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A BAYESIAN BIVARIATE FAILURE TIME
REGRESSION MODEL

SUMMARY

In this paper. we model bivariate failure time data under the as-
sumption that the two random quantities corresponding to each of
the failure times are dependent. \We extend the analysis from a bi-
variate Gumbel model by regressing the log marginal hazard rate
against context-motivated covariates. [llustrative analyses using
data from electrical treeing and cancer relapse times are exempli-
fied using Markov Chain Monte Carlo methods.

Keywords: Gumbel Distribution, Gibbs Sampling, Correlation. Fail-
ure Time, Hazard Rate, Covariates.



1 INTRODUCTION

We use the term failure time to refer both to reliability data arising in en-
gineering studies and survival data arising in medical or clinical trials. In
engineering studies. reliability is defined as the probability that the system
has not failed at time ¢. Likewise. in clinical trials. survival is defined as the
probability that a patient has not died. or contracted the disease under inves-
tigation at time ¢. Most work in this area has been concerned with the case of
one observed failure time while in the case of two observed failure times. most
authors. using a frequentist approach, have considered such failure times to
be independent: see. for example. Mann and Grubbs!: Guttman and Sinha®:
Mivamura®,

Tawn* considers bivariate models and estimation by developing an asvmp-
totic estimate for the dependence function. Tawn® extends the bivariate struc-
ture to multivariate models using extreme value distributions. Oakes® -also
considers a non-Bayesian analyvsis of bivariate models that are induced by
frailties. The Gumbel model is studied in that paper. Most recently. Oakes
and Manatunga™ obtain an asvmptotic estimate for the Fisher information for
a bivariate extreme value distribution. Thus, there appears to be several use-
ful papers in recent literature that seek to provide asymptotic estimates for
the parameters of bivariate failure time distributions. Recent Bavesian work
in this area is, however. somewhat sparse, the notable exception being Draper
et al.b,

Our approach extends the work of Draper et al.®, who provide a Bavesian
analysis of system reliability when two components are dependent, in two
respects. Firstly, we bypass the need for numerical integration of awkard pos-
terior forms via Monte Carlo methods that are straightforward to implement.
In addition to ease in implementation, these methods provide a full Bayvesian
solution to the problem that Draper et al.’s method does not accomplish. Sec-
ondly. we extend the bivariate Gumbel model by modelling the logarithm of
the marginal hazard rates through a regression set-up. A full Bayesian analysis
for the latter model is provided and exemplified using bladder cancer data.



2 THE BIVARIATE GUMBEL MODEL

Suppose two components have failure times (7;.T,) that are distributed with
density function |

f(h tg) = )\lAg[el'[)(—/\[tl - /\gfz)][l + (Yh](fl)hg(tg)]. (1)

where Aj. Ao 1.t > 0.—1 < a < 1. and A; is defined by
hy(t)) = 2exp(=Ajt;) - 1. j = 1.2.
This is the Gumbel bivariate exponential distribution (Gumbel®). The marginals
of this joint density are
fi(t;) = Ajezp(=At,).

with E(T;) = /\;1 and Var(Tj) :'/\]-"2. The reliability of a system using the
model in (1) is given by

R(t)=P(Ty > t, T > t) = exp(-M)[L +afe™ = 1}{e™ - 1}].  (2)
with A = Ay + A,

Moeschberger and Klein'® have argued, from a frequentist point of view.
that the consequences of assuming a = 0 (independence) in the above set-up
could be very misleading. Draper et al. using a Bayesian approach, do not
assume that o = 0. but, they are only able to provide estimates of the posterior

mean of R(t) by numerically integrating out appropriate random variables after
a scaling transformation of the Bayesian model described below.

3 THE BAYESIAN MODEL

Let ¢, = (t1,.t2)'. i = 1...., n be n independent observations on (T}, T5) whose
density is given by (1), so that denoting (¢,....t,) by T, the likelihood function
is given by

f(Tl/\l,Ag,a) X A'l’/\gerp( /\ S] + /\252 H 1+ ah1 th hg(tg,)] (3)

with S; = ¥1, i, j = 1,2. Denoting the prior joint distribution for (A, Ao, @)
by [A1. Az2. ], the posterior joint distribution of (Ay, Ag, a) is given, by Bayes'
Theorem. as

(A1 Ao, | T) o f(T)A1, A, @)[Ar, Ag, 0, (4)
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where the notation [.] denotes the probability density of *.". In this paper.
following Draper et al... we will only consider priors of the form

2 .
Ade]x (1-a)"H1+e)* ' ] )\?’_lexp(—/\qu). (3)
J=1
Equation (3) implies that (1 — @)/2 has a Beta (r,.rs) distribution. A, has
a Gamma (p;.q;) distribution, and that the three parameters are mutually
independent. Under certain conditions. (5) can be shown to reduce to the
non-informative prior

[Ar. Az ] x AN ALA >0, -1<a <1, (6)

Draper et al. use numerical integration methods after suitably transforming
(4) to obtain the exact posterior distribution of the three parameters.

