’H H

_oX X
T 0x T T x
3 3 3 1

Substituting these values of h; and u, into Equations (4) and (6), one

obtains:
) oX o oy
(o= - °) =— - (=) :
ot 5x3 ax?) 3}(3 (b7)
and
d Py D
%) 5 5 ) . (6")

Equations (4') and (6') can be integrated to yield:
d oy .
(55 - W) %= 5, (11)

In this operation, the canstant of integration can be omitted without

affecting u, or h . Substituting the expressioms for u, and h in terms
] . .

i i

of stream functions into Equations 29) and (10), one obtains:
d I T ,
(a—t - Vve) Ve‘V = E"TO- g}‘(g (¥X) - pogozgq (10')



=10~

and

2
(a—nv)T'wS—”’— : (9')
X1

Equations (9'), (10'), and (11) are the governing differential equations.

These shall be non-dimensionalized with the aid of the following

substitutions:

X X
X = alg z = ai and T = (Kt)/de.

The transformed equations are:

K a_ K ~2 a\l{, (911)
(2 & ?V)T'=%&'
; uecHz
i3 LRy (= 3 19,2
- SV - 10
(de o -2 ) (ZVV) = (4a) T (n) 3 5 (VX)
ga OT', (10'")
- d X
3 -2 o
£ 2-Av) x=1 %, (1111)
g2 or 2 d dz
in which
2 e
8x2 Bzz

In the following, one will assume the mode of convection to be:
¥ = v £(x) cos(az) exp(y7),

T' = (pd) 6(x) cos(az) exp(yT),

X =4 s(x) sin(az) exp(yr).
The corresponding solution is quite general, as a large class of

Xp-independent disturbances can be represented by:

V= kvt x) cos (a2) exp(y,T)

and similar expressions for T' and X. In view of the linearity of the
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differential equations, an analysis of a single mode can be applied to
any disturbance expressible as a summation of the basic modes.

Substituting ¥, T', and X into (9'') to (11'), one obtains:

[y -(0%®)] 6(x) = p, De(x), (12)
[7 - 2, (0%62)] (P02 (x) = @ & (0P-a®)(L s(x)] + RDS,  (13)
7 - 1 (0°a®)] s(x) = - a B 2(x), (14)

in which D denotes %;, P, is Prandtl number %, R is Rayleigh's

4 2 242
number - 5%@9— and Q = u=o(H5)=d .
K

PyY

The boundary conditions shall be expressed in terms of the

1
newly-defined functions. Since gz— = 0 at Xl = + 4, one obtains
X
1

DO =0 atx=+1.

=3
lg

=0at x =+ d, become

Conditions u, = u, = Oat x. =+ 4, or
1 3 1 - 1

Q/
>
Q/
>

Df =af =0 at x=+1
From Equations (13) and(1L4), one notes that the magnetic field is unlinked
with the differential system for f and 6 if a, the wave number, is zero.
Thus vertical magnetic field has no effect on a zero-wavenumber convection
mode, which is the most critical one; it does have effect on other modes.
Hence, assuming here a # O, boundary conditiom on f are:

f=DF=0 at x=+1



-12-

The condition j2 =0 at Xl =+ d yields

vgx =0 at x

1l
+
o8

or in terms of s(x):

5. Solution

The value of 7 in Equations (12) to (14) assumed complex
(y = 7r+ iyi , Where 7, and 7, are real), indicates whether the mode
tends to grow (7r > 0 ), decay (7r < 0 ), or oscillate (7i $0). It
can be proved that when the mode considered is neutrally stable 74 =0
(see Chapter IV). A non-trivial time-independent solution for Equations
(12) to (14) and the corresponding relationship between a Q and R will
therefore be sought.

Setting 7y = O and combining Equations (13) and (14), one obtains:

(1P - a°)? (P£) = 4 a2(I}f) - RDS, (15)

(D2 -a) 6(x) = 4D(Pff) . (12)
The boundary conditions are now:
f=Df=0 at x=+1,
D6 =0 at x=+1
The last condition can, with the aid of Equation (15) and the boundary
condition imposed on f, be written as:
(D2 - a2)2 £=0 at x=+1
In order to utilize a solution obtained by Yih(6), the operator
L will be defined:

L

n
(w]
1
o
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Combining Equations (12) and (15) and rewriting the boundary

conditions governing f, one obtains:

3

[L -(R-Qag) L - Rag] f=0 (16)

£=Df=IPf=0 at x=+1
The differential system for the eigenfunctions in(6) [Equation
(46)] is:
(13 - RL Ra®) £ = 0 (46)
fF=DF=1°f=0 at x=+1 .
In (6)ithe author deals with the case considered here, not accounting for
electromagnetic effect. The symbols a and f have the same meanings as here.
Designating quantities of the quoted paper by a bar, one is given R = R(a)
for non-trivial solutions of Equation (46) satisfying the boundary conditions.
Any pair (R, a), when substituted in Equation (46), would correspond to

an eigenfunction. The same eigenfunction is obtained from Equation (16)

if one sets:

=
1

&
i
]|

-2
a =R .

o)

Thus the relationship between Q, R, and a is readily obtained from
R = R(&) given by Yih. The results are plotted in Figure (2).

Evidently, for a # 0, Q raises the Rayleigh-number required for
marginai stability. As mentioned before (Section 4), for a = O there is no
electromagnetic interaction with the flow. Also, if one utilizes R (@) of
the analogous system and lets a approach zero, one gets R = R. Thus Q does

not affect the critical (lowest) Rayleigh-number required for marginal

stability corresponding to a mode independent of x

3"
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CHAPTER III

HORIZONTAL MAGNETIC FIELD PARALLEL TO WALLS
The stability of a fluid contained between two walls and under
a hegative temperature gradient B, in the presence of a horizontal magnetic
field parallel to the walls will be investigated.

6. Reduction to Ordinary Differential Equations

As the imposed field H2 is wniform throughout the fluid, there

are no imposed currents. The basic Equations (I.7) to (I+8) become in

this case,

H h
3 .2 3 . M
po('a? - W )ui = - X (p' + T)
pl ahi
+ (0,0,p g0T") + [ 5, (1) - (3)
du
) _ 1
(5= W) by < B, 5= (¥) - (6)
?Ei =0, (7)
Bxi
i?j:= o, (8)
Bxi
and
d 2y
(50- ) T' = u, . (9)

The same boundary conditions as in Chapter II will be assumed:

o' _ o, J3=3,=0 at x =+a.

J
2 1
Bxl

-15-
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In this chapter, it will be assumed that Uy = h2 = 0 identically.
However, variations with respect to X5 will now not be neglected, for
otherwise the magnetic field would neither affect nor be affected by the
velocity field.

Cross-differentiation of Equations (1) and (3) ylelds:

5_ ] vv2 aul aug) _ TH: SN (ahl 6h3)
3 Bxl Ly Bié 8x3 éxl
- p giL - (10)
X

Again, if u.2 = h2 0, it is possible to utilize the stream functions

X and V¥
_ o B X by
u. = ,u = = y — = and =2 = = .
1 SE; 3 ox,” H, EE; H, Ox;
Rewriting Equation (10), one obtains:
3 2 iy 3,2 d
2 T!
(B;C--VV)VIII=E;E'F)—3-—(VX) -gocs—— . (10")
Integration of Equations (4) and (6) yields:
) oy
O X = N
(5 ) =5 (11)
where
2 2 2
Vi = 9 5 + _Eizs
Bxl Bga

Equations (9) to (11) with the boundary conditions, govera the phe-
nomenon under consideration. Equations (5) and (2) are not implied in

(9) to (11). However, Equation (5) is indentically satisfied. Equation
(2) yields §£:-= 0, and therefore need not be included in the differential

X
2
system, as no boundary conditions are given in terms of p'.
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With the aid of the substitutions,

fg X3 Kkt
d

X
1
=% g=%a

¥ = vf(x) sin(by) cos(az) exp(yT),

X = d g(x) cos(by) cos(az) exp(yr)
and

T' = (pd) 6(x) sin(by) cos(az) exp(yT),
Equations (9) to (11) become:

[y - (0° - a27)

1 6(x) = P Df,
[y - 2,17 =2 42)] (0 - ®) £(x) = - @ (D -a")[L
+ RDO,
and

[7 - U7 -a? )] s(x) = b B2(x).

