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Abstract

We introduce an algorithm which is a combination of Khachian's method
and the relaxation method for linear programming. We tested the algorithm
on problems of finding a feasible point subject to linear constraints, when
we have finite lower and upper bounds for each variable. On a randomly gen-
erated set of test problems, our method ran faster than the simplex method
in C.P.U. time. The run times for the new method ranged between 4.6 percent

and 26 percent of the run times for the simplex method for reasonably sized
problems.

Introduction

In this paper we present the relaxation method for solving a set of
linear inequalities [1,5] and relate this method to Khachian's method for
linear programming [4]. We show how to perform every iteration efficiently
and present two improvements in the basic relaxation method: compound

constraints and the nestled ball principle. Computational results are pre-

sented.

The Basic Relaxation Approach

Consider the problem of finding a feasible solution to:

n
.§ aijxj's bi for i=1,...,m. (1)
j=1
Let:-
n
ei(X) = X 2 %5 - b, for i=1,...,m. (2)
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The basic relaxation method is:
Step 1: Choose an initial solution x(O); set k=0. Normalize each

n L
constraint by dividing a,, and b, by ( ag.)2 .
ij i je1 13

Step 2: Find the constraint which is most violated, i.e., find

e(k) = max (6.(x(k)))
Lt
and let r be the constraint for which 6 is obtained.

Step 3: If 6<k) < 0, stop. X(k) is feasible.

Step 4: Otherwise, update x(k):
x§k+l) = xgk) - S(k)a .
J J r]
Note that Gr(x(k+l)) = 0. Go to step 2.

for j=1,...,n.

It is not clear whether the relaxation method will lead to a feasible
solution if there is one, or-how to recognize a nonfeasible situation. The
next two theorems are concerned with these questions.

Theorem 1:

If aij and bi are integers, then the relaxation method determines in a
finite number of iterations if g feasible solution exists.

The proof is based on the following obsérvation: According to Khachian [4],
there exists a radius R(O) such that if a feasible solution exists, it must exist
in the ball centered at x(o) with radius R(O). Let us assume that we have
proven that in the k'th iteration a feasible solution must exist inside a ball
centered at x(k) with radius R(k). The hyperplane passing through x(k+l) cuts
off more than one half of the ball. 1In fact, it is distant by G(k) from the
center of the k'th ball, which is x(k). Therefore, the k+l'th ball, which‘is

(k+1)

‘ . (K% (k)2 .
centered at x » has a radius of (R -0 )2 . As shown by Khachian [4],
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G(k)>2fL(where L is defined there) if there is no feasible solution

and if G(k) < Z_L a feasible solution exists. Therefore,

if e(k)§ Z-L , we know that there is a feasible solution and if 6(k)> 2-L

‘ 2
for every k, then in a finite number of steps we get R(k)

< 0, and there
is no feasible solution.

The following theorem is trivial by the proof of theorem 1:
Theorem 2:

N w2, (0)? . . .

If for some N L © >R , then there is no feasible solution
to problem (1) . =0

The relaxation method is probably not polynomial since the number of
iterations is not polynomial. The main difficulty in applying Khachian's
method [4] is the great accuracy needed in order to assure the finding of

a feasible solution if one exists. In [2] a practical method for a special

class of problems has been presented. That is; there are given bounds on the -

variables Qjéxjélg . We can therefore, replace R(O) by
0z _ D
RO - 1oy,
j=1 J 3

with center at

(0) ‘ .

. = (y.+L.)/2 for j=1,...,n.
XJ (}5 J)/ J=4, ’
In addition, we assume a given accuracy of €>0 .

It is preferable to perform a linear transformation yielding

x:; = (x -ﬂj)/(uj-ﬁj) ,

3

L
0g x3 <1 ,'R(O) = (n/4)? , x;(o) = 0.5.

Going Beyond the Constraints

o (1)

"One can multiply by 1l+a for a given -1<q<1

There is no sense in using <0 ., 0=0 yields the greatest decrease in R? since
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g(D® | (0% gy 0 ()

We have checked the possibility of using 0 >0 and have found that for our

test problems 0=0.8 gave the best results.

A More Efficient Computational Procedure

Every iteration in the basic relaxation method is of complexity 0(mn) .
We can perform the computation of each interation in 0(m)+0(n) if a set=up
procedure of complexity O(m?n) and a space for a matrix of size m(m-1)/2 are
permitted.

. Let:
ij i for i,j=1,...,m .

