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ABSTRACT

Gelfand et al. (1992) consider the Bayesian analysis of constrained pa-
rameter and truncated data problems within a Gibbs sampling framework. In
this paper we consider the truncated data problem and concentrate on sam-
pling truncated Poisson and multivariate normal densities within a Gibbs
sampler. The proposed method bypasses the need for rejection sampling
and/or algorithms such as the Metropolis-Hastings and sampling-resampling.
In the truncated multivariate normal case we introduce a Gibbs sampler in
which all the conditional distributions can be sampled via uniform variates.
whereas the method of Robert (1995), which also runs on a Gibbs sampler,
has conditional distributions requiring rejection algorithms to obtain random
variates.
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1. Introduction

Let f be a continuous density function defined on the real line. The solu-
tion of generating a random variate X from f. starting with the assumption
that it is possible to sample uniform random variables from the interval (0. 1)
to provide an iid sequence of such variables. was developed in Damien and
Walker (1996 a). To motivate their central result stated as a Theorem later.
let f(x) x exp(—=e3)f(a < < b). where 3 >t < a<b< xand
{ rvepresents the indicator function: write such a «. ity as £(.3.a.b). Let
o) x (1 = 2)*'. where 3> 0 and 0 < a < b < I: write such a density
as B(3.a.b). Finally. let U (a.b) denote the uniform distribution on («. ). It
is obvious that both £(3,a.b) and B(.3.a.b) can be sampled via the inverse
transform method. Now, the basic idea is to introduce a latent variable'}".
construct the joint density of }" and X with marginal density for X given
by f. and to use the Gibbs sampler (Smith and Roberts, 1993) to generate
random variates from f. In particular, Damien and Walker (1996 a) show
that all the conditional distributions in such a Gibbs sampler will be one of
the three distributions. ['{a, b), £(3,a,b) or B{J, a,b). To this end they prove:

Theorem (Damien and Walker 1996 a).

If L
f(x) x [T o),
(=1

where the g, are nonnegative invertible functions (not necessarily) densities:
that is. if g;(z) > y then it is possible to obtain the set 4;(y) = {z : qi(z) >
y}. then it is possible to implement a Gibbs sampler for generating random
variates from f in which all the full conditionals are uniform distributions.

Damien and Walker (1996 a) exemplify the use of this Theorem by sam-
pling all univariate continuous densities that appear in Johnson and Kotz.
Also they illustrate the method for several Bayesian nonconjugate models and
nonparametric models. Damien and Walker (1996 b), Walker and Damien
(1996 a b) apply the above Theorem to provide a full Bayesian analysis of cir-
cular data. neutral to the right processes, and mixtures of Dirichlet processes.
respectively.
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Since an indicator function satisfies the conditions of a ¢; it is no more
difficult to sample a truncated or constrained random variate using the ap-
proach of Dainien and Walker than in the nontruncated or unconstrined
case. Therefore. if the sampling from f. or a truncated version of f. is re-
uired within the context of a Gibhs sampler the Theorem provides a means
of doing this via the introduction of latent variables which has the effect of
extending the Gibbs loop (i.e. full conditionals) by the number of latent
variables introduced.

[n this paper. the Theorem is used to generate random variates from trun-
cated Poisson (Section II) and multivariate normal densities {Section III). A
brief discussion in Section IV concludes the paper.

II. Truncated Poisson density

We consider the random variate generation of a left truncated Poisson
variable required within the context of a Gibbs sampler which is running’
over a sequence of full conditionals. one of which turns out to be a truncated
Poisson, for example, in a truncated data problem involving a Poisson model
(Gelfand et al.. 1992). Devroye (pg. 489) identifies evaluating factorials as
a problem with the sampling of a Poisson variate. Qur approach by-passes
the need to evaluate factorials.