The boundary conditions imposed on T' and u; now become:
D6 =0 and £f=DfF =0 atx=+1.

The requirement j3 = 0 reduces to

dh
1 X )
9x. 8x2 8x3 at ¥ =1 a

or
s(x) =0 at x=+1.
Similarly, the condition j2 = 0 reduces to

2 2)

(" -a“) =0 at x=+1

In view of Equation (lh)/only one of the last two conditions should be

imposed.

(12)
s(x)]
(13)

(14)
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7. Solution by Approximative Series

Equations (12) to (14%) indicate that solutions are possible
either for f(x) even, s(x) even, and 6(x) odd, or for f£(x) and s(x) odd,
and 6(x) even. This observation shall be used to obtain two classes of
solutions by expanding s(x) as an even series and 6(x) as an odd series,
or by expanding s(x) as an odd series and 6(x) as an even one. In both
expansions, the expanded series shall satisfy the boundary conditions
imposed upon the functions these series represent.

It can be proved (and will be done in detail) that when the

fluid in neutrally stable with 7 = O, Equations (12) to (1%) become:

(07 - c®) (R) = -R D(PE) (12)

(0 - ) (07 - a?) (m2) = p(0® - &%) [Q 1 o(x)] - D(RO), (13)

(1 - ®) [0 L s(x)1= - (1) (14)
where

= a? 412,

In view of the boundary conditions and the oddness or evenness

of 6(x) and s(x), the following series are chosen to express these functions:

-RO) = E A' cos(nx 1 q = E B' si
( n—-&l,2;3-u n S(n X) ’ [K S(X)] n=1)2)3"° n ?irslg]?
or
o015, e, s o
= io B! ’cos(m)
1,3,5... B 2 (15"
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Substituting these values into Equation (13), one obtains:

(0 - e®) (0F -8 () = - T b (ax)” + "8y -

2=2

+ (nn) Aﬁ) sin(nnx), (161)
(P - ) (F - a) () = - T (b1 + a°lp:
- (B8 A!) cos(%5E) . (16')
One now defines, for convenience:
Mg’ = [(ax)? + a2], Mg" = [(%1)2 +a%],

Mf:l' = [(nrr)2 + 02] and M?H = [(lgi)‘2 + 02].

The general solution of Equations (16!') and (16'!') is:

pe(x) = T P0G )+ (o (- stn(nm)

L3 ) o)

+ K' sinh (ax) + L' sinh (cx) + M' cosh (ax)
n n n

+ Nr‘l cosh (cx)) (17')

Pr(x)= X DBy () _ <I;?#) A ( - cos(I-}-z-‘m—c)

1t
+ XK' sinh (ax) + L'* sinh (cx) + M''cosh (ax)
n n

+ N!' cosh (cx)) (17't)

Demanding that Equations (17') and (17'') satisfy
f=Df=0 at x=+1 ,

one can evaluate K' - N' and K'' - N'' in terms of A and B , and
n n n n n n
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obtain:

, - (nn) cos (nn) sinh .(a)
L) = 2 Cosh (&) sink (c¢) - ¢ cosh (c) sinh (&)

)

, (nnt) cos (nx) sinh (c)
Ky = 2 cosn (a) sinh (c¢) - ¢ cosh (c) sinh (a)

f%ﬂ) sin (%ﬁ) cosh (c)
M£'= ¢ sinh (¢) cosh (a) - a sinh (a) cosh (¢) /

. - (B%) sin (5%) oosh (a)

n ¢ sinh (¢) cosh (a) - a sinh (a) cosh (c)

By substituting newly-acquired values for (Prf) gs well as the expansions

for (R6) and (Qls) in Equations (12) and (14), one obtains:

E (Mgl) B sin(nmx) = Q@ b % LY (Mgl) + (n“)*éﬁ (

n=1,2. 1,2,3. (NQ_T) (NEY)

- sin(nmx) + Kﬁ sinh (ax)

+ L) sinh (cx)) s (18")

1t " — (BINy 11
REAREC SRR Pt e
7 (g ) (M5 )

Tt
- DnX) + M'' cosh (ax
cos( 5 ) (ax)

+ Né' cosh (cx)) s (18'")
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Y ')A cos(nmx) = -R L b(MS ) B! + (nn) A;l(
g3 e B23 0l o)

C

- (nx) cos(nmx) + K. a cosh (ax)

+ LA ¢ cosh (ex) ) , (19') "

and

+M'' & sinh (ax) + Nr’l‘ ¢ sinh v(cx)) (19'")

The terms sinh (ax), sinh (cx), cosh (ax), and cosh (cx) will
now be expanded in terms of sines or cosines, and the coefficients of

sin(nmx), cos(nmx), sin(ggﬁ), or cos(ggi) on the two sides of Equations

(18'), (19'), (18''), and (19'') will be equated. The totality of equations
linear in (A})s - (Bl)s or (A}')s ~(B!')s yields a secular equation stating
that the determinant consisting of the coefficients of the A's and B's is
zero. A good approximation is achieved by considering only the first .
harmonic, terms formed by sine or cosine of (mx) in Equations (18') and
(19') and (%ﬁ) in Equations (18'') and (19''). This amounts to equating

the first element of the determinant to zero. The results are:

(ll ]c-le 2

R = ) (% ) (1+-—9—LF') , (20")
1(2F' (Ml'>2

c
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where 5
2n _
Fl = (l * & coth(a)- ¢ coth(c) [ i' B i' ]) ’
) o)
. ] () (M}:‘{t:)‘z( T ) o)
= l'l""""—"',—— 1t s O”
© F (M% )2
where
oo 2 (x/2)° L
B (l *a tanh (a) - ¢ tanh (c) [(Ml") - (Ml")])
a c

The effect of the imposed magnetic field on marginal stability
has the following features' (see Figures 3-6) (a) For b=0, Q does not
affect R, or convection is not influenced by electromagnetic effect if

there are no x, variations; (b) For b#0, the magnetic field raises R

2
required for convection; (c) The modes for which the stream function
¥ 1s odd with respect to x are more stable than the modes for which this

stream function is even.
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CHAPTER IV

MAGNETIC FIELD NORMAL TO WALLS
In this chapter, the stabilizing effect of a magnetic field
normal to the two parallel walls containing the fluid is examined. The
fluid is again under a negative vertical temperature gradient. Since
the modes of convection of any wave length have a vertical velocity
component u3, the term (G?x ﬁ3 is non-zero for all modes. Consequently,
interaction between velocity and magnetic fields will always be present.

This interaction will be shown to have a stabilizing effect.

8. Reduction to Ordinary Differential Equations

Since the imposed field is uniform throughout the fluid, there
is no imposed current.

The walls are assumed to be)relatively)very permeable magneti-
cally and insulative thermally. This type of wall can in fact be
achieved by a thin coating of insulative material on iron walls. If mass
rather than heat diffusion is considered, no coating is needed. The
boundary conditions would therefore be:

oT' andh, =h, =0 at x =+4d

5;: =0 2 3 1

The basic equations for this particular case are:
Hh

d - N !
Py (3 = v ) oy = - et ¢ )

o + (0,0,pgoT")

qu Bhi

bl
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du.
G- ) =B 5 (¥) - (6)
Bui
_a-;—z 0 ) (7)
ahi
5;; =0 (8)
and
& - P 1= -y (9)

One assumes here that u, = 0. Consequently, Equation (5) and boundary
conditions govern a time decaying ho (see Section 16). h2, not
appearing elsewhere in the system, will be taken to be zero,

Cross differentiation of Equations (1) and (3) yields:

(é-_ ) VV2) (Bul _ 5113) _ p.Hl ) (Bhl _ 8h3) BTI -(]_O)

o 't R P

3 1 1
In view of the vanishing of Uy and h2, stream functions ¥ and X can again

P

be used:
ul=—§i—,u3=-g—w— EL:_al and h_3=-gi
, , )
X3 X1 Hl 8}(3 H?) X]_
The thermal and magnetic diffusion are given respectively by
d
- K‘,v2 Tl = % 1
TR (9")
and
(2 - ) x = (11)
5’0 Bxl

