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INTRODUCTION

For a number of years a controversy has been building over the
relative importance to the economy of monetary and fiscal policies. The
issues, of course, are partly illative in nature and there appears to be
no exact agreement (or disagreement) between the montarists and their
opponents on fhe measurement of the effects of various policies. The
monetarist position, most notably advanced by Milton Friedman, states
that, in general, money supply aggregates and their growth rates greatly
influence short-run economic performance and that, therefore, monetary
policy can and should be employed to add stability to that performance.
This view is not shared by those economists who advocate, instead, thatv
while money is not unimportant, fiscal policy is more useful in guiding
economic growth and reducing the impact of fluctations. A good example
of the two arguments is presented in Friedman and Heller [5].

This paper is addressed to the initial problem of assessing
current monetary policy. While measurement alone can in no way resolve
the above questions regarding the relative importance of various poli-
cies, it can, hopefully, provide insights into the relationships between
money and economic performance. A problem in measurement exists, es-
pecially for those outside the Federal Reserve System, because policy
directives issued by the Board of Governors are largely inaccessible to
the public, Until recently, the policy record of the Federal Open
Market Committee (FOMC) provided only the most general information on

the Committee's decisions, and then only after a three-month period had

elapsed.
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The FOMC meets each month to discuss and modify the open
market operations of the Federal Reserve System. Informal telephone
meetings usually occur more often. The record of policy actions de-
cided at each month's meeting is published three months later in the

Federal Reserve Bulletin. Before April of this year the policy toward

money supply growth rates was reported in rather brief and vague terms.
Beginning in April it was decided to publish more specific policy
actions with respect to the narrowly defined money stockl (M1) and the
more broadly defined money stock2 (M2), still with the three-month
delay in disclosure.3
In developing the model discussed below it was assumed that
Federal Reserve policy depends upon short-run and long-run objectives
both with respect to the individual growth rates of money supply aggre-
~gates and the reciprocal influences between them., The day-to-day open
market operations of the System Account Manager are designed to meet
the immediate financing needs of the government and to counteract short-
run fluctuations in the money markets, At the same time, the Account
Manager must attempt to achieve intermediate-range money growth rates

within tolerances specified by the FOMC. Finally, long-run objectives

lDemand deposits plus currency.

2Ml plus time deposits and time certificates other than large certifi-
cates of deposit.

For a more complete description of the new disclosure policy, see the
~ Federal Reserve Bulletin, May 1974,
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aimed at achieving desirable levels in interest rates, unemployment,
and other important economic variables are pursued.

A number of factors prevent the Federal Reserve from achiev-
ing precise control of money supply growth rates, e.g., an uncertain
lag between open market operations and the response of the various
money stock aggregates, shifts in the demand for money to finance pur-
chases of goods and services which cannot be anticipated exactly, and
fiscal policy actions which influence the growth of the money stock in
ways not precisely expected or understood. These and other variables
not controllable by the Federal Reserve System cause errors of varying

magnitude between FOMC goals and actual money growth rates,

A RANDOM COEFFICIENT TIME SERIES MODEL

A useful model for describing the behavior of certain discrete
time series is that of Kalman and Bucy [7], developed extensively in the
engineering literature. This method also has interesting applications
in so-called varying-parameter econometric models, e.g., McWhorter,
Spivey and Wrobleski [8] and Rosenberg [10]. In the application pre-
sented here the latter interpretation, with its assumption of a set of
explanatory variables, is not considered.

In its general form the Kalman-Bucy model consists of an
observation equation:
(1) y(t) = X(t)B(t) + e(t), t=1,...,N

where y(t) is a pxl vector of observations at time t, X(t) is a known
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pxr matrix (regressors in the econometric sense), B(t) is the rxl
state vector, and e(t) is a pxl vector of white noise, serially uncor-
related with covariance matrix R(t). The state equation describing the
behavior of B(t) is:
(2) B(t) = T(£)B(t-1) + a(t) + u(t).
Here T(t) is a known rxr transition matrix, a(t) is a (possibly known)
rxl policy vector, and u(t) is an rxl white noise vector with covariance
Q(t).

