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ABSTRACT

A simple and general algorithm for generating random vectors from the unit hypersphere is
developed. The algorithm is shown to be efficient when compared to methods of rejection
from a circumscribing hypercube and more viable when the dimension is large. It is seen
that such random vectors can be obtained purely via simple transformations of uniform
random variables, or by combining such transformations with Gibbs sampling schemes
obtained by appropriate introduction of latent variables.
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I. Introduction

While there are at least a few efficient ways (Devroye, 1986) to generate random
vectors uniformly on a unit hypersphere of dimension d, Cy, apparently, the only known
“efficient” way to generate random vectors.uniformly in Cy is via rejection from (-1, 1)<.
However, this method is terribly inefficient for d larger than, say 5; for example, the accep-
tance rate is less than 0.0025 for d = 10. Additionally, methods such as the Metropolis-
Hastings algorithm are difficult to implement in this situation as well; for an excellent
discussion of the Metropolis-Hastings algorithm and related methods, see, for example,
Chib and Greenberg, 1995. Here we describe a fairly efficient andconvenient method, espe-
cially for sampling large batches, of generating random vectors from the unit hypersphere.

The basic idea is that a random vector in hyperspherical coordinates can be simulated
relatively easily from d univariate probability densities, and this random vector can be
transformed into a random vector in rectangular coordinates that is uniformly distributed
in Cd.

It may be of interest to note that uniformity is not lost under a linear transformation
(Devroye, 1986), so, in particular, it is possible to transform a sample from Cy into a
sample from any hyperellipsoid.

In Section II we elaborate on the efficiency of the rejection method and re-derive the
formula for the volume of a hypersphere. In Section III we utilize some of the results of
Section II to develop the theory behind the algorithm. Illustrative analyses are given in
Section IV, followed by conclusions in Section V.

II. Sampling via Rejection Algorithms
Problems with Rejection Algorithms

If x is uniformly distributed in the hypercube (—1,1)%, and the £% norm, ||x||, of x
is less than 1, then X is distributed uniformly in the unit hypersphere, C4. Furthermore,
if we denote volume of Cy by V(Cj), then the acceptance rate, a(d), of the corresponding
rejection method is given by (Devroye, 1986)

_V(Cy) nd/?
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For example, a(2) =~ 0.785, a(3) =~ 0.524, a(4) =~ 0.308, a(5) ~ 0.164, a(10) ~ 0.0025,
and a(20) ~ 2.46 x 1078. Alternatively, the mean number of variates, n(d), required to
generate one random vector in Cy is given by

_d d2T(§+1)
a(d w¥z

For example, on average, about 4015 uniform variates are required to accept one random
vector in Chp.

The computational efficiency of this algorithm may be enhanced by using the Cauchy-
Schwarz inequality, i.e, ||X|| < Y |Xj|, in a squeezing step (e.g., Devroye, 1986) to avoid

2



some of the more computationally expensive multiplications in favor of addition and sign
changes. Unfortunately, the acceptance rate remains unchanged so that this savings is
proportionately small for large d.

Since the computationally expensive part of this algorithm lies in the rejection step,
minimizing the number of rejection steps is critical for large d. An obvious way to ac-
complish this is to accept from large batches of vectors. Ideally, one would want to batch
generate at least m/a(d) vectors from (—1,1)%, where m is the number of variates from
Cy that are still needed after the previous rejection step to reach the desired sample size.
For example, if a sample size of 5000 was desired from Cj, then, on average, 5000/a(d)
random vectors would be required to retain the desired number after one rejection. If, after
one rejection, 100 vectors are still needed, on average, this would require the generation
of another 100/a(d) random vectors to achieve this after the next rejection. Clearly, a
limitation of this approach would be the availibility of computing memory.

That being said, rejection methods are very inefficient and become unviable for large
d.

A Derivation of the Volume of the Unit Hypersphere

The volume of a d dimensional hypersphere can be obtained via repeated application
of the Dirichlet integrals (see pages 132-133, Jeffreys, 1985). However, in order to obtain
intermediate results for use in deriving the results of the next section, we re-derive the
formula for V(Cjy) as follows.