4 BIVARIATE GUMBEL EXPONENTIAL REGRESSION

We note that our choice of the bivariate gumbel distribution in this paper
is purely to illustrate the Bayesian method when one observes two random
quantities (failure times) that may be correlated. Other bivariate models.
such as the Pareto. exist and may be more appropriate in a given context.

Often it is the case that failure times in clinical trials are related to co-
variates such as gender. age etc. We include a regression on covariates by
extending the model in (3) to

f(tli. tQiI.'L', )\? /\(2)‘ «, 31. 32) = /\1. /\g[exp(—/\ltl - /\Qtz)][l + th(tl, Al)hg(f'g, /\2)]

log(A1) = log /\(1) + 81z + .+ BimTmi,
log(A2) = logAd+ Boy; + ... + BomTmiy

where r = (x);,7,) i = 1,...m is the vector of m observations on each co-
variate for each of the two failure times, ¢, and t,. We complete the model
by specifying a prior distribution on the 3 vectors taking these to have a
multivariate normal distribution.

3~ N(b.B). j=1.2.

We assume that 3 and (A, A;. ) are a prioriindependent. Note that any other
prior distribution on 3 is possible, and our choice of the normal distribution
is simply to exemplify the Bayvesian approach to the problem.

(7)



5 COMPUTATIONS

By a combination of Metropolis and independence chain steps we build a
Markov chain Monte Carlo scheme to estimate the Gumbel bivariate expo-
nential model. For a review of Markov chain Monte Carlo methods see. for
example. Smith and Roberts!!. Tierney'? or Gilks et al.'. The underlying
rationale of Markov chain Monte Carlo methods is to simulate a Markov chain
which is constructed to have the desired posterior as the limiting distribution.
Under conditions discussed in Tierney'? appropriate ergodic averages over the
simulated chain can then be used to estimate posterior expectations. marginal
posterior distributions, etc.

5.1 Estimating the Gumbel bivariate exponential model

We discuss first the Markov chain used for the estimation of the bivariate
exponential model in (3) with the prior given in (5). Starting with initial
values for the three parameters A, Ao,a we define a chain by the following
three steps.

First, draw a “candidate” )\, ~ Gamma(a.b) with a = p; + n and b =
q1 + 2_ t1;. Denote by g(\) the Gamma(a,b) p.d.f. Compute

TN pOu A T) g(A)\ _ Iy [1 + ahy(tii, A)ha(tar. M)
a1 h) = min (1’ p(M|A o, T) g(5\1)> IR+ ey (f, A )ha(tai, A2)]

With probability a set A, := A,. else leave the current value of A, unchanged.
This is an implementation of an independence chain step, using the Gamma
posterior of the marginal model in t;; as approximation of the full conditional
posterior. See Tierney!'? for more discussion.

Second. replace Ay by repeating the independence chain desrcibed above
for /\2.

Third. update o by implementing a Metropolis step: Generate & ~ N (o, 0,)

and evaluate N
p(al/\h A?a T))
p(a‘/\lv /\27 T) .

With probability a replace « by @. else keep the currently imputed value of o
see Section 6.3 for comments on choosing the arbitrary scale factor o,.

a(a. &) = min (1,



5.2 Extension to the Gumbel bivariate regression model

The Markov chain Monte Carlo scheme described for model (1) is easily modi-
fied to include the estimation of regression parameters in the Gumbel bivariate
regression model (7).

Starting with initial values for the paramter vector 8 = (M. AJ. . 31y ... 3o ).
we simulate a Markov chain defined by iteratively scanning over all parame-

ters. replacing each parameter by simulating a Metropolis step. Relabel the

parameter vector as 6 = (6y,....6,) (i.e. write 8, for A} etc.). Each Metropolis
step is given by: First draw a “candidate” §; ~ N(6;.0;) and compute
i p(éjw-m)
a(f,.6;) =min | 1, ————~ ] .
0,3) = min (150

where 6_; denotes the full parameter vector without #;. Second. with proba-
bility a replace 8; by éj, else keep the currently. imputed value of §,. The o,
are arbitrary scale factors. Section 6.3 suggests some default choices. Note
this is identical to the Metropolis step which was used in simulating the a
parameter in section 3.1.