Equations (1) and (2) are in the form presented by Duncan and
Horn [2] with the exception of the o(t) term appearing in [2]. When
the a's and the covariances R(t) and Q(t) are given, the well—knoﬁn

recursive updating extimators of B(t) are:

(3)  B(t) = B(t|t-1) + 5(e| =X (©)D(E) "y ()-X(DB (| £-1))

where

(4)  s(t) = s(t|t-1) - s(t|t-1)X' (£)D(t) " X(t)S(t|t-1),

and

) B(t|e-1) = T(B(t-1) + a(t), t=2,...,8
(6) s(t]|t-1) = T(t)S(t-1)T'(t) + Q(t), t=2,...,N
@) D(t) = X(t)S(t|t-1)X"(t) + R(t), t=1,...,N.

In addition, the initial é(lIO) must be known and S(lIO) = Q(1). For
a derivation of these estimators see Sorenson [1l]. Duncan and Horn
[2] discuss the conditions under which equation (3) yields minimum
variance and minimum mean square linear estimators, as well as other

properties related to their distribution.
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Equations (3) and (4) have also been derived from Bayesian
considerations, Ho and Lee [6] and maximum likelihood methods, Rauch,
Tung and Striebel [9]. These approaches are used in the model exten-
sions given below.

When the covariances R(t) and Q(t) are not known recursive
estimation by (3) is no longer possible, although various numerical
methods can be employed. Furthermore, when a(t) is unknown (5) cannot
be employed. Methods of estimation are explored below when the covari-

ances and policy vector are assumed to be time invariant.

GROWTH RATES OF MONEY SUPPLY AGGREGATES

To motivate our model for growth rates of money supply aggre-
gates a very simple empirical study of the monthly growth rate movements
of M1 and M2 is considered first. Recalling the above discussion of
Federal Reserve short-run and long-run policy objectives, denote by
yl(t) and yz(t), respectively, the actual annualized growth rates of the
monthly seasonally adjusted money stock aggregates M1 and M2, The
Federal Reserve long-run policy goal for the growth rate of the i-th
money stock measure, assumed fixed for a given time period, will be
denoted by Py i = 1,2; and the adjustment to meet short-run objectives
will be denoted by éi(t), i = 1,2, Then the short-run growth rate goal
at time t for the i-th money stock measure, denoted by Bi(t), is the
sum-p, + Gi(t). The actual annualized growth rates (for each month t =

1,...,N) are expressed in the form:
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(8) y,(8) = 8,(8) +p) + e (1)

7o(t) = 8,(t) +p, + e,(t),

where sl(t) and ez(t) reflect random kinds of changes in the money
stock aggregates not associated with policy goals nor their implemen-
tation through the market operations of the FOMC.

The accompanying graphs illustrate the results of estimating
p and B(t) by ad hoc methods. The values of p were obtained by taking
twelve-month moving averages of annual changes in M1 and M2 centered at
the current time period, and B(t) was computed by taking a three-month
moving average of the observed growth rates yl(t) and yz(t) centered
at the current period,

In Figure 1 the values of M1 and M2, seasonally adjusted, are
plotted for the past decade., Figures 2 and 3 give the annualized growth
rates for these series, computed monthly, and showing a high degree of
fluctuation from month-to-month. Also in these figures are plots of
the long-run growth rate approximations described above, displaying, of
course, far less variation but obviously not constant., In Figures 4
and 5 the short-run growth rate estimates are superimposed, reflecting
a rather high amount of variation.

In Figures 6 through 9 time series and frequency distributions
plots are given for the residuals between the observed and estimated
policy series represented by al(t) and ez(t) in equation (8). The
histograms in Figures 8 and 9 reveal a white noise type of process.

Similarly, Figures 10 through 13 give time series and frequency
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distribution graphs for the one month differences in the‘adjustment
term estimators, Si(t) —'Gi(t—l), i =1, 2, ‘Again a white-noise

assumption:for these errors appears reasonable.