Suppose x € R? such that ||x|| = 1. Define the transformation [r,8] — x, where
r€R,0¢€ R by

d-1

z1 =rcos(f;) H sin(6;)
j=2 /
d-1

T =rsin(6;) H sin(6;)
j=2
d-1

z3 =rcos(fs) H sin(6;)

i=3

d—1
z; =1 c08(0;-1) H sin(6;)
j=t

T4 =1 c08(f4-1).

9; maybe be thought of as the angle that x makes with the positive (i + 1)st coordinate
axis. Note that this transformation is regular on the set for which r > 1, 0 < §; < 27, and
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0 < 6; <m, > 1. The absolute value of the Jacobian of this transformation is

-1 d-1
rd=1 H sin* ™ (6;) dr H do;.
1=2

=2

Therefore, the volume inside the d-dimensional unit hypersphere, Cy, can be written as

T w p2m pl d-1 ) d-1
V(Cy) = / / / / rd_IHsin’_l(Qi) dr Hd@i.
0 0 Jo Jo i=2 i=1

Integrating (see, e.g., Selby, 1973),

&’ d-1 .p o d-1 /2
V(Cq) = i H/o sin*~*(6;) df; = — H [2 /0 sin*~(6;) d0,]
1=2 1=2
d-1
2

III. Sampling via Transformations and the Gibbs Sampler

In this section, we prove that there exist d univariate densities such that, under the
transformation defined in the previous section, a random vector of independent variables
from these densities becomes a random vector uniformly distributed in Cy. We then
proceed to provide viable methods by which one can simulate from these d univariate
densities.

Theorem: Let R, O, ...,04 be independently distributed such that they have the following
density functions:

fr(r) =dri 1 100 < r < 1)
fou(01) = 5= - 10 < b < 21)
fo,(02) = %sin(ﬂz) -I1(0 < 6y < ),

sin'~1(6;)

fo:(0:) = TS89 a6 10 < 8; < 7).

sin?~2 (04-1)

f07r sind_2 (9,1_1) dﬂd_l

f@d_l(gd—l) = . I(O < 9d..1 < 7T).
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Under the transformation defined in the previous section, X = (X1, ..., X4) is distributed
uniformly in Cy.

Proof:
Note that the inverse transformation is defined by

d
r=\ i o =

91 ——-tan_l(mz/xl)
fy =cos™! (zg/ z? + 2 +z§) = cos ™ }(z3/||x3]|)

N

0 =cos™ (s /£, 02) = o5 i/

04_1 =cos™? (:vd/ Zz 13:12) = cos ™ (zq/||x|]).

This is obvious if one thinks of z; as the projection of x onto the positive ith axis, whence
cos(0i-1) = zi/|[x||.

Because the original transformation is regular on the support under consideration,
from the previous section, we see that the absolute value of the Jacobian of the inverse

transformation is just
1

r(X)4-1 [T, sin™ (6:(X))

Therefore the joint density function of X is

1

fx) = — - d|[x]|*1 10 < [[x]] < 1)
1[4 H?=3(|I ill/1x]1):~2
1 (1l Il 1 i
—I(0<t ) < 2m) I(0 < —) < 7),
T ( an - Hfo sin®~ 10)(10 (0 < cos (||x|) )
d
= (0< [Ix|| < 1)
27rH fo 6;)
so that, by the previous section,
1
X)=——I(0<||x|| < 1),
FX) = 76 KO < Il < )

whence X is uniformly distributed in Cy. 4

Clearly, ©; ~ U(0,2r), i.e, ©; is uniformly distributed on (0,27). Note that one
can readily obtain and invert the cdf of R, whence it follows that, if U ~ U(0,1), then

/
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Ui~ R. Similarly, if U ~ U(0,1), then cos™!(1 — 2U) ~ ©,. Thus, for d < 3 a uniform
random vector in Cy can be obtained directly from d univariate uniform random variables
by means of simple transformations.

Unfortunately, for n > 2, it is not possible to invert the distribution function when
f(0) o sin™(8) - I(0 < § < ). If the desired sample size is small, a viable option is to gen-
erate such random variables by, say, rejection from suitable envelope functions (Devroye,
1986), e.g., truncated normals or betas on (0, 7) with mean 7/2 and suitable variance.