Equations (9'), (10), and (11) together with the boundary conditions
govern the phenomenon under consideration. Equation (5), being satisfied, and
Equation (2) governing variation in p', can be omitted from the differential

system,
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With
¥ = v £(x) cos(az) sin(by) exp(yT),
T' = (Bd) 6(x) cos(az) sin(by) exp(yT),
X = 4a s(x) cos(az) sin(by) exp(yT),

and

x=%1 , y=% , z=%3 andr=*Kt

d d d a

equations (9'), (10), and (11) become:
[7”- (07 - a2 - v2)] 6(x) = D(P,f), (12)

[y - B(D? - a2 - 12))(D%=a2 )t (x) =Q D(pP:a?)L s(x) + RDO (13)

and
[y - 1 (07 - a2 - v2)] s(x) = D(B,2) : (1)
The boundary conditions are:

D6 =0 at x=¢1

o _of _ 0

for the temperature disturbance. For u, = uy = 0 or = 4 =
3 le 5x3

at X =% d,'one has

f=DF=0 at x=+1.
In order to satisfy h2 = h3 =0 at Xy = + d, it is sufficient to have

X
5% = 0at X = + d as h.2 = 0 identically, or
1

Ds =0 at x=+1.

9. Exchange of Stability

As stated before, when the complex growth rate y( = 7r + iy_)
i

has the following significance; 7r>0 implies that the mode amplitude grows
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with tine, 7r<0 indicates a decaying disturbance. Further, 7i ;4 O implies
that the disturbance oscillates. The differential system, in general,
has a time-dependent solution, depending on a, b, Q, and R. It will be
proved, in this section, that neutrally stable modes (having T = 0) are
time independent altogether (having y = 0).
Differentiating Equation (14) with respect to x and substituting
the results into Equation (13), one obtains:
[y - Pr(D2 - a° - b2)](D2 -8°) f = Q[a-Da(Pff) + (y +E.b2)Ds]
+ RO . (13)
Multiplying Equations (12) by 6(x), complex conjugate of 9(x), (13') by
f(x), (14) vy s(x), and integrating each product in the modified equations

from x =<1 to x = + 1, one obtains from Equation (12):

(y + a® + b2) {le(x).éfi)dx - {lnge 0 dx = {lD(Prf)ETE) ax.(15)

Integrating by parts the second term on the 1l.h.s. of Equation (15), one

obtains:

le29.5 ax = DG.@TE)Il - fllDelgdx =._fl|D9 |2dx,

-1 -1 -1 -1
since DG.é-Gc-)Il vanishes, because of the homogeneous boundary conditions.
Consequently, Equa-i;-ion (15) becomes:

(7 + a° + v°) 6, +6 = {lD(Prf) o(x) ax . (15)

Similarly, Equations (13') and (14) yield:

2 .2y, .2 2
-ly + P(a® + 17)] &8P - [7 + P (28" + ¥B)] F; - P F,

= QB,Fy + Q(y + 1%°) [* Ds.Fx)ax + Rf%e.ﬂ&'mx, (16)
-1 -1



and 7+ (D)2 + ©2)] 5, + (1)sy = [D(BE) Blwax, (17)

respectively, where:

- fllelzax, 6 = fl|D9|2dx, 0, - que‘gdx,
-1 -1 -

- He)fax, F, - Hog|Pax, 7= 0%
-1 -1 2

_ MslPax, 5. = fH|s|ax ana s = [HDPs|%ax
-1 i =1 2 -1

Integrating by parts the last term in Equation (16), one obtains:

flbe.i‘*('i)ax =+ 6 ﬂ;)\l - fle Df ax = - fle Df dx = (-fIé.Dfdx),

-1 -1 -1 -1 -1
Similarly:

['Ds, Fm)ax = (/5.0 ax)

-1 -1

Utilizing the last two relations, and inserting Equations (15) and (17)

into Equation. (16), one obtains:

[7+Pa+b a?'F 7+P(25,2+b2)]Fl-PF2=
r

Q{PrFl - %([(7 +18%) + 167 5+ (1) 5,) 0+ l;1102)}

-+ P v)e_+ 6] (18)

Equation (18) can be separated into its real and imaginary parts:

-8 My g2 R o (-
7i{a2Fo + Fl —P—r—(K) [a so + sl] + P @OJI 0, (:L8)i
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and

s}

2
Q9 (N (g2 R -
7, { a ¥ +F, - (1) 128, + 5] - @o}

.22 .2 (02 4 12 _ _
a“(a® + b°) PF, (2a° + be) PrFl PF, Q{frFl

2
-L0ly+ E-bzl S, + (3)2 angSo + (l.zl)2 b2810
r

[(a% +%%) @, + 6] . (18),

+
"Ul'&U

r
To complete the proof of the principle of the "exchange of
stabilities", one needs more relations between the quantities defined

so far. Multiplying each side of Equation (14) by its complex conjugate

and integrating from x = -1 to x = + 1, one gets:
2,2 2 L 2 2
+ 1y + (1 + (1 + 2 + (1) v7)(1
[y + Do%[% s+ (D)7 a8 + (D)%, + 20y, + (1) v7)(D)s,
2 (142 M w21 2(1 _p 2
+2a° (2)%8) + 2[y, + (1) 7] a™()s ] = P (19)
From which two inequalities are obtained, so long as Yy >0 :
22 2.2,n42 2/m\2 2
ly + (2) b=|"8, + a’D (2) Sp + b (2) S, < P, Fy (20)
and
(ﬂ)es P F (21)
<
kW 2> r 1
Integrating by parts, one obtains:
1
[P 5(x) ax = Ds.§(£)|l - fllDS‘2dX = - flleladx,
-1 -1 -1 -1
since the first term on the right-hand side vanishes. By applying
Schwarz's inequality to the last equation, one obtains:
2
S,.8 =8 (22)
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1
Finally, one can prove that if [ s(x)dx = 0, then:

-1
1 1
/ |.s|2dx < f|Ds|2dx
-1 -1
or
S, <8 (23)

where the equality sign holds only when s(x) = O identically. In this
1
case, [“s(x)dx is indeed zero, so long as ¥y ;é O, as can readily be seen

-1
by integrating Equation (14) with respect to x from -1 to 1. Therefore,

Equation (23) holds.

Combining Equations (21) and (22), one obtains:
2

0" L <rfr
and, in view of Equation (23),

112 2 )
(K) sl < Pr Fl (2k)

Returning now to Equation (17) and integrating its right-hand side by
parts once, utilizing Schwarz's inequality, one gets:

2
(3) 812 S PrzFoSl ) (25)

so long as 7, >0 . From Equations (23) and.(25), :it follows that:

2 2
()" s, < 3 (26)

Combining Equations (24) and (26), one obtains:

. 2. 2 2 2
(a8, + 8] B aF + ] (27)

when the equality sign holds for the trivial case of no disturbance.
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Equation (l8)ican be satisfied by either 7, = 0 or by the vanishing
of the bracket coefficient of 71. If £ and s are not zero iaentically,
71 % 0 implies, because of Equation (27), that R is negative so long as
%;En$ 1 and Yy > 0. However, if R is negative, the bracket coefficient
K
Zf 7, in (18)r is positive. Since the r.h. s. of (18)r is negative, in
view of Equation (20), Yy is negative, contrary to the original assump-
tion,thﬁsiyﬁder'theha9sumptibm;tha£.%;ﬁJg;1;7f>0*iéup0531blefonly-if 7i=0.
Consequently, the mode corrésponding to netitral ‘stability is time-independent.
It should be mentioned that the limitation upon Q is independent
of the wave length in the y or z direction. Physically, it means that one
can, for any mode, impose an interfering magnetic field which would make
the principle hold. This is not the case for the velocity fields con-
sidered in Chapters II and III. Nevertheless, one can prove the principle

of "exchange of stability" subject to limitation upon Q involving wave

lengths a or b.