A KAIMAN-BUCY MODEL FOR SHORT-RUN GROWTH RATES

One purpose of the above empirical discussion is to develop
a strategy for detecting patterns in, and identifying the components of
long-run and short-run Federal Reserve policy with regard to the growth
rates of M1 and M2, On the basis of these ad hoc empirical analyses,
it appears plausible that the long-term growth rate p varies gradually
but is far more stable than the accompanying short-term growth rate 8.
Thus it may be reasonable to assume that p is constant over short
periods of time. Based on this assumption an application of the Kalman-
Bucy model is proposed for estimating the short-term and long-term
growth rates of the money stock aggregates M1 and M2.

For estimation purposes, the proposed model is stated in the

form,

1

(9) y;(£) = B,(t) + e (t) i=1,2
B,(t) =8,(t-1) + o, + “i(t) t=1,2,...,N

Again, yi(t) is the seasonally adjusted, annualized rate of growth of

the i-th money measure for month t. Equations (9) can be written in

matrix form corresponding to (1) and (2) as:

XB(t) + e(t)

I

(10) y(t)

B(t)

t=1,...,N

B(t-1) + o + u(t)



where

1100
X =
0o011{,

a' = (anlQ O’QZ)’ B'(lIO) = (81,038230)’

and the covariance of u(t) is taken to have the fixed, speical form:

d77 0445 0
0 00 0

41 09, 0

0 00 O

The 2x2 covariance matrix R for e(t) is also assumed constant over time.
Referring to (2), we see that in (10), T(t) = I, the 4x4 identity
matrix,

From (10) it is apparent that the error of estimation of y(t)
is attributed to two factors: a transient source, €(t); and a perman-
ent effect, u(t). This would seem to be a plausible explanation of the
behavior of the growth rates of M1 and M2, For example, a sharp change
in government deposit levels can cause a temporary swelling in private
demand deposits before they are invested in other assets. On the other
hand, sudden and unexpected shifts in the demand for goods and services
can have long-lasting effects on interest rates, influencing, in turn,
money growth rates.

The Kalman-Bucy model has the further advantage of accounting

for the obviously strong correlation between the changes in M1 and M2
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through their joint estimation. The problem of assessing this correla-
tion is discussed below.
INTREPRETATIONS OF THE KAIMAN-BUCY
GROWTH RATE MODEL
In the following discussion, the subscript i has been omitted.

The second of the equations (9) can be written:
. t
(1n) B(t) = B(0) + to + Eyuls).

Now suppose that, beginning at time t = 0, it is desired to achieve an
average long-run growth rate in the money supply of p, Over a period of
m months. Let E; be the average of the growth rates representing short-
run policy over these m months,

17 _ mHl | —
(12) By = m t218(0) = B(0) + T +u,
t

where Gﬁ is the mean of the various Sglu(s) terms appearing in (11).

Then the expected value of Eﬁ satisfies:

- . _ ntl
(13) E[g,] = B, + 5. -

Equating E[Eﬁ] to Py yields o = 2(p0 - Bo)/(mﬁl). Therefore, from (11)
it is seen that a short-run growth rate policy in which E[g(t)] = Bo +
aot satisfies the desired long-run policy goal of E[E;] =0, Further-
more, from the first equation in (9) we have,

E[-}in] =0y
Where'§$ is the average of the actual realjzed short-run growth rates
for the m month period.

It should be noted that the short-run growth rate policy for
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which E IB&E)]'é Bo + o t represents a policy of constant growth o
over the m month period of interest. This short-run policy aimed at
achieviﬁg a given long-run growth rate goal is, of course, implicitly
expressed by the equation system:

(14) y(©)

B(t)

B(t) + e(t)

B(t-1) + o + u(t)
where the forcing policy o is chosen as o =f2(pO —,Bo)/(m+l). The
equation system (14) is of the same form as the Kalman-Bucy model for
short-run growth rates given in (9).
Returning to the adjustments model suggested earlier, write

equation (8) as:
(15) y(t) = B*(t) + e(t)

Bx(t) = 8(t) + p + u(t).
Suppose the same long-run average growth rate goal e, is desired. Then
the two models (14) and (15) have identical expected short-run growth
rates if:

Bo + ot =op_ + 60 (v) ,

or, equivalently, if the adjustment policy is given by:

- -3 )2t _
(16) 8.(6) = (o, =B - D).
It is readily shown that:
2(p; = 8)
So(t) = 60(t—l) + e} s

which was suggested by the ad hoc empirical analysis previously

discussed.
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Thus, when the adjustment policy (16) is selected in (15),
the growth rate models represented by (14) and (15) have identical
average long-run growth rates po-and the expected short-run growth
rates E[B(t)] and E[B*(t)] associated with the two models are also

identical.

