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Introduction

Several recent articles have been published examining the methodsl
of pooling cross-sectional and time series data. The occurrence of
observations of a large number of individuals over certain periods of
time is becoming more common and, thus, these pooling methods are at-
tracting more attention. When examining the current literature we find
that there are three cases involving slight alterations in the models
used that must be considered: (1) a model with exogenous variables but
no lagged values of the dependent variable, (2) a model with both exo-
genous and lagged dependent variables, and (3) a model with lagged
values of thé dependent variable but no exogenous variables.

Simulation studies have been performed to determine small sample
properties of estimation procedures for these three cases.

In this paper we present a review of these studies as well as a
summary of findings from other available literature. Within our review

we will note when and how the estimation procedures may best be utilized

in pooling cross-section and time series data.



Tinear Model And Generalized Least Squares

In general, the model we are concerned with can be written as

¥=XB + u
K

where v, =Sx, 8, +u,, with

it : xlthJ it "t

J=1

Y an NT X 1 vector of the dependent variable Yii

X an NT X K matrix of K variables which may be exogenous : or
lagged dependent;

B a XK X 1 vector of unknown parameters;

u an NT X 1 vector of the unknown stochastic components uit'

The generalized least squares estimate of the parameter B is:

éGLs = (x'Q_lx)_l (x'Q'ly)

where §§ = var(u)=E(uu')

Special Case: Error Component Model

Suppose now that u, = .
PP it ui+ Vlt

1y — . 8]
where E(uivit) 0 for all i, i', and t

E(ui) = 0 and E(Vi } = 0 for all i and t

t
ty = [ 2 if i o= i
E(uiui ) UU if 1 =141
0 otherwise

oy = 2 55 3 = 30 — 1
and E(VitVi ‘ ) Gv if i i'and t = t

0 otherwise
The M, are time invariant individual effects and the Vit represent
remaining effects which are assumed to vary over both individuals and
time.
(Note that in our variance or error component representation of

U, as ug + Vit' we have simplified from the more general case of
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vidual invariant effects. Further comment on this simplification will be

made later.)

We now have

y:\ 0 -

2
E(uu')=Q = ¢ 0O A -
0 0 -

where A is the T X T matrix

(1 p -

e v

P
p

'S

-2-

where the kt represent the period specific and indi-

e e O

1

J

. 2 2 2 2,2
with 0 =o0p + 0v and p =gy /o .

We can then write the GLS estimator as follows (see Appendix A for

derivation):

BeLs | “'xx

where T =2Xi'X.

XX

T W and H
r Wy BXx are K X X; Txy’ Bxy' and ny are K X 1,

-1
W +©OB 1 [W v

+ 0B 1
Xy

T = I 'y,
Xy 1 1

1
B =7 E(x.'ee'Y.)
i i

xy T

W =T -B
Xy Xy b'e
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e is a T X 1 vector with all elements unity and

v 2
—_—

g =
Uv 2+T0u 2 «[3,4]

The problem in using the GLS estimator is that the value of 6 is

unknown. Therefore we must produce an estimate of © by estimating sz

2
and 0u? . (Note that we could also proceed by estimating p = oy

oit2 + o 2

and using this in an equivalent GLS estimator expressed in terms of p.
The Nerlove articles speak in terms of f£indingp rather than 9; see
Appendix C for details.)
We now present several methods used to produce estimators of g
in the articles examined (see BAppendix B for a further listing):
1. The true GLS estimator with 6 assumed known.
2. The ordinary least squares estimator (OLS):
BOLS - (Txx)—lTxy
(This isé with 8 = 1.)
GLS
3. The least squares with dummy variables estimator (LSDV):
-1

BLSDV - (Wxx) ny

(This isB with 8 = 0.)
GLS
The model for the LSDV method can be written as
Y=X8+ Zyu+ v
where

X is the matrix of exogenous and/or lagged dependent

variables;
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Z is an NT X N design matrix introducing the "individual
dummy variables;V
pis an N X 1 vector of coefficients for the dummy variables;
v is an NT X 1 vector of disturbance terms.
4. Maximum likelihood estimator (ML):
The value of éML is determined by searching for the value
between zero and one that maximizes the likelihood function.

