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ABSTRACT

This paper analyzes the Smith-heuristic for the single-machine scheduling
problem where the objective is to minimize the total weighted completion
time subject to the constraint that the tardiness for any job does not exceed
a prespecified maximum allowable tardiness. We identify several cases of
this problem for which the Smith-heuristic is guaranteed to lead to optimal
solutions. We also provide a worst-case-analysis of the Smith-heuristic;
the analysis shows that the fractional increase in the objective function
value for Smith-heuristic from the optimal solution is unbounded in the worst

case.






1. INTRODUCTION

- The following single machine scheduling problém is considered in this paper.
Let N be the number of jobs available for scheduling and let T be the maximum
T di' and Ci
time, weight, due date and completion time, respectively, for job i. The problem

allowable tardiness. Further, let pi, a denote the processing

can the be stated as follows:

: N
Minimize i a j‘C 5
i=1 “

- <
Subject to Ci di-— T

Note that the completion time C, in a schedule is the sum of the processing time

i
of job i and all the jobs preceding job i. We will call this problem the

Constained Weighted Completion Time Problem (CWCT-Problem).

The CWCT-Problem was first considered by Smith [8] with T=0. He provided a

polynomial time algorithm for the case with equal weights a, =a =..=2

He further proposed an extension for the case with unequal weights. Heck

No

-and Roberts [4] generalized Smith's results for the case when T > 0. Smith [8]
and Heck and Roberts [4] conjectured that their algorithms for the CWCT-Problem
with unequal weights are optimal. Counter examples provided Emmons [3] and

Burns [1], ho&ever, show that these algorithms are not guaranteed to be optimal.
Lenstra et. al [5] and Chand and Schneeberger [2] show that this problem in
geﬁeral is NP-hard; i.e., it is unlikely that a polynomial time algorithm could
be developed that would find optimal solutions to all instances of this problem.
Burns [1] and Miyazaki [6] recognized that the Smith-procedure is only locally
optimal in the sense that the pairwise interchange of any two adjacent jobs would

not improve the objective function. They then suggested some improvemenfs over

the Smith-heuristic. Shanthikumar and Buzacott [7] proposed a Branch and Bound



algorithm and Chand and Schneebergur [2] deyeloped a dynamic programming
algorithm with an inbedded Branch and Bound procedure to solve this problem.

In this paper, we identify several cases of the CWCT-Problem for which the
algorithm of Smith (Smith-heuristic) is guaranteed to give optimal solutions
(easy problems). The insights provided by these results can be very useful to
researchers in developing heuristics and optimal procedures for solving the
CWCT-Problem. 1In section 2, we briefly review and analyze the Smith-heuristic.
In section 3, we prove a new result: The CWCT-Problem with weights a

12 3poeees 3y
is equivalent to another CWCT-Problem with weights a, + Py 3 + qu,..., ay + qP

N’
where q is any known number. In section 4, we use the results from the previous

two sections in identifying the instances of the CWCT-Problem that can be solved
optimally in polynomial time. In section 5, we show that the worst - case -
performance of the Smith-heuristic can be made arbitrarily bad. The paper closes
in section 6 by summarizing the results. Throughout the rest of the paper, we

will assume T = 0. A CWCT-Problem with T > 0 can be converted into an equivalent

CWCT-Problem with zero maximum allowable tardiness simply by inflating all the

due dates by T.

2. REVIEW AND ANALYSIS OF THE SMITH-HEURISTIC

The following algorithm provided by Smith gives pairwise local optimal

schedule for the CWCT-Problem.

Algorithm (Smith):

(a) Arrange the jobs in the order of increasing due dates. It is
assumed that all jobs are on time in this schedule; if not, then the

problem does not have a feasible solution.



" (b) Find jobs with due dates greater than or equal to the total processing

time of all jobs to be scheduled; these jobs are feasible candidates
for the last position in the sequence.

(¢) Find the job with the largest p/a-ratio from the feasible jobs and
schedule it in the last position. .

(d) Reduce the set of jobs yet to be scheduled by one, by removing the
job just scheduled in (c). Go to (b) until all jobs have been

scheduled by this method.

As reported in Lenstra et., al [5], the computational time for this algorithm
is bounded by O(NlogN).
Let [i] denote the job in position i in a given sequence. Miyazaki [6]

showed that the Smith-heuristic is globally optimal if C Using

. < .
[141] = 9]
this result, he developed an improved algorithm with the computational time

bounded by 0(N3). Burns [1] provided an algorithm (with computational time of

the order of 0(N3)) which finds a local optimum such that a pairwise interchange

of any two jobs would not improve the objective function.