10. Solution and Approximations

The relationship between a,‘b, Q, and R shall be obtained for
the time-idependent mode by the approximation method carried out in Chapter
III. The governing equations in Chapter IV are of the same structure as
those in Chapter III. In this chapter, however, 6(x) and s(x) are either
both odd or both even; therefore, the followihg expansions are chosen:

(-RO) =1;2§§..%5 cos(nmx) , [% Q s(x)] =l}§,3..Bﬂ cos(nmx);

or
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In these expansions, boundary conditions for both 6 and s are satisfied.
By substituting 6(x) and s(x) in Equation (13) and utilizing the remasining
boundary conditions, f(x) is obtained. Then approximating f, s and 6 each

by a single harmonic, one obtaines for f(x) odd and 6(x) and s(x) even:

')® ')

R' = . [ 1+ - 1, P
F (Mg_ )2 (B)
where 5
F' = 1 { 1+ 2 L, -1 ]}
a coth(a) - ¢ coth(e) "1t~ 7T
‘ Mi Mc
and for f(x) even and 6(x) and s(x) odd:
! 1t 2
o) o) N
R'' = ' L+ —77%] (29)
FII (Mg_ )2
where |
2
oo _152{ 2(x/2) 1 __ 1 4]
¥ (2) o a tanh(a) - ¢ tanh(c) [(M;'{) (Mi")]l

The quantities (“i!), (Mi"), (M%'), and (Mi") have the same definitions
as given in Section T.

Equations (28) and (29) indeed show that the least stablé mode
is that of zero wave length, and that for given Q and a R'<R'. Hence,
modes in which f is even are less stable. These equations also show that
the effect of the imposed magnetic field is present for any wave length,
as the term including Q is not zero for any wave length (including a = 0).

In this case, the magnetic field would raise the critical Rayleigh number

required for convection. These results are ploted in Figures T7-10.



‘pesodwy 'y - dTysuorgersy q-B-y¥-® L 3InITJ

¥ ° ¥3BANN S, HOIZTAVY

-36 -

0002 00s| 000! 00S
I ! I !
«om u«n
OIMLIIWWAS * NOILONNA WV3IYLS : A

' HLON3T 3AUM

0



oootv

*pesodmI Hm - dyysuolsersy q-e-¥-d °g 2IMITd
¥ ' Y¥38WNN S HOI3TAWY

000t 000¢ 000l

OIMLINNAS

ILNV

13

pe=g
NOILONNd WV3dLS us’

 HION3T 3AVM

D



_38_

0002

0oosi

-posodmT g - dIYSUOTAEToY q-e-¥-B

¥ ‘ Y3IEWNN S HOIFTAVY

000l

‘6 2anITA

00s

o—

OIMLINWAS

pve=4

NOILONNd WV3INLS : A

‘ HLON31 3AVM

o]



-39~

T

*pesodwl "H - dTYSUOT3®[aY q-e-Y¥Y-B ‘0T 2INITd
¥ ° ¥3I8WNN S HOI3AVY
000’02 000°s! 000°‘0l

000°‘s

D2 =9

OIMLINNAS LNV ° NOILONNJ WV3INHLS ¥

HLON3T 3AVM

¢

D



CHAPTER V
EFFECT OF ELECTROMAGNETIC FIELDS ON STABILITY
OF A FLUID IN A CIRCULAR TUBE

In this chapter, the stability of an infinitely high circular
colum of fluid, with an adverse temperature gradient and a vertical uniform
magnetic field will be considered. Apart from the geometrical configu-
ration of the container, this case is the same as that discussed in
Chapter II. The purpose of this chapter is, however, mainly to demonstrate

an analysis which is not used in Chapter II and is more general.

11. Splitting of the General Problem into Two Parts

The governing equations, Equations (II.1) to (II.9), transformed

to cylindrical coordinates, with (x5 %5, XB) indicating (r, 0, z),

P ['alli"\/(vau -_3?22_-1.2;)]:&1{_3?5‘_
° "ot 1 X, O, Xl2 iy 5X3
d uwH_ h
S @, ()
X, Lx
%u du H, oh
—2 . 2 Oup  up _ uHy Ohy
po[ ot V(veue + N 2 aX2 Xle)] I %
1
S 13 (pr o+ M (o)
Xl BXE J—Ht
J bl ah3 3 | uEghg |
po(g-v %3 E_&;‘gyg(P e )+pogoeT, (3)
o _ d_ h
——]-:-'Tl(vehl-g__.g—__l_>-}{3 _a__ui’ (u_)
ot X]_2 axz X12 5X3

“4o-
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OBy _n(Rn_+ 2 Oy b2y m, P2 (5)
ot x12 sz X12 5x3
d _ du
(50 - ¥y = H 3 (6)
X
3
:.]:' a(xlul) —]; auz + BU.3 _ O (7)
xl le X 5;(: % ?
1 O(xuy) 1 gfg_ + é&i = 0, (8)
1 le xl X, 8x3
and
) . ,
(52 - <)T'= = puy . (9)

The boundary conditions, as in Chapﬁer II, are:
%l=o and J, = J3=0 at x. = d/2 .
X, 1
However, here, unlike Chapter II, no ?elocity component or variation with
respect to any coordinate will be assﬁmed to Qanish a priori.
By cross-differentiation of Equations (1) and (2), (2) and (3),

and (3) and (1) as well as (4) and (5), one eliminates the p' terms and

obtains: 3
¢ o 3
P, [é—t'l" - ‘v(veil - 22 S 2 . c%)_] = ul, 1
X, %% X, 8x3
+ D0 = %E"— ) (10)

1



oo

B¢ 33
2 (P o %y _ oyl g 2
Xy 2 x 3
T
- p 8 5;1' ) (11)
33
) _ o 3
oo (BF - Wy = 5 (12)
and
O )y - B3 %3
5 V2 >, (13)

where Cl, C2 and C3 are the three vorticity components.
The system under consideration, consisting of nine equations
and accompanying boundary conditions, and governing eight dependent
varihles shall be split into two systems. Each such system shall consist
of fewer governing equations, fewer boundary conditions and governing
fewer quantities.
It can be shown that any velocity field u, satisfying Equation (7)

can be split into fields u§l) and u§2) such that:

KONNCIN
)y
o

3 3

(2 2 2
aul)+ul(.)+_1'__a"1§)=o
Bxl X; X, 8x2
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and

sty D)

= 0 .
'axl ' sz

This split is possible, as the five differential relations govern five
newly-defined quantities. Since u; satisfies Equation (7), so does
u§2). Consequently, any incompressible flow can be split into two, flow
I for which §3 = 0 and flow II for which u3 = 0, where flows I and IT
are both incompressible. This conclusion can in fact be shown to be a
particular casé of Helmholtz's Theory. The separation procedure will

be preformed for all pertinent variables. From Equations (9) and (6),

T' and h, can be shown to depend upon u3 or u(l), so that T' = T'(l) and

3
hy = hgl). However, from Equations (12) and (13), j3 = jéa), as it

depends on §3, and in flow I §3 is zero. All other quantities will

be associated with both flows:

3, =3t + ),y = e y2)

n =101 +n(2) ang n =n() 4+ a2
2~ 2 2 11 1

Since the governing equations are linear, it is sufficient to have each

(1)

of the set of quantities, ( and ( )(2), satisfy these equations

separately, so that the sum [( )(l) + ( )(2)] would satisfy them, too.
In the spirit of former chapters, one seeks a time-independent
solution assuming:

u; = (gl) U(r) sin(nb) cos(az) ,

u, = (2¥) V(r) cos(nd) cos(az) ,
d

u, = (%20 W(r) sin(n®) sin(az) ,



-

h = H3 X(r) sin(nf) sin(az) ,

h, = H Y(r) cos(nf) sin(az) ,

3

h, = H3 z(r) sin(n@) cos(az) ,

3
and ‘
T' = églg 6(r) sin(nb) sin(az) ,
where
X X
r = 575’, x2 =6 and =z = 57%
12. Development for Sub-System I
The continuity of the flow and the magnetic field requires:
o) 4 o) v ) L (14)
r T
and
MU)+XH)AnYu)-aZu)=O (15)
T r
where
2
As 33 =¢ =0 in this flow, the corresponding differential relations are:
D(rV(l)) = nU(l) R : (16)
and
D(rY(l)) = nX(l) . (17)

Since each of the three components' fields is governed by two differential

relations, fields can be uniquely defined by scalar quantities.
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With:
) sy, Gr) = ax()
) Sy, x(1) - px(r)
and
I R (1, +8a"W(r), z(l) -5 (1 + a2 )X,
where

2
—l 1’12 2 2_1 n
L, = (r DrD - = - ) and (Ln +a )= (T.DrD - r2) .