We then determine

A2 _ l A ~ ”~ _1 A
g = —[W + - + - + +
v,ML NT L vy OMLByy (ny OMLBXY) (Wxx GMLBxx) (ny GMLBxy)]
) . " ;2 .
ou ML can then be derived from eML and v, ML since
A2
6 _ 0V,ML
m = ~ 2 ~ 2
+
GV,ML TGu,ML
Therefore we have
2
g
8- 2 _ 1 ( v, ML g2
u,ML T 5 V,ML) :
Mi,

5. Nerlove's estimator (2RC):

. 2 . .
Compute the estimate of q& from the estimated residuals of
. 2 . A
LSDV and estimate 0u from the estimates of coefficients of dummy

variables [5].

2 - 2 -y -1
%,2rc T T [WYY v My ny:l .
N " n Z u,
g2 = -—]-'-- 1 -1 : 2 y = ji= 1
%,2rc T W ifl M5 psov ™ Yi,1epv VReTe Wy reny 5—1?——— .
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We now present a summary of three simulation studies examining the

results of estimation procedures for the cases mentioned in the intro~

duction.

Results of Comparison

A study by Maddala and Mount involving Monte Carlo simulation
examines the first case[4].

1. Presence of exogenous variables but no lagged values of the

dependent variable

The Model: Y = XB + u where
u, with u, =y, + v,
= T t t
yit Bxlt i it i i
Comparison of Methods:
* Bias: The bias in all cases was reported to be negligible. The
maximum bias was .007, less than one percent, with no

systematic variation of the relative bias.

* Mean square error: No appreciable differences were found to exist

between any of the two step estimators examined
(ML, and 2RC). ALl performed equally well. Also,
for overall performance, the two-step estimators
outperformed OLS and LSDV.
Examining the MSE's for the estimates, the MSE is
seen to increase as 8 decreases (p increages) for
OLS and decreases as © increases for LSDV.

* Notes: Possibilities for negative variances exist with the ML method.

. ~ 2
In this case Uu was put equal to zero.
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The above findings also hold for the additional methods mentioned
in Appendix B.
Monte Carlo studies by Nerlove have examined properties of estima-
tors in the two cases involving lagged dependent variables:

2. Presence of both exogenous and lagged dependent variables

The Model: Y=X B+ u where
= + - . .
Vig™Bo + By bl 4Box L %k vith
L = U, + v,
ult ul Vlt

Comparison of Methods:

* Bias: Small sample bias was known to exist in all cases in which a

lagged value of the dependent variable is one of the explan-
atory variables. Using GLS with the true value of p resulted
in only a slight bias in all cases.
0LS: (1) p=0 The OLS and GLS estimates coincide.
(2) p #0 Severe bias encountered.
Bl severely biased upwards;
Bzxseverely biased downwards for large p
values except when %=0;
02 severely biased downward.
LSDV: Bl biased downwards (less for higher values of p
and 82);
80,82,02 and p are biased upwards.
2RC: Despite the upward bias inp using LSDV, 2RC was

found to be superior over a wide range of true
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parameter values to all other estimates considered.
Estima£es of Bo' Bl' B, and o are not seriously
biased in comparison with either OLS or LSDV. The
principal source of difficulty noted is the upward
bias in the estimate of 02.

Biases in cases where a large number of boundary
solutions (p=0) did not occur were slight. Where
boundary solutions occurred the ML estimates were

greatly affected.

Relative mean square error: Nerlove considered the mean square errors

{MSEs) for the GLS method as an ideal of comparison and formed ratios

of MSEs of B_, B

of GLS.

OLS:

LSDV:

2RC:

p=0:

p#0:

and 32 for each method to the corresponding MSE

MSEs coincide with GLS or are somewhat smaller.

The above result no longer applies and estimates

deteriorate. Note that even the LSDV estimates are

superior for Bq1 and Boe

Superior to OLS for and ; worse than OLS for g .

Lower MSEs than LSDV except when pis very small. Lower

than ML even when this method might be expected to perform

well.

2RC compares favorably with all other estimates over a

wide range of parameter values.

Large numbers of boundary solutions were encountered for the

MLE estimates even when they were not expected to occur.
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The MLE method does not compare favorably to the 2RC.

3. Presence of lagged values of the dependent variable but no

exogeneous variable

The Model: Y=XB + u where

= -1 + ] with
Yir Byi't 1 Uit

L= ULt Vv,
ult u1 it

Comparison of Methods:

* Bias:
GLS:

OLS:

LSDV:

2RC:

Small amount of bias.

Estimates of B are strongly biased upwards whenp # 0;
estimates of 02 are strongly biased towards zero.
Estimates of B are biased towards zero;

estimates of pand 02 are biased upwards.