Note that A,.=A.. and A,,=1l. Let 6§k) = 9.(X(k)) .
ji "ij ii i i

We keep the values of eék) and replace the updating formula in step 4

of the algorithm to:

X§k+l) - x(k) - e(k)a . for j=1,...,n (4a)
i ] rJ
egk+l) - egk) - e(k)x_ for i=1,...,m (4b)
i i ir
2 2 2 :
RHD? | 2P (W) (4e)
Updating the vector x is of complexity 0(n), updating the vector e(k)

is of complexity O(m), and finding the maximum violated constraint
is also of complexity O(m) (it can be even calculated in the same loop in
which B(k) is updated). Therefore, every interation is simple and fast and is

of complexity O0(m)+0(n). Calculating all Aij is of complexity O(m®n).



The Compound Constraint

We can replace two or more constraints by a convex combination of
. constraints, yielding a "better'" cut. This idea was presented by Goldfarb
and Todd [3] a5 a surrogate cut. Since an important feature of the relaxation
method is the low complexity of each iteration, we would like to retain this
feature, and therefore we restrict ourselves to checking only some pairs of
constraints, as will be explained later.

Let us consider two constraints:

arx § b

T
¥ by
T
%< Py

with'el(x)=é§x~b and Gz(x)=a§x-b For 0 & u & 1 it must be true that:

1 2"

T

(uap + (1 -u)az)x by + (1-wb, . (5)

We would like to maximize the residual 6 of the compound constraint (5) .

Since the constraint (5) must be first normalized, we find that:

6w = (u6y + (1-1)6,)/ [ uay + (T-Way|| .

T T B T T
Since a,8,=a,a,= =1 and 8189789847 X12 , then:

B (W) = (uoy + (1-1)8,)/[W* + (1-41)* + A u@-WTE . (6)
Solving d6(u)/du = 0 leads to the constraint:

T T
(aal + Baz)x < 0by + Bb, %)

where:

a = (6,- (1-A

1 12 2)/ 12)

B = (8,7A),0,)/(1-\3,)
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This combination is valid only if 020 and B30.

The updating formulag (4) are now:

x(%+l)= x(k) - oa

i : 1~ Bazj for j=1,...,n (8a)

(k+1) _ (k) .
ei = ei - akli - BAZi for i=1,...,m (8b)

2 2

2 2
g2 _ g _ (07 + 6, - lezelez)/(l—kiz).(Sc)

It can easily be verified that 9(§+l) = 6§k+l) = 0.

We apply the compound constraint formula by the following strategy.
Let 61 be a maximum violated constraint. We check combinations of another

constraint combined with the maximum violated one. Since 61 = max (é§k>3
i
we have 030 for every i, Therefore, we check only if Gi - Ailel;o .
Note that:
(87 + 62 - 20,018,)/(1-\2) 02 + (8)= 115002/ (1-42), (9)
so we look for:

8 = max ( (o, - Aliel)z/a-xfi)g . (10)

The Principle of the Nestled Ball

In this section we will prove that if after some interations the bal]

is inside the initial ball, then there is no feasible solution.

Let R(O) = R, R(k)= r, and (x(k)—x(o))T(x(k) ;x(O)) = d2 .

Theorem 3:

If R>r+d then there is no feasible solution to the problem (1) .



Proof:

If a feasible solution exists, it must be in the ball centered at

(k)

X with radius r. Therefore, there must be a feasible solution in the

(0)

ball centered at x with radius r+d. Since R>r+d, we could have started

0

the iterations with a ball with radius of r+d as R Since the value

of R(O) does not affect the values of Gi , X, etc., we would have passed

(k)

through exactly the same points and would have reached x in k iteratioms.
Since R%*-r? remains unchanged, we would have ended with a smaller r

(let it be r', where r'? = (r+d)? - (R%-r®) ) .

This smaller r yields yet a smaller R(O) , namely R(O)= ¥'+d, and so on.
We get a sequence of r's; let the sequence be Ty s Tp seee where:
ry = T | (11)
2 2 _ (p2_..2
L = (rk+d) (R°-r%)

There are two possibilities. either rﬁ<0 for some k, or ri}O for

every k. If'rﬁ<0 for some k, then there is no feasible solution, since we
have proven that a feasible solution must lie in a nonexisting ball. If
exi ince r, is mono-
Kk ists, s k s

tonically decreasing and bounded by zero. Let this limit be z. For the limit

ri;ﬂ for every k, then a limit to the sequence r

point we must have by equation (11):

z2 = (z+d)? - (R*-r?)

N
]

(R2-r2-d%)/2d .

Since R>r+4d:

\4

z > ((r+d)?-r?-d?)/2d = r .
But z>r is impossible, since ry=r and the sequence is monotonically decreasing.

