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INTRODUCTION

The strongest U. S. earthquakes for which accelerograms have been ob-
tained to date are:

El Centro, California December 30, 193L
El Centro, Californis May 18, 1940
Olympia, Washington April 13, 1949
Taft, California July 21, 1952

The accelerograms of the three components of motion of each of these earth-
quakes have been reduced to punched card form to enable them to be used in
high-speed computers.
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THE ACCELEROGRAMS

The punched card accelerograms described herein are piecewise linear ap-
proximations of recorded accelerograms. A strong-motion accelerogram is es-
sentially a broken line diagram, especially during the strongest part of the
ground motion. The error in the piecewise linear approximation is probably
not large compared with the error in the accelerogram itself.

To obtain the piecewise linear functions, the time-acceleration coordi-
nates of the intersection points of successive line segments were put on punched
cards. The number of points required to describe the significant part (about
30 seconds) of an accelerogram ranged from 380 to 710. An arbitrary zero axis
was selected, and the coordinates were scaled from the record using an arbi-
trary scale of measurement. The resulting data were then processed by computer



to introduce appropriate scale factors for time and acceleration and to trans-
late the axis so that with zero initial conditions the terminal velocity would
be zero. It was believed at first that this process might yield acceptable ac-
celerograms without further refinement. However, the preliminary ground dis-
placement curves obtained by integrating the accelerograms at this stage left
no doubt that other adjustments would be necessary. Maximum displacements
ranged all the way from several centimeters to nearly three meters!

The preliminary displacement curves were found to be roughly the shape of
a third-degree polynomial. The four conditions which had been arbitrarily as-
signed, namely, the initial velocity, initial displacement, and location and
direction of the axis, would in themselves account for a cubic displacement
curve. Therefore, the most logical remedy for the unacceptably large displace-
ments lay in the choice of these conditions.

There is no way to determine the true value of any of these conditions
from the accelerogram. The axis can be located approximately, but a minute
translation or rotation of the axis can lead to an enormous terminal displace-
ment. The initial velocity and displacement may be nonzero because the ground
motion must be strong enough to trigger the recording mechanism before the rec-
ord starts. The terminal displacement also may be nonzero, as is occasionally
evidenced by visible surface displacements at the end of a strong-motion earth-
quake. Nor can zero terminal velocity be claimed, because only the first 30
seconds or so of the record were used for each punched card accelerogram. Be-
yond that time the accelerations were not great enough to be of importance in
structural analysis.

In keeping with the idea that displacements remain small throughout an
earthquake, the four conditions were chosen to minimize the mean square dis-
placement, i.e., to make fg y® dt eiminimum, where y 1is the ground displace-
ment found by integration, and L 1s the length of the punched card accelero-
gram. Admittedly there is no basis for claiming this to be the best approach.
Nevertheless, it leads to results which seem acceptable and no better cri-
teria are apparent.

THE PUNCHED CARDS

Figure 1 shows a typical initial card, which specifies the initial ve-
locity, initial displacement, length of the accelerogram, number of cards in
the accelerogram, and an index number identifying the earthquake component.

Figure 2 shows a typlcal accelerogram card. It contains a card number,
the time-acceleration coordinates of four successive accelerogram points, and
the earthquake index.,



RESULTS

The velocity and displacement curves obtained by integrating the final
punched card accelerograms are shown in Figs. 3 to 10. Figures 11 to 14 show
the ground motion plotted as the horizontal trajectory of a point on the
ground surface.

Differences between these results and previously published results can be
found. Yet the characteristics of these curves agree reasonably well with those
obtained by others. It is believed that these accelerograms are sufficiently
accurate for purposes of structural research, and for some aspects of seismologi-
cal research as well.

The use of punched card accelerograms in research permits comparisén: of the
results of independent research efforts with the certainty that any correlation
(or lack thereof) has not been affected by differences in the input data. This
in 1tself appears to be a worthwhile benefit.
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Fig. 3. Ground velocities, El Centro, California, December 30, 193L.
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301
204
10 .jdul‘,{
o + —+
10
Nor X
V\
#é‘ 20
v
R
A
\\f, 104 Wes?
o
¢
v
8o
v
q
N
o~
AY
N 1 lasl
20
10<r )011/77.
o } /\/\V v
10 U/o
%5 S 10 15 20 25 20

//’me, Jecond's

Fig. 6. Ground displacements, El Centro, California, May 18, 19L0.
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Fig. 7. Ground velocities, Olympia, Washington, April 13, 1949,
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