To introduce our approach. let X be a Poisson random variable with
fox M/e!-I(x € Q) where f, = P(X =z). A > 0.and Q = {0.1.2,...}.
Following the Theorem we introduce two latent variables Y and Z such that
the joint density with X is given by

fxvaz(z,y,z) x 1 (y <Az < .r!"‘) )

The resulting full conditionals are given by

Y|(X =z) ~ U (0, A7)
Z|(X =1) ~ U (0,21

XIV=y.Z=:) ~U({n(y)-..m(y.2)}).

where, if A > 1 then n(y) is the smallest integer greater than logy/log A
fy>1,andn(y) =0ify <1,elseif A < 1thenn(y) =0 IfA>1
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then m(y. =) is the largest integer m(z) such that m(=)! < Lz elseif A < |
then m(y. z) = min{m(z). m(y)}. where m(y) is the largest integer less than
[logy/log A|. Note we can take = = 7/2! where 7 ~ ( (0. 1) leading to

m(z) = int {T7' (r~'I(z + 1) = 1}.

where [ denotes the gamma function. Perhaps a less computational approach
to obtaining m(z) is that m(z) is the largest integer for which

m(z)

Y loghk < —log .
k=r+1
and so there is no need for us to evaluate a factorial.
Suppose then we need to sample from f, x A/l Iz € D) where
D = {a.a+1...}. The algorithm is now given by the Gibbs sampler with
full conditionals

Y{(X =ur) ~ U (0.M7)
Z|(X = x) ~ T (0. 2171)
XY =y.Z2=z) ~U({max{e,n(y)},..., m(y, )} .

and so is essentially no more difficult than the non-truncated case.

IIL. Truncated multivariate normal density

[n this Section we describe a method for sampling truncated multivariate
normal variables using a Gibbs sampler. To introduce our ideas we consider
the standard univariate normal distribution, Let X ~ N1(0.1), that is,

fxle) x exp (—2/2).
Introduce the latent variable ¥ which has joint density with X given by
fX,Y(m’ y) x ](O‘exp(—x2/2))(y)'
We then have the following full conditional densities:

IS 2~ U0 epl-a/2)

X{(Y=y)~ U (—\/—210g v, \,/-—'Zlogy) .
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since we are only going to be interested in the .\ samples we can define
¥ = 7exp(—XA?2/2) where r ~ ['(0.1) and therefore we can construct the
sequence {.\';} ~n

NNy =a.m)~ U (—\/.1'2 - 2log 7. \ﬂl —2log rn) .

where the 7, are iid {(0.1) and also independent of the X,. Obviously. as
n — > then X, —; .V (0.1).

[mplementing this idea for a truncated standard normal variable is no
more complicated. Suppose we wish to sample from the density given by

fy(x) x exp (_12/2) I(r € (a.b)).

Our required algorithm is now easily seen to be given by the sequence

Xon|(Xo =2,m) ~ U (max{a. —y/ 12 —2log 7, }, min{b. /2% — 2log rn}> .

Robert (1993) proposes a rejection based algorithm for sampling a truncated
univariate normal distribution. We anticipate that the vast majority of cases
involving sampling truncated normal distributions would arise in the context
of a Gibbs sampler. so our algorithm is effectively extending each Gibbs loop
by only one more full conditional. which happens to be a uniform distribution.

Robert (1995) then proposes a Gibbs sampler for sampling from a trun-
cated multivariate normal distribution. We can greatly simplify his algorithm
using our latent variable idea. Therefore, consider

Sty (B Tp) o exp (=1/ 2z = 0) 7@ = 1)) Tz € A).