Equations (16) and (17) are automatically satisfied. Currents as well
as vorticity components will be expressed in terms of the newly-defined

functions as follows:

gil) _ . &_[z;7§324 g.(an) cos(nf) sin(az) , (18)
H
&£l) = é'(hng 5) %-(Ln X) cos(nf) cos(az) , (19)
C(l)-l[ *—] D(L ¥) sin(n6) sin(az) (20)
, "a ZE?ESEJ nw sin(nd) sin(az) ,
and
B
jél) = - i'(hﬂd32) D(LﬁX) sin(né) cos(az) . (21)

Inserting Equations (18)-(21) into Equation (12), and setting

to zero for time-independency, one obtains:

; v - Ly (.1 o
®o (2 (T, ;2)_ ( EW;_)?) 7 (LV)
2 H3 n
" oo B () D) = - i () a7z B (LX)
+‘Doga (22)

n g
a r
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Since for any function of r

(x, - &) &2 - - S0 2() + FLe (23)

Equation (22) yields.
LL, (P¥)=4aQ Q-Lﬁx + RO, (24)

where

2 2 2 u
weo(H,)=(4/2 A
Q: 3 (/) P = %andR:-m@@L.

pyY T VK
It should be noted that Equation (24), though derived from Equation (10),
implies satisfaction of Equation (11) too, since ¥ and X uniquely define
velocity ahd magnetié field respectively. The dependency of hﬁl) on ugl)
can also be uniquely determined by inserting the values of hél), h£l), and

uél), expressed in terms of ¥ and X, into Equation (5), thus yielding:

agg Ay Y (25')
which, with the aid of Equation (23), becomes:

(#) LX =a(Py) . (25)
Finally, Equation (9) yields:

I, 6(r) = (z_+a%) (B¥) . (26)

13. Development for Sub-System II

Since this flow and the associated magnetic field have two

components each, conventional stream function will be used to define
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these fields:

2) 2)

x'x:( = nQ(r) and Y( =D ,
so that continuity is automatically satisfied. The vorticity and current

components are accordingly:

t, - gge) oty Gy 62) o(r) cos(nd) cos(az) |
33 = ng) = 4:“}11;2 (LIl + a2) Q(r) cos(nd) sin(az),
¢(2) - L v _ (219) 530(06) sin(ez)

() - (p=g3s) (820 sta(ue) cos(es)

(2) v

(/2)2 (alp) cos(nb) sin(az)

and

3(2) = - 5 ) (a D) cos(né) cos(az)
1 hnd/2 ’

Inserting the appropriate values in Equation (12), one gets:

0=1, (I +a%) (Po) +a a(r +82) (R0) . (27)

Inserting the appropriate values of h, and u in either Equation (4) or

Equation (5), utilizing Equation (23), one obtains:

0=L(#0) -alPy). (28)
In this flow, temperature effects are not being dealt with, and
Equations (27) and (28) govern only two camponents of velocity (both horizontal)

and two of the magnetic field. Physical considerations may lead to the
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conjecture that ¢ = @ = O identically, as buoyancy force does not appear
to play its part. This indeed.would be the case if the boundary‘ conditions
governing ( )(2) quantities were homogeneous. However, the boundary
conditions contain quantities of the form [( )(l) + ( )(2)]. Therefore
( )(2) quantities, being linked to convection terms via the boundary

conditions, do not necessarily decay with time.

14. Boundary Conditions and Solution

Combining Equations (2%) to (26) as well as Equations (27) and
(28), one obtains:
3 2 2
[Ly - (R -a™Q) L, -Ra"] (P¥) =0 (29)
and

(1.1, +a%q) (L +2a%) (R,9) = O (30)

Equations (29) and (30) can be rewritten:

(5, + ) (1, + ) (3, +c2) (R¥) (29')

i
o
-

(30')

|
(@)

(1, +5y) (1 +35) (1 +a°) (B0) =

2
where oz? and p, are functions of R, Q, and a. The general solution
for ¥ and ¢ are of .the forms:

3 3
- Y )
PV | izll Ay I, (oyr) + R BiYn(ozlr)

and
2 2 0
( +
s igl Cy J (pyr) + izll DiYn(pir) +E r +B

—n.

J
S
n
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Wishing to avoid singularities at r = 0, one sets Bi.= Di = En =0
so that only six, out of the original 12, constants are left to be determined.
The condition of no slip at the boundary requires:

= ug =0 at x. =4/2

1 2 1
or
DV +'§9~— 0 at r=l, (31)
ny
—+Dp=0 at rl, (32)
and
(L +a®) ¥ =0 at rl . (33)
An electrically very conductive wall requires:
= = = 2
Jp=d3=0 et x =a2
Therefore
(2)
i o= =0
J3 J3
or

(r_ + 82) =0 at r=l

From Equation (27), this boundary condition can be written:

L (L +_a2) V=0 at r=l (34)
n n

Also:

Jél) + Jée) st x, = a/2

j2
implies
L
8
Equations (25) and (28) will be used to express the last boundary condition

D(LX) + 88 - 0 at re1
n r

in terms of ¥ and ¢. Differentiating (25), one gets:

D(LX) = Za D(PY) (35)
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Since (L, + a,2) Q=0 at r=1 Equation (28) yields

D- Ld = =
a - Q (Pr@) 0 at r=l.
Therefore, the condition j, = O yields:
Dy + 39 =0 at r=1

This condition has been required for u, = 0 (BEquation (31)). The
duplication is due to the physical requirement that j3 = 0 on the boundary,
implies the vanishing. .of jéftheré;,which;is”exPlainable,in,the fol-

lowing fashion. If one lets the vertical potential drop vanish on r=1

for any angular position 6 or height z, as one does by considering the

mode of the form f(r) cos(nf) cos(az), one makes the container an equi-
potential surface.

The physical condition imposed upon the temperature disturbance
is:

égl =0 at xl
Bxl

=d/2
or
DB=0 at r=1
Differentiating Equation (24) and utilizing Equation (35), one obtains

for this condition

D(L L + a®Q) (P¥) =0 atr=l . (36)

Equation (30) when expanded is:

2 2
[(EDrD -2 - a2)(Eorp -7 -a?) +2%Q) (L +a°)(Pg) =
r 2 n L

r r

(L, +8?) - (@A F T I, +a°) - (a V@)
(L, + a)(P) = 0 (30')
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Hence, in (30'), Py = pé; both being complex for non-zero a and Q.
Therefore, (pir) = (p;}) and Jn(plr) = 3;(5;;7. If one requires ¢ to
be real, one should have:

Cp+ €y =0 (37)
Thus, one has six homogeneous boundary conditions and six undetermined
constants.

Two more conditions are required at the origin. One requires
6(0) = 0 because T' is expressed in the form 6(r) sin(n) cos(az) and is
single-wvalued at the origin. Also demanding u, to be finite at the origin:
ru, = 0 at r=0
Therefore:

r(V(l) + v(a)) = r(f%,h Dp) = 0 at r=0 (38")
and ‘

6(0) = (LnLn + aQQ)w =0 at r=0 (39')
by virtue of Equations (24) and (25). These conditions are automatically
satisfied if n > 1 as Jn(w) vanishes at w=0 for n 2> 1.