Estimates of 02 are highly erratic.

Estimates of B show some bias downwards for large true B
and some bias upwards for small true B; estimates of 02

are less erratic for this method than for ML.

Conclusions

These simulation studies yield the following conclusions:

1. wWith a lagged value of the dependent variable present,

Nerlove's estimator, 2RC,appears to be superior to other suggested
methods of estimation.

2. With no lagged value present there is no clearly superior

method among the two-step procedures in terms of the properties
examined, although these are superior to methods such as OLS and
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LSDV, Maddala and Mount suggest, in this case, that two of the
methods be applied to the data at hand and the results compared.
Widely differing estimates should be taken as an indication of
a possible misspecification of the model. 1

When looking for a single method of estimation to be used with all

data sets, however, the choice would go to Nerlove's method.

Prospects for Futher Study

The literature thus far has examined cases where

u,, = U, + v, i.e.
Pl i’ r

it t

where the random time effect has been omitted from the disturbance term.
This is simply a matter of choice in specifying the model.

With the time effect included, we would have the following speci-
fication:

Y = + L.o=u, + + v, .
X8+, Yie T W lt Vit
The the GLS estimate of B will be

~ _1
’ = + + +
BGLS [Wxx Qlex * e2 Cxle l’wxy eley QZnyJ

where o 2
v
Gl =
62+ mg 2
2
62 = 0v
= Z o e Z
cv + NOA

and ¢, C and C___ represent the between time period
XxX' XY vy

decomposition of the variances [3].

See Arora [2] for another study supporting use of a two-step method.
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Nerlove suggests that further study in terms of small sample
properties of estimators would be desirable in this case, especially
in terms of the results when the lt are erroneously assumed absent [5].

The assumptions made concerning the u vector, i.e.,

that -
[‘A 0..00
E(uu') = 62
0 Aseel
L[] » o Py
M
O OC.OA
02
where o2 =02 + g 2, p = L and
H v 2
o
1 D »eef
A = p lseep
» e ® .
- ™ 14 .
- N e .
p Peee 1

imply a specific form of serial correlation. The effect of a mis-
specification here needs to be investigated [5].

Another area of study concerning the pooling of cross-section and
time series data is the use of the random coefficient regression (RCR)
model. Study in this area has begun. For example, Hsiao has proposed
the following model [2]:

Y, = (B + Gi + Yt)xit + €

it it

with Gi, Yt and Eit random disturbances,
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1y = 42 i om 4 et
E(sitejt ) oc, 1=17, t=t
0 , otherwise
= 2 i = 9
E(6i5j) 06' i=7

0, otherwise

E(Y,y,') = of t=t

0, otherwise

E(Sth) = E(Siejt

) = E(Ytsit) = 0; E(eit) = E(Si) = E(Yt) = 0 for
all i, j and t.

Note that this case can include the error components model. Hsiao
writes the model as

X

Y., =1 (B +6_ + vy
it k=1 k ik tk

. + €, .
)Xltk it

Now, if each element of the first column of x is equal to one, we

have X
= + + + + + €
Yig = By P D Bt S ¥ VWi 00 Yae F G
£ A i -
where Gil’ Ylt' and it correspond to ui, e’ and Vit in our pre

vious error components model. In this case, however, we also allow for
the possibility of random slope coefficients.

RCR models are justifiable in economic use. The coefficient of a
variable may not remain constant because of unobservable influences of
the variable. Thus, we may be better off predicting the mean of some
process that determines the coefficient rather than assuming the coeffi-
cient to be constant.

Since these models represent additional general instances of the
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error components model used in pooling cross-section and time series

data, they deserve the attention of further study.



Appendix A

1

Derivation of GILS Estimator

-] .
] [ny + eBxy] following

We have written Bars = M, * GBxx

Maddala and Mount. The following is a verification that our form is

equivalent to the GLS estimator.

Y = + L= U, o+ v,
XB + u where u:Lt ul vlt
The GLS estimator for the above model is

~ L, S1y-1 -1
Bops = (X°87x) 7 x07Y

whereQ = E( wu' )= a o0
2 0 A
o . .
o o
where A = P—l p---p—
D Lessp
ppel | mxm
02=o§ + 02 and p___ﬁ
0.2.