The theorem is proven.
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Theorem 3 provides us with a better stopping criterion in case of

infeasible solution. The geometric interpretation of Theorem 3 is quite

(0) such that if x(k)

interesting. There is a growing ball centered at x
enters this ball there is no feasible solution. The radius of this ball

is R-r, and R-r = (R%*-r?)/(R+r) = Ze(k)z/(R+r) .

It can be shown that there exists a ball centered at x

(0)

inside

which there is no feasible solution. The condition of Theorem 3 holds

if the radius of that ball is greater than R(O) . We have not yet found

a “géod use" for this result, even though it gives us more information about

the set of possible locations of feasible points. More research is yet to

be done.

Further Suggestions

Equality Constraints

If there are equality constraints in the problem, we can, of course,
change each of them to a pair of inequalities. However, I believe that the

following is a better approach. Suppose we have an equality constraint:

; b
y a,.X. =
j=1 1375 1

There must exist some alj# 0; or else, if bl=0, the constraint ‘can be ignored,

and if bl#O, then the system is inconsistent. Choose any alj#O (or choose

the maximal in absolute value); let it be a11 . We have:
n
X, = (b1 -jz a;.x )/all

We can substitute % in all other inequalities (and equalities), thus
reducing the number of variables by one. We must add two constraints for

the bounds of Xy, namely,

n
by -2

5 255 /a8 1y

2
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In substituting X for all equalities, we replace each equality in turn by
two inequalities but reduce the number of variables.

We can also employ the following strategy. Let every constraint be
defined as:

n
b.-e, & I a (12)

11j1

where e, is a big number if the left constraint is not applicable. Every

<
15%5 €0

two inequalities of type (12) are, for practical purposes, one constraint
only. The solution procedure is almost unchanged. We still have to calculate

only Bék) , but we must check for max {ng) R —ei~6§k)}

instead of max (6§%ﬂ 3 , which requires almost no additional computational
effort. We believe that this approach is superior to that of handling an
equality as a pair of inequalities, since the presence of an equality gives a
feasible region of zero volume but transforming into a lower dimension space
probably yields a nonzero volume for the feasible region.

Large Problems

The basic relaxation method is well suited for working with direct-access

secondary storage. We keep in core the vectors x§0) s xik) s Gik) N P £i R
(0)

and e, - If we use the transformation (3), we no longer need x > My , and

li in the memory core, so the in-core storage is only of size 2min. aij is
stored on a disk by rows, and so is Aij . For évery iteration we need only one
row of aij and one of Aij Therefore, only two vectors, one of length n and

the other of length m, must be read into the core for every iteration.

Sparse Matrices

If every row of aij is given by a list of all nonzero elements as (j’aij) R

(k)

then updating x is trivial and very fast, and calculating Aij is also very

convenient. It might be even more economical to calculate a row of kij whenever
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it is needed rather than calculating all A's and storing them. Every iteration
will require one pass of the entire matrix a; .

If all nonzero aij are ones, a bit presentation may be very efficient.
We calculate a vector holding the number of ones in each row vector of aij
instead of normalization. Calculating Aij simply involves taking a "logical
and" operation between words and counting the number of ones in the resulting
words. If the number of ones in a word is small, we can efficiently count the
number of ones by the following observation. If we arithmetically subtract
"one'" in the rightmost position of the word from a nonzero number and per-
form a "logical and" between the result and the word, then the rightmost one
is wiped out while the rest of the bits in the word remain the same. By
this we do the following:
Step 1: Set count to O.
Step 2: If word = 0, go to step 7.
Step 3: Set count=count+l.
Step 4: Calculate word'=word-l.
Step 5: Perform a "logical and" between word and word' and put result

in word.

Step 6: Go to Step 2.

Step 7: Exit with count as the number of "ones'" in word.

Computational Comparison

We have generated two types of problems, feasible problems and in-
feasible problems. The coefficients aij for the feasible problems were

a,./4

generated uniformly on the segment (-1,1). We set bi = i
1

J

U e =]
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so that x=0.25 is a feasible point. The feasible simplex is not necessarily
big. In fact, if m>>n , the point x=0.25 is practically the only feasible
point. 1In addition, we assumed 0 g X, 1.

The constraints for the infeasible problems were identically generated,

but the last constraint was replaced by:

m-1
a.=-2 a for j=1,...,n
U S

m-1 .
b =~ ( b, + 0.1n((m-1)/3)3%) .
m j=p &

The expected value of the term added to bm after normalization of the
constraint is equal to 0.1 . We use single precision variables on
AMDAHL 470/v7 at the University of Michigan, Ann Arbor, Michigan.