RECURSIVE BAYESTAN ESTIMATION

Now consider the situation in which the long-term policy
vector a in (2) is assumed constant but unknown. An algorithm for
recursive, Bayesian estimation of o is presented below. As mentioned
above, while long-run Federal Reserve policy is likely to shift over
time, it may be reasonable to regard it as fixed during a give time in-
terval. To the outsider interested in estimating this fixed policy
and updating these éstimates as new data become available, the following
model provides useful insights.

Suppose that at time t = 0, ¢ has a proper normal prior dis-
tribution with known moments:
(17) " NG (o), 5,(0)),
and that, given Y'(t-1) = (y'(1),...,y'(t-1)), the posterior distri-
bution of o is normal
(18) (@YD) ~ NG (e-D), § (e-D)).
Suppose, further, that the errors g(t) and u(t) in (1) and (2) are
normally distributed with known covariances R and Q, respectively.

Then by Bayes theorem:
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(19) P(a|¥(t)) = Pé%;%ﬁ;?iigflig)

<P (y(t)|a,Y(t-1))P(a|¥(t-1))

mlp(t)l-éexp[L%lly(t) - Xé(t)llD(t)-ll

Isa (t'l)l—éeXP[“%l,“ - &(t-l)llsa(t—l)—ll

where B(t) is the mean of the marginal distribution of B (t) given Y(t).

It is shown by Enns [4] that:

(20) 8(0) = B(e]t-D) + s, (e e-DX'e(e) (D) - W(e[e-1)),
where

(21) B(t|t-1) = T8 (t-1) + a(c-1)

(22) SB(tIt—l) = s(t]t-1) + 5,(t-1)

(23) c(t) = XSB(tIt-l)X' + R

and S(t|t—l) is given in (6).
By completing the square in o in the exponent of (19) it can

then be shown that, given Y(t), o has normal distribution with mean:

(24) a(E) = a(t-1) +§_(e-DX'(B(e) + %5 _(e-Dx' )™
(y(t) - XB(t|t-1)),
and covariance matrix:
(25) 5,(t) = 8_(t=1) = §_(e=)X'(D() + XSa(t—l)X')_lxsa(t—l),

where D(t) is given in (7).
In addition, B(t) can be shown to have a posterior normal
distribution with mean g(t) and covariance:

(26) $(8) = 5, (c|e-1) - SB(tIt—l)X'C(t)_lXSB(tlt—l).
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The updated Bayesian estimator for a in (24) is similar in
form to é(t) in (3). The difference y(t) - Xé(t]t—l) is the error in
the one-step ahead estimation of y(t) and its coefficient resembles the
Kalman gain K(t) = S(tlt—l)X'(t)D(t)“l in (3). Hence, &(t) consists of
the previous estimate ;(t—l) with a correction for the latest observa-
tion. Furthermore, the estimator é(t) in (20) differs from (3) because
of the presence of the one-step ahead forecast covariance SB(tlt—l)
which includes a measure of the uncertainty about o through Sa(t-l).

It is interesting to note that, under rather mild assumptions,
the difference Sa(t—l) - Sa(t) is positive definite. A similar state-
ment about S(t) is not generally true. This reflects the fact that a
is fixed and additional observations can only increse the precision of
its posterior distribution. On the other hand, B(t) is a time-varying
parameter whose posterior distribution may have progressively de-
creasing precision.,

These observations lead to conjectures about the limiting
distribution of o which are currently being studied. For the appli-
cation at hand, small sample properties are likely to be of equal
interest, however. Hence, the choice of the prior distribution moments
for o may be crucial and offer a means of introducing a subjective

opinion about Federal Reserve policy into the estimation procedure.