To obtain § =~ we can make use of the orthogonal transformation

c= | ey where e = .[l‘
1

c

1 (T XT) ll (T x 1)

(NT X NT)



Appendix A (Continued)

+e=0, C,-C) =1 and Cc!.C. =I_ - —(/-

and Cl is defined so that C 1 1 T g 1 1 T T

1

Then CAC' = | (1-p) + Tp 0 ... 0 ]
0 1-¢p ... 0
L 0 0 ...1l-p
Therefore 52-1 = A—l 0 e« .0
1 |0 Lo
A
0 o ...t
-1 —_
where 4 "= C' F— 1
0 ... 0 C
(1 -p) +Tp
2
0 l1-p... 0
.1
- 0 0 1-p]

Note: This formulation follows from a result in Theil [8] (pp. 27-28)
which may be stated as follows: For any symmetric matrix M there exists
an orthogonal matrix B such that BM = QB, EMB'=Qand M=B'QB where @ is
diagonal and contains the latent roots of M along the diagonal.



>

GLS

Appendix A (Continued)

-1 1 1l 1
*% = e o— -
(**) Then A 1-p ot 7 ((1-9) + Tp 1p -
1 1 ((1-p) - (1-p+Tp) '
= + -
1-p Ip T ((1—p+Tp) (1-p) ) e
1 I =-p '
= + eg
l1-p T (1~p) (1-p+Tp)
= A2 Ip + Ay ee!'
where A = s and A = L
1 (1-p) (1-p+Tp) 2 1-p
We can now write the GLS estimator as follows:
=Tt oo .ot T rato.. .ol
-1 -1
% 0 AT, . .0 X - 0 =& 0 v
Lo 0o . . .A-i_ o o ) A-_l____
SRR B L
- I X; A X, IOX ATY.
i=l i=1

vhere X = [X, X . . X& ] and X3 is K x T,

-

Y© = [Yl Y2 « o . YN ] and Y; is lxT.

[N . 1 N .
X [hjee” + ApIl Xy L Xi[hee’ + ApI] Y,

[_i=1 i=1



Appendix A (Continued)

N N -1
Ay I Xi’ee'X. + 22 I X.7X, A
i=1 * = * 0t

-1
[)\1 TBXX+12 Txx] [Al TB.xy+)\2

-1
[A-]—T-B +Txx:| [2‘-1213 + T 1

}\2 XX )\2 Xy Xy _l
. _ AT
and, on setting 0 =1 - , we have
A2

p

] -1
(6 - 1)Bxx + TXX} [(G - l)Bxy + T

p

-

- -1
6B, + wxx} [ep_xy ; wxy]

b

where W v and Ty

xx! Bxx’ II'xx' ny' Ex \'%

N N

1 I X.ee”Y. + A, I X.7Y.
. i i : i’i
i=1l i=1

T |

o

-1
8B, *+ (T, = Byy) } [GBXY + (Tyy - Exy)]

are defined on page 4.

J
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Appendix A (Continued)

((l-p)

(1=-p+ T)

1
(I_—p-)

g4 —o

0% — o +Tc§

u



Appendix B

Alternative Estimation Methods

Description of other estimators examined in certain studies are
as follows:
6. The least squares between groups estimator (LSBG):

- : -1
BLSBG = (B

7. Wallace and Hussain's estimator (WH) [9]:

Wallace and Hussain propose using estimated OLS residuals as the

true residuals to estimate cﬁ and 03 :

") _ 1 - 1 -1 -1
0u,WH B NT [Eyy 2 Txy(Txx) Bxy + Txy(Txx) By ( Tyexe) Txy
1 %
T 9,wH

8. Amemiya's estimator (AM) [1]:

Identical to WH except using LSDV rather than OLS in the first

step:
83 AM - ——-l—— [w B Wx I(Wxx)—lwx ]
A2 - _1_ - . W lB + l -l
qJ,AM NT [Byy 2 wxy ( xx) Xy xy( xx) xx( xx) ny
i -,
T %y,



Appendix B (Continued)

9. Instrumental-variable estimates using Xy -1 as an instrument

for yi,t—l (IV) [5]:

With this method p is estimated from the calculated residuals,

"

Uspr DY

N
bX

T
1
= bX
i=1 t=1

N T n

. DR

where g = i=1 t=1
NT

10. Two round instrumental (2RI) estimates similar to those in 2RC
but using the calculated residuals from the IV method rather
than LSDV[5].

11. Analysis of covariance method (ANCOVA):

2 = 1 . -w "0 ) W)
ETE:IT:E XX Xy  xX Xy

") _ 1 -1

1 02
— S ——————— — ' — —
0u,ANCOVA T (N-K) [Byy Bxy (Bxx) Bny T O’\),ANCOVA

where Xk = number of slope parameters.