A solution for n=1 can also be constructed, however, by setting
@ = 2 = 0. In this case, Equation (34) would not be imposed, there being
no 33 in this case. Equation (37) is automatically satisfied, as ¢ = 0
identically. However, Equations (31), (32), (33), and (36) will remain
(in a somewhat simplified form due to the vanishing of ¢), as well as (38')

and (39'). With six boundary conditions, the six caefficients of the

Yl(o&r) and the‘Jl(air) can be determined, not assuming B, = O.
In general:
o]
Lyl 15 qyF Bt Hen) oy (k1)
Yy (w) = 3y (wiatv) - 5G) -5 2 (L) o) &
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Thus at the vicinity of the origin Yl(w) behaves like -(w)'l, as the
first r.h.s. term as well as the power series vanish there. Jl(w) vanishes

for w=0 too. Therefore, Equation (38') when ¢=0 reads:

Vv =0 at r=20 (38)
or

0= lim (Bl.i_+}32_l__ +B3L)

r—=0 T Opr 0(31-

Consequently:

3 B

Z ——:l':' = O .

i=1 @

Equation (39'), by virtue of Equation (38), reduces to:

LI, ¥=0 at r=0 . (39)
In similar fashion, this yields:

3 B,

i=1 oy

The other four boundary conditions at r=1 yield four homogeneous algebraic
equations linear in the A's and B's, whose coefficients are the Bessel

functions J; (a&)s and Y (ai)s.

1
For the axisymmetric case, n = 0, solution can be obtained for
¢ =Q = 0again. Further, if n = 0, definitions of V and Y yield:

v=v® -0

Y=Y =nX=O.
This is understandable, since this flow is axisymmetric with §3 and j3

equal to zero.



The governing equation for (Prw) is the same as before, namely
(29) with n = 0. The boundard conditions are:
Dy =0 at r=1 (31)
and
(L +a%) ¥ =0 at r=1 . (33)
The thermal and electromagnetic boundary conditions are both implied by:

1 . (36)

All the boundary conditions are expressed in terms of first or higher

D(L, L, + a2Q) V=0 at r

degree derivatives of V¥, but the function ¥ itself has no physical
meaning when n = 0. Differentiating (29) by r and setting n = 0, one has:
2 2

D(L, + ai) (L, + 0Q) (T, + o) (B¥) =

(1 + 05) (3 + ) (1) + ) [D(RV)] = 0
as

2

L. =D 1 Dr -a .
r

1
The solution for D(PrW) would be, in general, in terms of six Bessel
functions of order 1. The linear combination of the three Jis is the
solution sought. Again in this case there are just three boundary conditions.
According to the results in (6) for an infinitely high circular

cylindrical column, in the absence of an electromagnetic field, the
governing equations and boundary conditions for the eigenfunctions are:

L3y = R(L + a8) ¥

Y=0I¥ = L2Y =0 atr=1,

where L in (6) is equal to Ll here, and where axisymmetry is assumed.
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The governing differential system here is:
3 2
L” [D(E¥)] = [(R=2Q)L) + R &) [D(B¥)]

DEY) = (Ly+a) (B¥) = D(LoLy + a-Q)(R¥)= 0 at r-1

The second boundary condition can be simplified to:

D[D(Pr\v)] =0 at r=1
Similarly, the third boundary condition, utilizing the first one, re-
duces to:

L2 [D(P ¥y)] =0 at r=l

1 r

Finally, ¥ and D(PrW) have essentially the same physical significance,
both being proportional to u,. Thus, both systems are, in general,
similar and identical for Q = O.

The solutions of the differential systems have now been reduced
to homogeneous algebraic equations linear in the constant multipliers of
the Bessel functions or the powers r". From these, one can find the
secular equation in the usual form. Thus the general three-dimensional
solution for the pertinent differential equations satisfying the boundary
conditions can be found for any integral value n.

Results for axisymmetry were found to be compatibie with other
work done in the field. Also, if a = O, the effect of the magnetic field
is nil. Consequently the least stable mode, being independent of X3, is
unreflected by the presence of the magnetic field. For n # 0, the solution

requires the handling of a 6x6 determinant, and has not been carried out

numerically.



CHAPTER VI

EFFECT OF VERTICAL ELECTRIC CURRENT ON THE STABILITY
OF FLUID CONTAINED BEIWEEN TWO WALLS

In this chapter, the effect of a vertical current on the stability
of a conducting fluid contained between two walls, with a negative ver-
tical temperature gradient, will be investigated. What happens inside
the walls is also considered in this chapter. Numerical results, how-

ever, have been obtained for simpler circumstances.

15. Splitting of the General Problem Into Two Parts

The fluid and the containing walls shall be assumed to be under
a constant uniform potential gradient in the x3 direction, so that the
imposed current density is in the fluid (-J3) and inside the walls (-J3 o*).

o]
Accompanying magnetic field will be x3 and time independent too;in the fluid

d
3 Bxl 3x2

will hold, And in the walls, one requires:

OH¥*  OH¥
4ﬂ(-J3 gf) = g—g - S—L .
o Xy X,
A solution of the form:
= (4 % = (hng 9¥
H ( ﬁJ3)x2 , H¥ = (4nJ = )x2 ,

and

is possible, provided the boundary conditions are satisfied.

=55~
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Assuming no surface current in the fluid-wall boundary, one has:

H,=H¢ and H, = H* at x_ = + d .

2 2 7 3 73 71

Preservation of magnetic flux requires:

H:*H* t =+d-
pH) = p¥EY et x, =+

Equality of electric potential gradients along the boundary requires:

1 éﬁ_?ﬂ)_l_(éﬁ__?ﬁ)
0 9 dx_~ 0%y 3
xl x3 xl x3
and
1 ?_Ifg__af.l_)_l_.(,a_}i_éﬁ)
o ') d T 0¥ 2
X X, axl 3x2
at
= +
Xl + d
As only Hl and H§ do not vanish, both being x3 independent, boundary

conditions to be satisfied are:

= p¥H* =
qu 1) Hl at xl +d ,
and
¥
S N x = +4a
"0 o
3, Bxe

This is possible if:
puo = u¥g¥ or 1 =Tn¥.
The type of field under consideration (Hl-<fx2) can, however, be produced
by other means without assuming n = n¥.
Seeking the least stable mode, which, according to former
results is.likely to be independent of X3, variation with x, will be

3
neglected. Consequently, Equation (I.8) now assumes the following



forms:
2 _wR h
P, at vWe) u 8xl uhy J3 , (1)
o dp' .
Py (Bt - VV? u2 =‘5;— +phy J3 + qu dg 5 (2)
and
) . '
0o (57 - VW) uy = uH §, +p gl (3)

Unlike former cases, due to the non-uniformity of H,, Equation (I.9) reads:

o _ L
& -y aX2<21> , (1)
(& - ¥)n, =a§(—l<ugnl>, (5)
and
OIS (6)
5 -t R &
Also, continuity requires:
M o+ Mo (7)
Bxl Bxe
and
P14 o -0 (8)
ox;  Ox,

Temperature disturbance distribution is governed by:
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Inside the wall, disturbance quantities T'¥, hi; hg, and h¥ are governed by:

3

)

(3% - %2 ) nf=0 , (b )*-(6)*

(gg - W¥R) T = 0 (9)*
and

oh%  Oh%

g‘l'““ 5_2_ -0 (8)*

X %%

since velocity terms vanish inside the wall.
Boundary conditions are:
u; =0 at x, = +d,

assuming no slip at the boundary. Temperature disturbance as well as

heat flow continuity requires:

T o= P% and k9T k% OT* ot x -+4a.
axl axl 1 -

Continuity of flux or magnetic field components require:
= h¥ = h¥ =
h2 h2 and h3 h3 at Xl + d .
and

why = p*n¥  at x =+4d.