Since the sin™(6) is an invertible function for all n, it is possible to introduce a latent
variable (Damien and Walker, 1996) Y such that the conditional densities of the joint
density of Y and © are uniform and the marginal density of © is proportional to sin™ ().
Therefore, if the desired sample size merits the cost of convergence, we may sample quite
efficiently and conveniently from densities of this form via Gibbs sampling (Smith and
Roberts, 1993) as follows:

Given f(6) o< sin™(f) - I(0 < 6 < ), n > 2, introduce the latent variable ¥ such the
joint density of © and Y is given by

f(0,y) x I(0 <y <sin™(#))-I(0 < 6 < ).

Note that the marginal density of 8 is the target density, and conditional densities, given
by
[Y|© =6]~U(0 <y <sin™(f))

[B]Y =] ~ U(sin™}(y*/") < 8 < 7w ~sin™"(y*/")),

are just uniform densities.

IV. Illustrative Analyses

The algorithm developed in the previous section and a straight rejection algorithm
were implemented in SAS/IML and run for various d on an HP 9000/735 workstation. A
final sample size of 5000 random vectors (5000d random variates) was generated in each
case.

In the case of the rejection method, the sample matrix was initialized, without loss
of generality, as a 5000 X d matrix of uniform variates from (—1,1), with one for one
replacement upon rejection. That is, if k£ of the 5000 vectors were rejected, then & - d
more variates were generated from (—1,1), and so on until all 5000 vectors satisfied the
acceptance criterion. ‘

In the case of the transformations/Gibbs algorithm, 5000 random variates were sim-
ulated independently for each component density. Wherever the Gibbs sampler was used,
after experimenting with various simulations, convergence diagnostics not reported here
showed a burn-in of 50 would suffice. Note that for d = 2 and d = 3 this method is
one for one, hence 5000d uniform random variates were required. If d > 3, it follows
that 15,000 + 10, 100d uniform random variates were required, since each iteration of the
Gibbs sampler requires two random variates. (Thus, for large d this algorithm requires
approximately 2d random uniform variates for each desired random vector. These values
were tabulated in Table 1 for various values of d, and contrasted with the total expected
number (Section II) of variates required to obtain an equivalent sample via the rejection
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method. The experimentally observed run times were also obtained, whenever feasible,

and estimated when not.

Table 1: Comparison of run times and number of variates involved
for the rejection and transformations/Gibbs methods for various

values of d.

Straight Rejection Transformations/Gibbs

number of ave. number number of
variates run time of variates run time variates
d{ desired (hh:mm:ss.ss) required | (hh:mm:ss.ss) | required
2| 1.0x 10? 0.53 ] 1.27 x 10%, 0.21]1.00 x 10*
3] 1.5x10* 1.33 ] 2.86 x 10* 0.42 | 1.50 x 10*
4] 2.0 x 10 2.98 | 6.58 x 10* 1.70 | 2.51 x 10*
5| 2.5x 10? 9.02 | 1.52 x 10° 3.04 | 3.53 x 10*
6] 3.0x10* 20.55 | 3.72 x 10° 5.62 | 4.53 x 10*
7| 3.5x10* 44.21 | 9.48 x 10° 6.92 | 5.54 x 10*
8| 4.0x 10* 2:07.57 | 2.52 x 10° 8.37 | 6.55 x 10*
9| 4.5x10? 6:03.66 | 6.98 x 10° 9.86 | 7.56 x 10*
10| 5.0 x 104 21:22.35 | 2.01 x 107 11.46 | 8.57 x 10*

15| 7.5x 10 114 hrs * | 6.44 x 10° 19.23 | 1.36 x 10° .
20 | 1.0 x 10° 3000 days * | 4.06 x 10! 27.23 | 1.87 x 10°
30] 1.5x10°| 1.5 x 107 yrs * [ 7.35 x 1018 44.7212.88 x 10°
50| 2.5x 10° | 3.3 x 10%! yrs * | 1.63 x 1033 1:18.49 | 4.90 x 10*
100 | 5.0 x 10° | 5.4 x 10% yrs * [ 2.67 x 107 2:53.45 | 9.95 x 10°

* Linearly extrapolated from actual run times as a function of expected number of required variates.

V. Conclusions

In this paper a simple algorithm to generate random variates from a hypersphere was
developed. The algorithm was implemented for various d, the dimension of the hyper-
sphere. It was shown that the algorithm is more efficient than rejection sampling for any
d, especially so for large d, in which case rejection sampling becomes impractical.
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