where we assume, as does Robert, that the bounds for r; given z_; are
available and given by, say, (a;,b;). Therefore

fxax_(zilz-,) x exp (—1/2(1.- - Vi)Q/U?) I(z; € (ai. i),

for i = 1..... p. are the full conditionals. and v; = p; — ¥ ;4(z; — pt:)esj/esi and
oi = l/e;i. where €, is the ijth element of ©~'. Robert uses his rejection
algorithm for sampling these truncated univariate normal densities. However,
since we are already in a Gibbs sampler it seems appropriate to implement



the latent variable idea. We do not need to introduce p latent variables. one
is sufficient.
We define the joint density of (Xj......X,.}) by

i Xpx (T y) xcexp(—y/2)1 (y > (=) S e = ;z)) I{xe ).
The full conditional distributions are given by
Fxaxevloleaiy) x Tx € Ay

where

A= ((I,'. b,‘) N B;,

and B, is the set {x,|e_, : (z = pt)'S~}(z - ¢) < y} and so the bounds for, B,
are obtained by solving a quadratic equation. The full conditional for (}¥].X')
is clearly a truncated exponential distribution which can be sampled using
the cdf inversion technique.

Therefore we have a Gibbs sampler which runs on p + 1 full conditionals
which can all be sampled directly using uniform variates replacing the p full
conditionals of Robert which are sampled via rejection algorithms.

FErample Truncated V(0. Z).
We consider the example presented by Robert (1995) which involves sam-
pling a truncated .N;(0.Z) distribution, where

v=(1 7
p 1

ot ( (=)t (1= )
—o(l=p")7" (1=p*)7"

and A is the ball centered on (. v2) with radius r. Therefore

SO
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Figure 1: Plot of 10.000 samples from truncated .V,(0.X) distribution ob-
tained from Gibbs sampler

for i(j) = 1(2).2(1). Note that y > z? since (¥|X;, X;) is an exponential
distribution restricted to the set ([£? — 2pz\z2 + 23] /(1 — p?),oc) and ri(1 -
p?) < 2 = 2pryzy + 23, for i = 1,2.

We performed the Gibbs sampler for the truncated bivariate normal dis-
tribution given and took p = 0.9. (v1,72) = (1/2.1/2), and r = 1. We took
10.000 samples with computing time of 5 seconds and a scatter plot of the
samples appears in Figure 1.

IV. Extensions and conclusions

In this paper we have proposed and illustrated a method for generating
random variates from truncated Poisson and multivariate normal densities.
The main advantage of the method is that it obviates the difficulties as-
sociated with alternative methods such as rejection algorithms (Devrove.
1986). Metropolis-Hastings (Tierney. 1994; Chib and Greenberg, 1996) and
sampling-resampling (Smith and Gelfand, 1992). These algorithms require
identifying dominating densities, calculating supremums, and acceptance
rates: these may be difficult to obtain in many contexts. Required within
the context of a Gibbs sampler our algorithms are particularly appropriate
since the method leads to the addition of one or two uniform full conditionals



into the original Gibbs loop.

We restricted ourselves to the Poisson density since simulating from other
discrete densities. using our method. is straightforward. Likewise. it is no
more difficult to simulate other multivariate densities such as the Student-t.
using our approach. As examples, we give here the full conditionals to sam-
ple the geometric and negative binomial distributions.

1. Geometric. Here we have f; x (1 —p)* where p € (0.1) and @ € {0.1....}.
The joint density of interest is given by

feyley)x Iy £(1-p)).
leading to the full conditionals

frix(yle) = C(0,(1 = p)7).

and

fxw(zly) = C({0.L...n(y)}).
where n(y) = int[log y/ log(1 — p}].

2. Negative binomial. Here we have f; x (z — 1)!(1 — p)*/(x — k)! for
p €(0.1) and x € {k,k+ 1....}. The joint density of interest is given by

fyvzw(zoy.sow)x Ty < (e =1L z(z = k) < Lw < (1=p)),
leading to the full conditonals
fwix(wlz) =C(0.(1-p)%),
frix(ylz) =T (0,(z = 1)1),
fax(zlz)=U (0, (z - k)f'l) ;

and

Frwyz(zlw,y, =) = U ({n(y), ... min{n(w),n(z)}}).
where n(y) is the smallest integer such that (n(y)!—1) > y, n(z) is the largest
integer > k such that (n(z) — k)! < 1/z, and n(w) = int(logw/ log(1l — p)].
As with the Poisson case we can circumvent the need to evaluate factorials.
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