Finally, by equating electrical potential on both sides of the boundary,

one gets:

a |~

and

Q|-
[y
1
I_I
/\g./
ook
p—
o
ct
54
]
+
o))
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It is possible to split the large differential system governing
many variables into two differential systems each consisting of fewer
equations, fewer boundary conditions, governing fewer variables and
therefore easier to deal with. System I comsists of Equations (1), (2),
(%), (W)*, (5), (5)%, (7), (8), and (8)* with the relevant boundary con-
ditions. System II consists of Equations (3), (6), (6)%, (9), and (9)%,

and appropriate boundary conditions governing u_, h3, h§, T', and T'¥,

16. Decay of Disturbances Represented by System I

In dealing with cases of stability, one encounters a set of
homogeneous governing differential equations accompanied by homogeneous
boundary conditions. It is physically understandable that if such
differential system lacks a term representing a motivating force but does
include terms representing energy dissipation, it would govern solutions
representing decaying disturbances. For example, the system governing hy
in Chapters II and IV, as magnetic diffusivity is dissipative in its
nature and there is no motivating term in (II.5) or (IV.5). Another
example is System I here. Decay of a disturbance governed by this dif-
ferential system will be proved, for once, rigorously.

Cross differentiating Equations (1) and (2), and utilizing

Equation (8), one obtains:

du du wH 93
O _yA) (_L1.-_2_-_._12°3, (10
& "V s o (10)

2 1 o 1
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In view of Equations (7), (8), and (8)%, one can make use of the stream

~
functions '11;, Y, and X¥:

~ Ve
¥ = S_BX* and h¥ = - 6_8)(*

Combining Equations (4) and (5) as well as (4)* and (5)%, one obtains:

(& - ) K = () - Hl%,

and

Rewriting Equation (10) in terms of the stream functions, one gets:

d _ vz v lJ«Hl d S

Wwith

T = Wixy) exp(yr), X = (bn3,d) X(x,y) exp(yr),

3

T = (hn33a®) X% (x,y) exp(77)

——— t
l K

d
one obtains:

Mo 21 v _ D
[7‘(V)vl]x_y§}£)

¥y 2 vy -
[7-(VL)V1]X*—O ,

, 1D
(r-9 9% - oy & (9%,

(11 ¥

(10')

(11'*)

(1100 )*

(1d)
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where

2 2.4
no(bnJ,)=a 5 ¥ R
Q = 3 and V,” = + .
pY L3 8

The boundary conditions in terms of the stream functions are:

_ o _ _
\V—BX-O at x=+1 )

¥y -0 as lyl = 00
for velocity components. Electromagnetic quantities are governed by:

Lo -1 v X % OXX
o’vl (—)'—*-vl ) B = U™

dy dy
and
% = %* at x=+t1,
by
X¥ 50 as |x| -
and by
X*¥,X -0 as l.')’l A

At the boundary (x = + 1) the r.h.s. of Equation (11') vanishes; thus,

subtracting (11") from (11')* (ﬁ) , one gets:
"

*\ 2 E 2
X - ()% - () 9% - (1) F v -0

Since the vanishing of one bracket term in the last equation implies the
vanishing of the other, and since op = o¥u¥*, either
p¥ X% =X  at x=+1

or

lo2, 1 , _
a-VlZX—G*VIEX* at x=+1 .
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Also
X X%
g— = %;- at x=+1
X -

Multiplying Equation (11") by X, Equation (11'')¥ by X* and
Equation (10'') by ¥, integrating throughout the volume within which

these functions are defined, andbutilizing Green's theorem, one obtains:

yx v (Mx - f T =), v L Tar, (12)
yxe e (B g - g, o @ ar-o (12
and
- 3 .
oy -y =0 () 1L &wﬁ%>w. (13")

Substituting Equation (11'') into the r.h.s. of Equation (13'), one
obtains:

[7X -y éﬂ&

- ) (13)

7Y -, = flf

O/|Q/

where the direction of n is defined to be perpendicular to the surface

of integration, fffv ... @ indicates integration of the vélume including
fluid, fffv*... &v* indicates integration over volume of walls, f[z ..; as
and f{sk ves dﬁ? indicate corresponding respective surface integrations.

In Equations (12), (12)%, and (13):
X = [f, X%, x = 01, [P,
= IS, Dl Pave, xe = 0SB

7 T A M e R A TV b
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and
2,0V ,2
v, = [f], IS Par

Combining Equations (12) and (12§ by utilizing the boundary

conditions, one obtains:

B¥ g 1 ¥ x%1 = o X
VI + =X+ 1K) ¢ X iy Sxa (14)
2 52 -
Rewriting Equation (13) , integrating y é—-‘év— V with respect to x once,
X
and using the boundary conditions for V¥ and g‘li, one gets:
X
_ T ([T vy Ear) -
7Y - ¥, Q=@ fffv. ¥ ¥ - av = Q[ yv - av)
(] y LK ar) . (131)
v ° 3

Combination of Equations (13') and (14) yields:

_ _ MG BX owy ol *
Yy =Y, = QY - [T+ X)) (x4 B XL (25)

1

Multiplying each side of Equations (11'') and (11'')* by their complex

conjugates, and integrating over their respective volume, one gets:

—

1717 % + 27 () X, + 2%, () FS 0

ST I T T as=v, ()

and

2 * 2 ¥
|77 %% + 2y (B) 3¢ + (9% mg () [ ¢ = de

- W) fL, o Fage = o (17)
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When the last two equations are combined by using the boundary conditions,

it follows that:

2 * ¥
¥, = |7|5(x, + B=x%) + 27, () (% + = X¥)

+ (B (% + EExp) : (19)

Equation (15) can be split into its real and imaginary parts:

o 2 % ¥ * ¥
Ty Yy =Y @ Lt [T H ) 9 30+ X)) (15)

and

- -qA E* x*)y . .
0=17 [‘1’l Q(v) (Xl + " Xl)] (15);
Substituting from Equation (19) to Equation (15)r, one gets:

2 * *
- = B K
7. wl w2 + Q(g) (x2 + - x;) + 7. Q(g) (xl + - x*{)

Since Yl’ YE, etc. are positive definite, y 2 <0 and Yp = O only when

~
V= X = X*= O identically. Hence, if there is a two-dimensional, this

disturbance will decay with time.

17. Solution for System IT

In the spirit of former chapters, the non-trivial time-independent

solution of system II shall be sought.

With
X
_i = x2 =
d X ) 'd— y )
T =¥ (pa) 6(x,y) , b, =L (4x3 ) o(x,y)
. | 303
and
u3 = g'f(x:Y)
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one gets:
-v2f=anﬁ-Re, (20)
1 | ox
2
V=Y of | (21)
ox
and
29 -
IACEE (22)

So far, what happens inside the fluid and walls has been consid-
ered, and the fluid has been considered to extend to infinity in the
direction of x and y. Numerical solutions will be obtained for the case
in which the fluid is bounded at x = + 1 and y = + b; under some cir-
cumstances, one may let b become relatively larger than 1. What happens
inside the wall will not be considered. Consideration of a column (or
slab) extending to infinity is somewhat artificial. Furthermore, in
practice, disturbances are likely to be concentrated over a finite part

of the fluid domain.

A

e 21—

Figure 11. Rectangular Cross~Se¢tion of the Colum.
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A magnetic field varying linearly- with y can be formed in several ways.

Such a field can be formed by having 1 = n¥* (Section 15) at the boundary
walls at x = + 1 extending to infinity in the y direction, or by having

iron masses behind thin glass walls at x = + 1. In this case, walls at

Yy =+ b shall be considered thermally as well as electrically very conductive,
and walls at x = + 1 shall be considered thermally and electrically con-
ductive. This choice is artificial, but the main purpose of the calcu=-
lation is to show the difference in the effectiveness of electric current

in inhibiting different modes of convection. The boundary conditions to

be imposed upon disturbance quantities are therefore:

! 6 R
.@2 =0 or o0 =0 at x=+1
axl aX -
T' =0 or 6 =0 at y=+b>
h3 =0 or ¢ =0 at x=+1
oh
3 =0 or e} =0 at y=+D
BXQ By
and
u3 =0 or f =0 at Xx=+1
and y=t*h.
The function f can be expanded as an infinite series:
; 2n-1
[a] f =22 Am sin(mrx) cos( = I s
oo 2 b
or

[b] f=22Am co:s(agl-l nx) sin (ril%x) )
mn
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These are not the only types of series expansion of f that
satisfy the boundary conditions at x = +)and y = + b. However, one need
not consider the case in which f is even both x and y-wise, since on

physical grounds (continuity) one must require:

1, 1y
ffu3dxdy=0 , or [[faxdy =0,
- 1,

so long as one deals with the stability of a columm contained within

a certain volume. Also, from previous knowledge, it can be expected

that the velocity field described by f ddd in x and y is likely to be
a relatively stable one. Therefore, only the situation where f is in
the form [a] and [b] will be investigated.