The sufficient condition provided by Miyazaki for the optimality of the
Smith-heuristic is based on the characteristics of the final sequence. Such
conditions cannot be used, a priori, to find whether or not the heuristic is

optimal for the given class of problems. In this paper, our interest is to

find the characteristics of the problem data (due dates, weights, and processing

times) for which the Smith-heuristic is guaranteed to be optimal. Onme such

characteristic is given by the following theorem.



THEOREM 1: The Smith-heuristic is globally opitmal if the problem data is
sucﬁ that

pi_>_pj-p aiiaj for all jobs i and j, and a, > 0.

i

Proof: Note that steps (a) and (b) of the Smith-heuristic are needed to achieve
a feasible sequence. We only have to show that step (c) is optimal.

We prove the Theorem by contradiction. Assume that an optimal sequence
does not satisfy step (c) in the algorithm. This implies that there exist jobs
k and £ with pk/ak > pzlaz where both jobs are feasible candidates for the
last position of the sequence and job £ is assigned to the last position. Job
k will then take a position earlier in the sequence. We show that in this case,
interchanging jobs k and £ will always improve the objective function value.

Due to the specifications in the theorem, pk/ak > pz/al implies
pk_z Py and ak_ﬁ a,. Clearly, interchanging jobs k and % is feasible. Denote

the set of jobs between jobs k and £ by'S with I P; = Pand I a, = A. The

i

k,%
esk,l issk,l

decrease in the objective function value realized by interchanging jobs k and

2 and rearranging the jobs in S, , optimally is

k,L
Av _>_(Pk'P£)A + (P+pk) aﬂ, = (P+P£)a~k

= (p,-p,)A + P(a,-a ) + p.a, - p
Kk Py 0”& k% " Pp¥
>0

> >0

>0

Hence, AV is always positive which completes the proof.

Theorem 1 implies the following corollary.



Corollary 1: The Smith-heuristic is globally optimal when all ai's are equal,

-

: a =a = ,,, =8,

i.e., when 1 9 N

Note that the result in Corollary 1 was proved by Smith also; thus,
Theorem 1 can be viewed as a generalization of this result of Smith.

In the next section we prove a result for finding equivalent CWCT-Problems.

3. EQUIVALENT CWCT-PROBLEMS

Two scheduling problems which differ from each other only by a constant in
the objective function will be considered equivalent. Clearly, any procedure
that solves a problem will also sol?e all the corresponding equivalent problems.

Let the notation (a di)—problem denote the CWCT-Problem with weights

1? Pi’
al,.az, sesy aN; pfocessing times Pys Pys cees Py’ and due dates dl’ d2, ....dN.

'The following Theorem provides a way of finding equivalent problems to a given

CWCT-Problem.

THEOREM 2: The (a di)—problem is equivalent to the (ai+qpi’ pi, di)-

i’ Pi)
problem where q is any known constant.

Proof: Let p[i] denote the job in position i. Then C[i] can be expressed as
i

Syt Pryg
§=1

The objective function for the (ai + Pg» Py» di)-problem can then be written

as:



. N
V= Zl(ai-%-qpi)c:l
i=1

N N

Eaici + q ZpiCi
i=1 i=1

N

objective function for the (ai’ Py» di)—problem + q ):pici
: i=1

Note that N

N N 1

LR S SO LR
i=1 i=1 j=1

‘N i
=ql Zpipj
i=1 j=1

= constant.
Thus, the objective function value for the (ai, Pys di)—problem differs from
that for the (ai + P, pi, di)-problem only by a constant. This completes
the proof.
In. the next section, using the results in theorems 1 and 2, we identify
instances of the CWCT-problem where the Smith-heuristic is guaranteed to be

globally optimal.

4. SOME EASY PROBLEMS

To make the presentation easier, we assume that the weight assigned to a
job is a function of it's processing time; that is, g = f(pi), i=1,2,...,N.
This assumption implies that a = aj when p 4 =P 5 The results in this

section can be easily extended to the situation when this assumption does not

hold.



With this assumption, the result in Theorem 1 can be restated as follows:

the ‘CWCT-Problem with the weight a8 = £(p) a non-increasing function of p and

f(pi) >0 for i=1,‘2,..., N is an easy problem. Using the result in Theorem 2

we can state that any (f(pi), Py di)-problem for which there exists a q such

that £(p) + qp is a non-increasing function of p and f(pi) + Py >0, for

i=1, 2,...,N, is also an easy problem; the following result gives a necessary

and sufficient condition for the existence of such a q.

THEOREM 3: Let the jobs be numbered such that p < P, ASTETEA Py* Congider

a (f(pi), pi, di)-problem. An equivalent (f(pi) - qpi, pi, di)-problem with

f(pi) - qpy >0 for i=1, 2,..., N can be found if and only if
f(PN)/pN _<_ f(pi)/pi for i=1, 2,..., N

f(p,,,) - £(p,, )
and £(p) /oy > i1 14 eor i1, 2,..., N-L.

