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PREFACE

This is the final report on Project 2041-3,

Previously a technical report entitled "On The Equations of Motion
of Cylindrical Shells" was issued, a copy of a paper based on this report is
enclosed.

The "water-entry" problem (subject one of the contract) was
carried out to the point where it became clear that for practical purposes
the methods of analyses available at present are not suitable, Before a
problem as complicated as this can be successfully solved, a great deal of
fundamental research on dynamical problems of shells must be conducted.

ii



— ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —

FINAL REPORT

NOTES ON THE
"WATER-ENTRY" PROBLEM

1. Introduction

This report contains a partial analysis of the problem of deter-
mining the stresses which arise in a torpedo-like structure when it is fired
or dropped into water, This is usually referred to as the "water-entry"
problem,

For purposes of analysis, the torpedo is assumed to be composed of
a thin circular cylindrical shell (the body), joined at one end by a hemi-
sphere or an ogive (the nose) and at the other by a cone (the tail), The
mass of any mechanism inside the body is assumed to be distributed in the
nose, body, and tail in such a way that the density of the body is constant
and the center of gravity remains unchanged,

It has been observed that, at least for relatively long torpedos,
the failure of the structure occurs in the cylindrical portion, Therefore
the "water-entry" problem may be idealized to that of the determination of
the stresses in a thin circular cylindrical shell, loaded by inertia forces
and subjected to appropriate time-dependent boundary conditions,

The authors appreciate that the idealization of the "water-entry"
problem stated above may not correspond too closely to the truth., However,
if any progress is to be made on this very complicated problem, some such
simplification is essential,

2. Equations of Mbtionlgg‘Cylindrical Shells

The basic equations governing the displacements and stresses for
an elastic cylindrical shell were discussed in detail in a previous report(®)¥,
Therefore only those equations which are essential to the present discussion
will be recorded here,

%A superscript in brackets ( ) refers to the corresponding number in the
bibliography.
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The coupled equations of motion for a cylindrical shell are:
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where k =
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and u, v, and w
(see figure 1),

3 h = the thickness of the shell; a = the radius of the shell;

are the displacements in the x, s, and z direction respectively

The quantities Py, Pg, and P, represent the effective exter-

nal and body forces per unit area of the middle surface,

They are given by
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where p is the density of the shell., Py, Py, and P, are those components of
the load which do not contain the displacements,

2. Calculation of EE’ Ei’ EEE.E&
The reactive forces which exist between the water and the torpedo
(in general the nose) during the time of entry cause the torpedo to undergo
rigid body motions., Therefore, the quantities Py, Pg, and Py will contain,
in addition to gravity forces, inertia forces due to this motion. These
inertia forces may or may not be large compared to the reactive forces at
the time of entry; in any event, they must be calculated for purposes of com-
parison, Although the rigid-body motion of the torpedo is truly three-
dimensional, motions other than those in the vertical plane are, in general,
small and the additional refinement achieved by their consideration is not
Jjustifiable in the present analysis,




— ENGINEERING RESEARCH INSTITUTE < UNIVERSITY OF MICHIGAN —

/

Figure 1 shows the cylindrical shell together with the forces which
act on it and the two eoordinate systems being used, The forces Fj and Fa
and the moment M are the gross reactions between the body and the nose and
are assumed to be known, The displacements u, v, and w are measured with
respect to the coordinate system x, s, and z where x is along a generator;

5 is in the circumferential direction, and z is directed along the inward nor-
mal to the cylinder, The coordinate system OX, 0Y, and 0% .is fixed in the “odyv
with point O being the center of gravity of the complete structure. The axis
OY remains horizontal and any rotation that may take place is about this axis
through the angle & shown

The equations of motion of a rigid body referred to a set of axes
fixed in that body arel

->
>
n [ 4 Bxv)] =F
dt
a (+ ﬁ) - i (3)
-—_+ X
dt J
where m = the mass of the torpedo,
> ;
v = the velocity vector,
& = the instantaneous angular velocity vector,
>
F = the applied force,
>
h = the angular momentum vector, and
->
M = the applied moment.

If 1, j, and k are the unit vectors along the X, Y, and Z axis
respectively, then for the case of plane motion and for the loadings shown
in Fig, 1, it follows that

1 See for example, reference (2), P, 132

3
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- -+ -»> ->
v=v1 w = méj h

>
11t Vsk ’

> >
h =hpj ¢ hp = Towp

I> = the mass moment of inertis about the 0Y axis, r

>

> >
F=(F, -mgsin®) i+ (-F3 + mg cos 6) k

> >
M= - (MFaR) J§ ,

J

X = the distance from the nose end of the cylinder to the center of gravity,
The subscripts 1, 2, and 3 refer to the components in the X, Y, and Z direc-
tions respectively, Introducing (4) into (3), there results

m(ii_v__];_,_vswz):Fl-mgsinG |
at
dv
m (——i - V1 wé) = -Fg + mg cos @ } (5)
dt
IZ 9—&-%=-M-F3}-C.v
dt N

If T denotes the radius vector from the point O to any point in the
middle surface of the body, then the velocity of that point, referred to the
body fixed coordinate system (X, Y, Z), is

| Vp=0 X1 (6)
i
and the acceleration is2
->
Ar=§€¢r+$x;;r
(7)
->

A I S
dxr+oxwoxr.,

-
=

>

where w x ; = the tangential acceleration and

+
r =

® X0 x the normel acceleration ,
From equation (3), (4), and (7), the total acceleration of a point is found
to be
e [} 0 -+
AT={(D‘2T3 -(DSI‘1+V1+V30.)2}1
° o g (8)
+ (w211 B T3+ Vs -3 w2} k.
2 In both equations (6) and (7), the magnitude of T has been assumed to be
constant, , This implies the neglect of Coriolis acceleration (a% xXr),
The term f* has already been accounted for by equation (2),