For case [a], with a = mx and B, = g%:i.%, Equation (22) becomes:

2
V.56 = L Y, Am sin(o x) cos(B y) .
1 ne1,2,3.. 1=1,2,3 m P

the solution of which is:

n=1,2 m=1,2 2 . 5n2
+ L L sinh(p x) cos(B y) . (23)
n=l, 20 . n n n
In this solution:
6 =0 at y=+0Dd

is automatically satisfied. By adjusting the complementary solution to

satisfy the boundary conditions, yn's can be evaluated. Since:
a (=1)" cos(p,y)

2
QG + By

Do | =0=22Am [~
x:tl nm

+ E Lan cosh(pn) COS(BnY) ’
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orie has: .
m

L, = 1 % Amz('l) zm (24)
' By cosh(f,) m . +B,

Substituting assumed £ in Equation (21), one gets:

..vlch = E%Amn(am) y cos(amx) cos(ﬁny)

thus
9 =11 — A1) [ cos(oyx) ¥ cos(Byy)
Oy + By
R S i + T M cos(ox) sian(
s cos(amx)s1nh(6ny)] LM cos o x) sinh(a y
O!m + Bn
+ g K cb:sh(an) sin(Bny) ‘ (25)

Again with the aid of the glven boundary conditions, Mm and Kn can be

evaluated. Since:

oy
Amn (o) +1

0 = %%;‘5%2 (p,p(-1) 1 cos(oyx)
m n

+ éMm (of.m) cosh(cxmb) cos(ocmx)

thus

Moo 1y Am(D) P (26)

m cosh(qb) (%2 N Bne‘)

Letting x = + 1 in Equation (25), multiplying by sin(Bny) and integrating
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with respect to y fromy = b to y = + b, one has:

_ m
0 = K, cosh(g) + % M cos(a Jay
Anmk (o) K 2
P LT B on(o ) [ 5tk 5 5], (e7)
mk [0 + B m n 2 2
m k am + Bk
in which
m b .
a --{; sin.h(Otmy) s:m(Biy) dy ,
n b .
by —_£ y cos(p y) sin(p,y)dy ,
and
Sij = Kronecker delta

Finally, the newly-evaluated ¢ and © will be inserted in
Equation (20). By expressing all quantities on both sides of the equations
in terms of sin(oamx)cos(ﬁny), and equating all sin(oyx) cos(B,y) terms on

both sides of Equation (20), for every pair (m,n) one obtains:

2

2 2 - Op k-

A + = - L —5—— Ank C

nm[am Bn] Q{kOﬂmE"‘BkE m
052 k
m N
+21§ > > B, Amk d

(o =+ B,.%)

- P KBy ei .l’dxlfx o I% (o) fﬂ_}

+R{2 s-L e |, (28)

n n .
+
"+ B J
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in which

fb i sinh(amy) cos(Biy) dy = f? s { sinh(an) sin(aix)dx =

b b
["y sin(p y) cos(p,y)dy = dri1 and [ y° COS(Bny) COS(ﬁiy)dy - c.

~b =b
Equations (28), (24), (26), and (27) yield an infinite set of homogeneous
algebraic equations governing the A's. By setting the determinant of

the coefficients of A's equal to zero, one gets the desired secular

n
€.

equation for Q and R for non-trivial solution of the system. By letting m

run from 1 tom', and n from 1 ton', a (m'x n') determinant, an approx#-

mation to the desired relationsh{p between Q and R, is obtained. Letting

1

m' = 1and n' = 2, one gets:
o' tem(p)
—_— 1 :
o -5 [r v g T - (af e py?
o+ By 1
2 . .
5 b2 o tanh B,
'Q{al[3_" S5l - (L4 2 =)
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, fenn(Bo) 28 By ) 201°  tenhgy, 20, -_)2‘ 28,2
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Po =P 0 tBy P 0BT g
2 2 2
28 b
1M B

o+ By (ocl +p7 )

1
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2
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2 2
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2B 2
+ (0.b) tanh(a.b) —_2 (ﬂz_) (29)
1 1 2 + 2 2 2 a
o +B o +Bp

in which

— 2 2 — 2
Ay = Ayp/(0y" +8,7) and A, = Al2/(°‘1 + By

Special attention should be paid to the first two terms in the bracket

coefficient of the diagonsl elements.

tanh -
R(1 + 2 5D M) -t 1+ (2—32*]0—1)2]2 (30),
1+ (S5=) Bn

If Q = 0, the determinant reduées to one having only diagonal terms of

the form of (30). Such a determinant would venish by having one of its
terms of the form (30)3 equal to zero. Vanishing of the nth diagonal term
yields an approximation for Rn , the Rayleigh's number corresponding to

the convection mode having u3 varying as cos(-a—g:-;i ny), when electromagnetic
interaction is neglected. By setting term (30},, equal to zero, having n = 1

and b very large one gets
R = /3 = 32.5
which is in good agreement with 31.3 obtained in (6).

18. Other Solution and Comparison

If £ is now 'assumed to be of expansion form [b]:.

£ =22 Am cos(L sx) sin(RH),
mn 2 o
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in which

_ (em-1 _ (nxn
lm = (—5—— x) and @, = QE_).

Resulting algebraic equations are:
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2mb2
+ (Mb) coth(x;Db) > 5 1| (29)10
A t+w
1 2
Again diagonal elements have terms of the type
Rl ——=— ——1= "+ 4] (30),
A, W n
1 n

which yield the critical Rn for convection modes having ug vary as sin(xl%l’-)

by setting the (nth) (30)b term to zero.

Since Equations (29)9, and (29)]0 have been arrived at by approxi-
mation, the limitation upon utilizing these to derive numerical results
should be carefully observed. Equation (23) shows that insofar as 6 is
conderned, no approximation with respect to y is involved in the calculations.
By setting (30)a to zero, an a.pi)roximation of R, is obtained because of the
representation of smh(fin;c) by sin(a, x) term. However, Equation (25) shows

1
that y % yields the terms y° cos(By), v sinh(a y) and y sin(B y) in

ox
Equation (20). Hence, there is also an error in these calculation arising
from approximation in the y direction, when one considers ¢ as represented
by only a few Mr@mics, This error is compounded with e:}rrprs arising
from approximation in the x direction. However, the y-error is of a
relatively higher ~sig‘nifica.nce than the x-error, especially if b is large.

Thus, in order to solve the system for large b, many y harmonics should be

taken into consideration. The use of ogly two y harmonics is chiefly to
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demonstrate the method, and can be utilized with confidence only for small b.
Equating'the detgrminanxs of the coefficients in (29)a,and (29)b
to zero, one gets the Q-R quadratic relationship for b = 2:
33.60% + Q[2932-R(46.2)] + [R(1.53)-236] [R(2-562)-119.5] = O ,(31),

and
3.60° + Q[874-R(18.9)] + [R(1.695)-24.4] [R(1.128)-152] = O (31),
In Figure (12), the relationship between Q and R has been plotted for
both flows. The solid curves represent valid approximations, the dotted
lines represent the expected contributions if more x harmonics are used
in calculations, and the dashed dotted lines do not represent valid
approximations. The Q corresponding to any Rn of each of the flows is zero.
Figure (12) also indicates that the imposed electric current does
affect convection inasmuch as there is interaction between velocity and
magnetic fieldg. In both flows, the term Cﬁ:{?ﬂ is not zero, for y = 0

-,
H

- -
and s in fact j(u3Hl), a vector in direction y. The term Vx(u x H) con-

tains therefore a term S%I (u3 Hl) which represents the amount of inter-
action of velocity and magnetic fields, and is clearly of bigger magnitude

in flow [a] than in flow [b], for b = 2. Consequently, flow [b] is less
stable with as well as without the imposed current. In view of the reasonable

results obtained for b = 2, it is hoped that the method used can be applied

to any b.
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