We use €=10—4(i.e., S(R)

<€ means feasible solution). All run times exclude
input and are expressed in terms of seconds of C.P.U.

In Tables 1 and 2, the basic approach is compared with the basic
approach with compound constraints. We have used 0=0.8. The number of
iterations decreases when the compound constraints are used, but run times

on feasible problems remain almost the same. We have decided not to include

the compound constraints in the new method for further comparisons.
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Table 1: Run Times for Compound Constraints: Feasible Problems
m n Single Constraints Compound Constraints
Iterations Time (sec) Iterations Time (sec)

10 10 5 0.004 4 0.004

10 20 5 0.004 3 0.004

10 50 6 0.006 4 0.006

50 10 114 0.032 71 0.040

50 50 47 0.080 34 0.090

50 100 36 0.148 20 0.160

50 200 30 0.290 16 0.314
100 10 86 0.083 55 0.096
100 50 299 0.370 905 0.848
100 100 100 0.582 70 0.619
100 200 60 1.115 31 1.179
200 10 75 0.274 48 0.313
200 20 138 0.497 79 0.565
200 100 10000%* 9.061 10000% 16.095
200 200 167 4,415 117 4,693

%

Run terminated due to iteration limit of 10000.
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Table 2: Run Times for Compound Constraints: Infeasible Problems

m n Single Constraints Compound Constraints
Iterations] Time (sec) Tterations Time (sec)

5 10 11 0.005 4 0.005
10 10 7 0.005 2 0.004
10 100 25 0.018 9 0.015
20 20 2 0.009 2 0.010
20 50 7 0.016 6 0.018
20 100 27 | 0.035 15 0.036
,A50 50 37 0.079 215 0.084
50 100 74 0.166 . 33 0.173
100 100 - 88 0.585 40 0.613
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In Tables 3 and 4 compare three methods for linear programming:
the simplex method, Khachian's method using deep cufs [2], and our new
relaxation method. Since there are so many codes for the simplex method,
we must define our method exactly. We first tried the MPS code. Run times
were surprisingly high (excluding input-output). This is probably because
MPS works with lists of coefficients, a method which is not suitable to our
dense matrix problems. Double precision is probably used with other sophis-
ticated techniques which are time=consuming; however, in order to give the
simplex a "fair chance," I have coded the "good o0ld" simplex method in

4

single precision with €=10 ' (i.e., if the coefficients of the objective
function are less than €, I assumed optimality). The run time of this
unsophisticated simplex was only a fraction of the run time on MPS for all
fhe problems that were tested (not all problemé in Tables 3 and 4 were tested
on MPS).  For example, the feasible problem of 50 by 50 was run by MPS in

7.0 seconds of C.P.U.. the initialization phase (input, adding slacks and
artificials, etc.) took 3.6 seconds which leaves 3.4 C.P.U. seconds for the
87 iterations needed. In my simplex program the same problem was solved in
37 iteratiéns and only 0.343 seconds which is 10 percent of the time of MPS!

The results presented in Tables 3 and 4 speak for themselves and need no

additional commentary.
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Table 3: Feasible Problems
m n Simplex Khachian Relaxation

Tter. Time Iter. Time Iter. Time

5 5 5 0.006 8 0.003 6 0.002

10 10 7 0.010 4 0.003 5 0.004
10 20 7 0.014 6 0.009 5 0.004
20 10 21 0.035 61 0.022 21 0.006
20 20 19 0.046 17 0.021L 14 0.008
20 30 15 0.049 10 0.026 8 0.010
20 100 9 0.141 36 0.830 14 0.030
30 50 25 0.171 43 0.261 25 0.033
30 80 22 0.280 32 0.496 21 0.047
40 20 38 0.144 109 0.129 28 0.025
40 60 32 0.314 58 0.518 37 0.065
40 80 28 0.411 50 0.788 27 0.082
50 50 37 0.343 | 119 0.765 47 0.080
50 100 48 1.059 106 2,511 36 0.148
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Table 4: 1Infeasible Problems

m n Simplex Khachian Relaxation
Iter. Time Iter. Time Iter. | Time
5 10 4 0.006 2 0.003 11 0.005
10 10 5 0.007 5 0.004 7 0.005
10 100 10 0.144 12 0.254 25 0.018
20 20 14 0.035 18 10.021 2 0.009
20 50 16 0.095 27 0.153 7 0.016
20 | 100 21 0.328 33 0.723 27 0.035
50 50 66 0.610 116 0.728 37 -0.079
50 100 160 3.591 107 2.454 74 0.166
100 100 216 7.451 385 9.530 88 0.585
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