12. Hendersocn's Method III(H3):

€

2 = g
g = 0
v, H3 v, ANCOVA



Appendix B (Continued)

2 - -1 .t -1 -1 2
= - . T - No
u,H3 e [ny (Wxx) ny Txy(Txx) xy v,HB]
where a = T[N - trace[(T )-lB 11
XX Xy

13. Minimum norm quadratic unbiased estimator (MINQUE) [7]:
This method (due to Rao) proposed that we minimize the
Euclidean norm of the difference between the actual estimator
and the "natural" estimator given 1y and v in
Y=XB + 2y +v
Estimators of 03 and oﬁ are computed by solving the following

simultanecus equation system:

a2 . “y ‘
[ trace {[R88']°} trace{[R88'R]} O, MINQUE v REE'RY
trace {[RZz'R]®} trace (7%} o2 -
v, MINQUE ¥'RRY
where R = (H-l - H_lX(X'H_lX)—lX'H—l)
gl (33 + INT)-l.

Studies involving the above methods and results

1. Presence of exogeneous variables but no lagged dependent variables.

Also examined methods 6. LSBG

7. WH
8. AM
11. ANCOVA
12. H3
13. MINQUE

Notes: DPossibilities for negative variances exist with any of the



Appendix B (Continued)

~

following: MINQUE, ANCOVA, H3, WH, and AM. 1In such cases oﬁ

was put equal to zero.

The ANCOVA and H3 methods both lack the property of uniqueness
in the estimators produced.

Results stated in main body of paper hold for these six
methods also. The two step methods listed above are 7, 8, 11, 12,

and 13.

2. Presence of exogenous and lagged dependent variables.

Also examined methods 9. IV
10. 2RI

1l

Results: Bias

Iv: Wwhen B = 0, these estimates are inconsistent and highly erratic
behavior occurs. When B = 1, bias in all parameters is slight.

2RI: The 2RI estimates are greatly affected by the extreme
variability of the estimates of p obtained from the IV method. The

estimates of o2 show the greatest bias and erratic behavior.

Mean square error

IV: Ratio is high for 8 = 0 but falls markedly as B increases.
2RI: Erratic behavior when B = 0 because underlying estimates of p

are so poor. Higher MSE's than 2RC even for large values of R.

3. Lagged dependent variables only.

No further methods were examined.



Appendix C

Derivation of Nerlove's GLS Estimator

To derive Nerlove's form of the GLS estimator (which involves p

rather than 8), we note that in line (**) of Appendix A we have:

|

-1 _ 1 1 1 ee'
A 1 Ip [l—p+Tp 1-p ]

!
©
3
=]

— N 1 '
= T-p ( Tp~gee ] T T(i-peT) *°

w >

ars = (x' o Yy Th (X' "y)

(N - - N -
— t L X{A lxi’] ! [ I XA lYi]
i=1 i=1
N . ce' N . s -1
e I TR T S R |
i=1 l-p T i=1 1-p+pT
ee' o
TN X (Tm SR Y ; N Xee'v,
X |t 1~ TR T
i=1 P i=1 PP

_ 1 ] -1 1 1
[ 1=-p Wxx * 1-p+pT Bxx ] [ 1-p ny * l-p+4pT Bxy']

This is the form used by Nerlove [5].
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The above findings also hold for the additional methods mentioned
in Appendix B.

Monte Carlo studies by Nerlove have examined properties of estima-
tors in the two cases involving lagged dependent variables:

2. Presence of both exogenous and lagged dependent variables

The Model: Y=X B+ u where
Yig™Bo * By¥y ol 4800 4 Mt vith
A L N
ult . ul Vlt
Comparison of Methods:

* Bias: Small sample bias was known to exist in all cases in whizh a

lagged value of the dependent variable is one of the explan-
atory variables. Using GLS with the true value of p resufted
in only a slight bias in all cases.
OLS: (1) p=0 The OLS and GLS estimates coincide.
(2) p#0 Severe bias encountered.
Bl severely biased upwards;
Bzwseverely biased downwards for large p
values except when 8;0;
02 severely biased downward.
LSbV: Bl biased downwards (less for higher values off p
and B,);
80,82,02 and p are biased upwards.
2RC: Despite the upward bias inp using LSDV, 2RC w=

found to be superior over a wide range of true