6 EXAMPLES

6.1 Example 1: A Gumbel bivariate exponential

To illustrate the proposed Markov chain Monte Carlo scheme we estimated
the model with the electrical cable failure data from Lawless!*. The same
data set was used by Draper et al.3. The data concerns time to inception of a
microscopic defect in the material (t);) and the subsequent additional time to
eventual failure (¢y,). This phenomenon is commonly referred to as electrical
treeing in the engineering literature.

The posterior marginal distributions of the three parameters are plotted in
Figures 1 and 2. In addition. easily obtained forms of inference summaries us-
ing the Monte Carlo samples provide a complete description of the uncertainty
in the three parameters. It is interesting to observe that there is considerable
evidence from the data that a is non-zero, suggesting a strong dependence
between the two failure times. We note that the results from this simulation
are in close agreement with results obtained using exact numerical (quadra-
ture) methods by Draper et al.®. The key function of interest is the reliability



function given in (2). A full description of the uncertainty in the reliability
function at each observed time is easily obtained by simply evaluating (2) at
each of the simulated samples. As an illustration, a complete description of
the uncertainty in R(t) at times ¢ = 50. 100, 150 is provided in Figure 3.

We note. once again. that Draper et al. only provide an estimate of the
mean of R(t) at each point along the time axis.

6.2 Example 2: A Gumbel bivariate exponential regression model

Byar et al.'” report a study comparing placebo, pyridoxine and topical thiotepa
in preventing recurrence of Stage I bladder cancer. Stage I tumors tend to recur
in around 50% of the patients within two years after removal. Instillations of
thiotepa and regular ingestion of pyridoxine are believed to retard the growth
of tumors. or cure them altogether.

We consider patients with 2 or more recurrence times. For each of the
n = 28 patients we record the two relapse times ();.ty;, two indicators for
the assigned treatment (x;; = 1 for pyridoxine, zo; = 1 for thiotepa, rj; =
Iy, = 0 for placebo), and number (r3;) and size (zy;) of initial bladder cancer
occurences. Ve estimate the bivariate life time regression model (7) assuming
a noninformative prior (6) for (A;, A2, @), and taking

f(tl,,t2,|:z:l,/\?,/\p.a, ,31,_32) = Al./\g[exp(—/hm - /\2372)][1 +Qh1(l’1,/\1)hg(£2.)\2)].
log(A) = /\(1) + 31171 + Braxa + b 3Tsi + O %4,
log(Xe) = /\g + 39 1L1i + BaoT0; + BoaTai + 324%4;.

A strength of the Bayesian approach is to enable the statistician to factor in
context-dependent constraints. Thus, a priori, we believe, based on medical
knowledge, that the coefficients in the 3 vectors corresponding to the covari-
ates. number. and size of initial bladder cancer occurences are non-negative.
We factor this qualitative information by restricting the appropriate compo-
nents in the 3 vectors in the prior distribution to be non-negative.

Figure 4 shows the estimated marginal posterior distributions for A;, A,
and a. Since inference is based on simulated Monte Carlo samples, any desired
inference summaries can be provided. Like in the previous example, we observe
strong dependency between the two failure times as depicted in Panel (b) of
Figure 4. As an illustration, a complete posterior description for 3;, and 8;, in
the regression model is given in Figure 5. The reliability function in (2) in the
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context of these data is the cumulative survival based on the two recurrence
times. As an illustration. a plot of the survival function is provided in Figure
Ga.

Again, as an illustration. in Figures Ta and b. we plot the posterior marginal
distribution in the form of histograms for the coefficients 3,3 and 3, respec-
tively. Recall that these coefficients correspond to the effects of prevalance
(z3) and size (zy), respectively. of initial bladder occurence. Moreover. as
noted previously, the prior distribution incorporates the restriction that both
of these parameters are non-negative.

A remarkable feature of Monte Carlo based methods in Bayesian inference
is that questions of practical interest such as the following can be answered
straightforwardly: ~what is the posterior probability that a patient will have
first and second relapse times greater than 5 months if the patient is subjected
to thiotepa treatment and intial tumor size and prevalance are z3; = 1 and
x4, = 17" Using the simulated samples for each of the parameters, we simply
calculate, for each sample, the required probability from (2), thus obtaining a
complete description of the uncertainty for this prediction. This is reported in
Figure 6b.

6.3 Implementation and initialization

The Markov chain Monte Carlo scheme proposed in Section 5.2 implements a
Metropolis-within-Gibbs algorithm as proposed in Miiller'”. In the examples
reported in this paper we chose the scale factors g; by approximately estimat-
ing posterior standard deviations via Laplace integration first. For Example
2. we estimated a simplified univariate regression model in t; only, using the
approximate posterior standard deviations of A}, 3, ; for both, the scale factors
on A? and 3y as well as AJ and Jy;- Based on the restricted parameter space
for o we set o, = 0.5. The approximate posterior means from the Laplace
integration served as initial values to start the Markov chain Monte Carlo
simulations. We, arbitrarily. initialized o at o = 0.