MAXTMUM LIKELIHOOD ESTIMATION OF THE 'COVARIANCES R AND Q

The above analysis assumed exact knowledge of the error
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covariances R and Q. When these matrices are not known the "repro-
ducing" feature of the distributions of B(t) .and-o, is, in general,
lost. To obtain (suboptimal) estimators numerical methods can be
employed. For the special form of the money supply growth model, an
approximate maximum likelihood method has been explored by Enns [4].
This approach is an extension of a model developed by Cooley and
Prescott [1].

The basic estimation problem is the allocation of the error
of estimation between the transient and permanent factors represented

by R-and Q, respectively. From (10) the state equation can be written:

N+1
(27) B(t) = (1) - (M-t+l)o - T  u(s)
s=t+1
and
N+1
(28) y(t) = XB(N+1) - (N=t+1)Xo _/Xs=i+l u(s) + e(t).

From (28) it can be seen that, given a, the vector z(t) = y(t) +
(N-t+1)Xo, has a normal distribution:

(29) z(t) ~ N(Xg(N¥+1), (N-t+1)XQX'+R)

Therefore, the vector Z' = (2'(1),...,2'(N)) has a joint normal distri-
bution:

(30) Z ~ N(Xg(W+1), W& + (I-W)&R)

where W is the symmetric NxN matrix with elements

(3D wij = min(N-i+1,N-j+1), i,j = 1,...,N

(32) ¥ = XQX' + R.

In (30),'§' = (X',...,X") has dimension rxNp and § is the Kronecker
product operator.

Now consider the symmetric matrix G with elements gij



tisfyi .. = (1-g..)o..
satisfying r,, ( glJ)GlJ

and 0 5«gij < 1, vhere rij and gij are the
individual elements of R and Z, respectifely. The purpose of G is to
allocate %L between R and XQX'. Then the covariance of Z in (30) can
be written as:
(33) Cov(Z) =V = ((1-g)I - gW) & + (I - W)RA.
Here, g is an arbitrary value satisfying O < g < 1 and A is the
symmetric pxp matrix with elements aij = (g—gij)Gij.

The likelihood function for Z is:
(34) LG8 (1) 5| 23] v] expl 4l | 2 - B w1 | 1]

where for the application presented here,

(35) 1100 s;‘ By
x=loo11|]|? 7|5
~ 0
Now write B' = (61,82) and consider the special case where gij = g for

all i énd j; Then V reduces to

(36) V = FRE

where F = (1-g)I + gW. This simplification causes allocation of %

between R-and XQX' to be the same for all elements of the covariance

and reduces the computational effort of the estiamtion procedure.
The log likelihood function becomes:

(37) 1nL(8,7;2) = - In|F| - 3 1n[z| 4|2 - F6|| -1

_ B N 1 N st ~ 1 -l -
= -5 In|[F| -5 Infz| 512 £ (2(s)-8)"2 "(2(t)-B)
s,t
=1

where £5C is the (s,t) element of F_l. Using matrix differentiation
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methods, see Dwyer [3], the maximum likelihood estimators, for a given
value of g, become:
(38) b(g) = (X' (@)D X' (7m) "z

N N
= (xS hTy S5y

s,t s,t
=1 " =]l
and
a 1 ¥ st " o
(39) L(g) =5 & £ 7(2(s)-b(g)) (z(t)-b(g))"
s,t
=1

By substituting ﬁ(g) and g(g) for é and y in (37) we obtain

the concentrated likelihood function (except for a constant):

(40) 1(8:2) = - Baal¥] - Yaa[5ce) .

Following Cooley and Prescott [1], the strategy is to search the in-
terval 0 < g < 1 for the value g* which maximizes (40).