Py TPy

Proof: Let q = f(pN)/pN. From (1) we have
q < f.(pi)/p:L for 1=1, 2,...,N

or f(pi) - qpizo fOI 1'1, 2’.-., N.
From (2), we have

g > EPup) ECR)D o521, 2,00, N

Pivl ~ Py

or: f(pi) - qpiz_ f(pi+l) - APy for i=1, 2,..., N-1.

Thus, these conditions are sufficient. We now show that these conditions
are necessary also.

The requirement that f(pi) - qp, > 0 for i=1, 2,...,N implies

i

q< f(pi)/pi for i=1, 2,...,N

(1)

(2)

3)



The requirement that £(p) - qp be a non-increasing function of p implies

f(pi) - ap, Z.f(Pi+1) - Py for i=1, 2,...,N-1

f(pi+1) - f(pi)
or q 2> (4)
Piy1 TPy

From (3) and (4), we have

f(pi+1) - f(pi)

f(pi)/pi.z for i=1, 2,..., N-1 \
Pyl TPy
or £(py) /Py < £(p,)/p; for 1=1, 2,...,N.

Thus, q < f(pN)/pN. From (4), we have

f(p,.,) - £(p,)
f(pN)/pN.Z 141 1 for i=1, 2,...,N-1

Piv1 =Py

This completes the proof.

The following Corollary gives a simple procedure to determine if the given

(f(pi), Py di)-problem is an easy problem.

Corollary: Consider a (f(pi). Py» di)-problem. An equivalent
(f(pi) =GPy Py» di)—problem with f£(p) - qp a non-increasing function of p
and f(pi) - qpi.i 0 for i=1, 2,...,N can be found, if it exists, by using

q=£ )P .



The results in Theorems 1 and 3 imply that the following three problems

are easy problems.

Easy Problem 1: The (f(pi), P> di)-problem with f(p) a non-increasing function

of p and f(Pi).Z 0 for i=1, 2,...,N is an easy problem.

£(p)

P
Figure 1: Easy Problem 1

Easy Problem 2: The (f(pi), pi, di)-problem with f£(p) an increasing convex

function of p is an easy problem if the job with the largest processing time

has the largest p/f(p)-ratio.

£(p)

max

Figure 2: Easy Problem 2

Easy Problem 3: The (£(p,), p,» d,)-problem with £(p) an increasing concave
i i° 1

function of p is an easy problem if Ap/Af(p) for the smallest two jobs is

greater than or equal to the p/f(p)-ratio for the largest job.
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P Pmax

It should be noted that Easy Problems 1, 2, and 3 can be solved optimally

using the Smith-heuristic.

5. WORST-CASE-ANALYSIS

We first give an example of a 3-job problem where the maximum fractional
increase in the objective function value for the Smith-heuristic (compared to
the optimal solution) can be made arbitrarily large. The data for this example

is given below. In this example x is a control variable with value > 1.7

(explained later).

Job 1 2 3
. . 2
Processing Time | 6x X 4
2 2 2
Due Date X +6x+4 X~ + 6x X +6x+4
Weight 5% 1 4

The sequence found by the Smith-heuristic is 3-2-1 with the objective

function value equal to S:

S=5x +31 x> 420 x + 20

The optimal sequence is 1-2-3 with the objective function value equal to V:
2
V=235x% +30x+ 16

we have V < S for x > 1.7.
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Fractional Increase

5x - 4 - 10/x + 4/x°

35 + 30/x + 16/x>

Clearly, the fractional increase can be made arbitrarily large by increasing
the control parameter x.
If we add Job 4 in the above example with processing time = Pys weight = v,

and the due date d4 = d3 + P, = x2 +6x + 4 + Py> then the fraction increase is

i 5x - 4 - 10/x + 4/x°
35 + 30/x + 16/x2 + (x2 + 6x + 4+ p4)w4/x2

which can be made arbitrarily large by increasing x for any finite P,” and W~
values. It is now easy to see that if we add (N-3) jobs, N > 4, in the above
example such that processing times and weights for these jobs are finite and
d

= di +p; for i = 3,4,...,N, then the fractional increase for the Smith-

i+l +1
heuristi- can be made arbitrarily large by increasing x. This proves that the
worst-case-performance of the Smith-heuristic can be made arbitrarily bad for

problems of any size.

6. SUMMARY

In_this paper, we analyzed the Smith-heuristic for the single-machine
scheduling problem where the objective is to minimize the total weighted
completion subject to no tardiness. Several problems were identified which can
be solved optimally by using the Smith-heuristic. It was established that the
fractional increase in the objective function value for the Smith-heuristic
compared to the optimal solution can be made arbitrarily large in the worst

case for problems of any size.
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