Another issue to be resolved for practical implementation of the scheme is
how to decide termination of the simulation scheme. In the reported examples
we started by running 5000 iterations of the chain. Then we evaluated the
convergence diagnostic proposed by Geweke'’. In Example 1, the diagnostic
indicated that the chain had already practically converged. For Example 2,
the diagnostic indicated convergence after 15,000 iterations.



Both Markov chain Monte Carlo schemes were implemented as C programs
on a Digital workstation 3500 check. The 5000 iterations in Example 1 re-
quired 27 seconds CPU time. The 15,000 iterations in Example 2 took 23
minutes CPU time.

To plot posterior marginal distributions like in Figure 1 we used a “Rao-
Blackwellization” type estimate as proposed in Gelfand and Smith'®. For
example, let 8¢) denote the imputed parameter vector after ¢ iterations of the
Markov chain. To estimate p(\|T) for A; = 0.002 we evaluate p(,|AY). o). T)
for t = 100, 150, 200, ...,5000 and compute p(\,|T) = ‘—\17 Zp(/\ll/\gt), o T).
We only use every 50-th iteration for reasons of computational efficiency.

7 SOME EXTENSIONS

In this paper, we have considered modelling two failure times by allowing for
potential dependence in the random quantities corresponding to each failure
time. Several extensions are possible. First, other bivariate models, such
as the bivariate Pareto distribution, could be easily considered using a simi-
lar framework. Secondly, the implications of such models in competing risk
analysis needs investigation. Thirdly, hierarchical models and nonparametric
generalisations for the marginal hazard rate are possible. For example, one
could model the hyperparameters of the regression model as realisations of
a stochastic process; see, for example, West, Mueller & Escobar’®. Fourthly,
following Tawn®, the computational details for a multivariate extension from a
Bayesian perspective needs study. These and other extensions will be reported
elsewhere.
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Figure 1: Example 1. Marginal posterior distributions p(A;|z) and p(Ag]z).
First quartile, median, mean and third quartile are estimated by (Q, =
0.0018. Mdn = 0.0021,A; = 0.0021,Q3 = 0.0024) and (Q, = 0.019, Mdn =
0.023. X, = 0.023, Q3 = 0.026) respectively.
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Figure 2: Example 1. Marginal posterior p(ca|z) on the correlation parameter.
Estimated posterior quartiles and mean are Q, = 0.38, Mdn = 0.68,a = 0.58
and Qg = (.86.
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Figure 3: Example 1. The estimated reliability function R(t) = P(\X; >
t. Xy > t). The graph plots the posterior mean estimate for R(t) against
t. In addition to point estimates for R(t) the Bayesian modelling framework
provides a full description of the uncertainty about R(t) at any ¢. For some
selected values of ¢ the figure shows the full posterior distribution p(R(¢)|T).
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Figure 4: Example 2. Panel (a) shows the posterior marginal of A? (solid line)
and A} (dotted line). Panel (b) plots the posterior marginal of the correlation
parameter a.
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Figure 5: Example 2. Posterior marginal distributions for the regression pa-
rameters 3y, (solid line in panel (a)), 9, (dotted line in panel (a)) for first
relapse time and 3y, (solid line in panel (b)) and 8,5, (dotted line in panel (b))
for the second relapse time. The posterior distribution indicates a slightly
lower log hazard for the first relapse time under the thiotepa treatment. For
the second relapse time the two treatments are practically indistinguishable.
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Figure 6: Example 2. The estimated reliability function R(t) = P(T} >
t. T, > t) for a patient with covariates z = (0,1,1,1). In addition to point
estimates for R(t) the Bayesian modelling framework allows to put a posterior
predictive distribution on quantities like the probability that a patient has first
and second relapse time greater than 5 months when subjected to thiotepa
treatment and with initial size and number of bladder cancer occurences equal
r3 =1 and 74 = 4. Panel (b) shows the histogram of the predictive posterior
distribution for this probability.
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Figure 7: Example 2. Posterior marginal distributions p(33/T) (panel a).
and p(.314|T) (panel b) for the the effects of prevalance (z3) and size (zy) of
initial bladder cancer occurence. Here T = (¢y;.t5,2,,i = 1,....n) denotes
the full data vector. The proposed Markov chain Monte Carlo scheme allows
to include prior information on the parameters. In this example, we enforce a

priort that Ji3 and Jyy be non-negative.
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