As those authors observe, this method is computationally
impractical if the NxN matrix F must be inverted for each value of g.
However, they demonstrate that the variables can be transformed,
independent of g, to produce a diagonal covariance matrix. In this
extension the covariance of Z is block diagonal., Suppose D(g) = PFP'
is the.Cooley—Prescott transformation. Then
(41) z% " N(X*b, D(g)&)
where Z* = (PRI)Z and Xg' = (I,4..,I) is the pxNp matrix consisting of
pxp identity matrices. Also, partition Z* into N pxl vectors z*(1l),

eeesz%(N), and partition Xg into N pxp matrices X*(1),...,X*(N).
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Now (38) becomes:

42) bl = (') Xk ~x (0(g) 1) Tz
- (2 Aot e ™ x Lo e il
=1 4 (® e=19¢(8)

and (39) becomes:
N
Z .

43) B =§ I gy @) @v-bE)"

s,t t
=1
Equation (41) requires knowledge of % which is not known.

"~
One possible method is to obtain a preliminary estimate bOL using

S

ordinary least squares and use the residuals to form an estimate of ::
a N

(44) Sors = ¥ RGO PRICOE L

=1
This results in a two-stage generalized least squares estimation pro-
cedure resembling the seemingly unrelated regression model of Zellner
[12].

When the assumption regarding the allocation matrix G, namely
gij = g for all i and j, is not reasonable, the log likelihood function
(37) assumes a more complicated form because of the presence in (33)
of the term (I-W)RA. The maximum likelihood estimators of B and I, con-
ditional on g and G, are more.difficult to develop analytically.- Further-
more, the search strategy must be extended to a multiple search over
g and the %p(p+l) unique elements of G. One possible advantage in

expressing V as in (33) is that V—1 can be approximated by a truncated

Taylor series not involving F_l where F = (1-g)I - gW.
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In general, the maximum likelihood method described above
estimates XQX' but does not provide a unique estimate for Q. Since Q
is required in the recursive Kalman-Bucy model a generalized inverse
approach might be attempted since X generally is a singular matrix.
However, for the special case studied in this paper it is seen that:

(45) -511 %49

XQX' = *
991 992

Therefore, the identification problem is avoided.

To obtain the series z(t), t = 1,...,N, an estimate of o is
required. It can be seen from (28) that the first differences in the
y(t) series satisfy:

(46) A(t) = y(t) - y(t-1) = Xa + Xu(t) + e(t) - e(t-1),
for t = 2,...,N. In the example considered here, where o' = (O,al,O,

az), we have

(47) o

1
Xo, = o, '
Therefore, ordinary least squares provides the unbiased estimator
(48) o =‘E%I tg2 A(t),

which is simply the mean of the differences. This estimator is not, in

"~
general minimum variance. The series z(t) = y(t) + (N-t-1)Xq can then

be used in the-above estimation procedure,

For the recursive Bayesian estimation phase the maximum

likelihood estimators can be used to obtain the initial prior
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parameters. First note that the covariance Sa(O) has the special

form:
(49) 00 00
0 s 0 s
s (0) = 1L 12
o 00 00
_-0 SZl 0 322

The sij might be estimated from ;he residuals A(t) - &. On
the other hand, they might be assigned arbitrarily large values to
reflect an initial "vague" prior feeling about a. The estimate &
could be used to assign a prior mean o(0).

Similarly, the non-zero elements of é(lIO) might be set equal

2]
to the maximum likelihood estimator B(N+1), where time N+l corresponds

to time t = 0 in the Kalman-Bucy model.

SUMMARY

' Computer algorithms are being developed by the authors for
implementing both the step-wise maximum likelihood estimation procedure
for R and Q described above and the recursive Bayesian procedure for
estimating o and, subsequently, B which employs the former maximum
likelihood estimates.

When the model interpretation regarding short-run and long-
run growth rates of the money stock aggregates M1 and M2 is considered,
these theoretical results developed for the general Kalman-Bucy model

provide more adequate statistical methods than existing ad hoc ones for
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empirically examining and estimating the Federal Reserve policy
pertaining to these growth rates., Using these new statistical methods,
Bayesian inference and forecasting with respect to monetary policy can
be pursued, and these Bayesian methods permit prior opinion. about
monetary policy to be used in such analyses. In addipion, using these
statistical methods, conditions under which patterns in monetary policy
are recognizable can be investigated and Bayesian comparison of hypoth-

eses regarding policy undertaken.
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