L
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It now remains to relate the coordinate system (X, Y, Z) to the
gystem (x, 8y z)., Let the unit vectors in the direction of x, s, and z be
i', J°, and k'; then from figures 1 and 2 it can be seen that

> 2 1 8

it =1

-» - -

J'=JcosB +ksinp (9) a | B/ X

> > -+

k' = =j sin B + k cos P =d
and ry = (x - X)

rs =a sin B (10) k

rg = =-a cos B ., Mg, 2

Using equations (8) and (9) and taking into account the weight of
an element of the body, the expressions for Px, Pg, and Pz are

- 4] [
Px = -ph-[wera -W3.r1 + Vy + Vg W2 + g sin G}

0 o
-ph ([«mgrl-wérs + Vg =vilp) 8in B - g cos © sin B} (11)

s
)
]

o
-oh [[qw2r1<b§r3 + 33 -Vi2] cos B - g cos © cos ?} "

d
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In view of equations (5), (11) may be rewritten as

- ° 1
Px = -phf wgTrs - wAry + ﬂ}
m
Pg = =-ph {ngrl - Wers = EE}sin B (12)
m
- 0
Pz 3 -Oh{-wzl‘l - wgrg - Eﬁ}cos B .
m N

The angular velocity we is found from the third of equations (5).

4, Boundary Conditions

The true boundary conditions for the cylindrical shell are in reality
continuity conditions, a requirement that the state of stress and deformation
across the junctures between the nose, body, and tail must be continuous,

In order to employ these conditions, three separate problems must be solved
and then the stresses and displacements at the boundaries matched - truly a
difficult and tedious task, Therefore, the continuity conditions must be
replaced by "appropriate” boundary conditions which are as realistic as
possible,
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Whatever the conditions selected at the end x = O, they are subject
to the restriction that their integrated effect must give rise to the proper
reactions (resultant force and moment) between the nose and the body (see
Fig, L). At the other end (x = L) it may be assumed, justifiably, that any
resultant force and moment which arises due to the mass of the tail can be
neglected as compared to the large reactive forces between the water and the
nose, Therefore, the boundary tractions at x = I, may be chosen to be self
equilibrating.,

My s
a My
| ) B
\\— / .
il e
3 Fig, 4

fdge x=0 Showing Stress Iesultants and Couples,

Referring to Figs. 1, 3, and L4 it can be seen that the boundary conditions at
X = 0 must satisfy the conditions
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where Sy = Qx + éﬁgg ;
Os
B=5/a;
and
T - N - Mys
X T U'Xs "‘a— ¢

The definitions of the stress resultants and couples will be found in reference
(L), The first three of (13) are force equilibrium and the last three are
moment equilibrium equations., It is obvious from equations (13) that the
stress resultants and couples, and consequently the displacements and their
derivatives on the boundaries may be specified in many ways. If the problem
at hand were statical, then Saint-Venants' prineciple would give assurance

that any choice consistant with (13) will yield the same stresses except
locally. However, in dynamical problems of shells, the boundary conditions
affect the natural frequencies, and consequently the resonance points and
amplification factors, in a manner which is not too well known,3 Therefore
some care should be taken in selection of the boundary conditions, Aside

from physical considerations, the choice of boundary conditions has a profound
effect on the complexity of the mathematical analysis, as will be shown in

the next section.

5. Method of Solution

There are three standard techniques available for the solution of
dynamical problems of elasticity when the boundary conditions are time-
dependent., These three methods will be discussed in this section,

a, Whenever the boundary or edge conditions are of the force or
moment type (specification of a force or moment at the edge), then Lagrange's
equation can often be used to advantage., The calculation of the generalized
work corresponding to the edge loadings is usually not too difficult, The
difficulty arises in the determination of the generalized coordinates, In
classical beam problems, for example, the generalized coordinates are the
normal modes and their determination is a rather simple task, The situation
in the case of shells, however, is far different., Here again, the normal
modes are the generalized coordinates, but their determination is in general
difficult,

If the displacements are assumed to have the form

3 The one set of experiments which is available on the natural frequencies of
cylindrical shells (%) is inconclusive., Most of the cylinders tested were
very short and it appears conceivable that the actual boundary conditions
were vastly different from those the investigators postulated.,
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and these expressions are substituted into equations (1), when By, Pg, P,
have been set equal to zero; there results the following characteristic equa-
tion for the determination of \ :

KB-[).[.nZ-LB._-Zl 7p2])\6+[6n4‘2(2+v)n2+}-1_‘;12_7p2

(1-v)
o (5 (f:z) n2+%;-)+l—2_3; 72 p%] >\4-[hn6-2(3+v)n4+———-———-(5;5v) n2
- 902 (° (i::) n4+2§2+ (5;21’)% 72 p4 (i‘% i‘+f_t; n2)] \2  (15)
+ [n8 -2n% 4 n4 - op2 (%—:—;— n8+£-4 +E) + 2 pe (3—:% %a‘f 1%7 n4
where ;- 1-v2) pa?

Once the natural frequencies p are known, then (15) can be solved numerically.
However, the natural frequencies are found by substituting (14) into the
boundary conditions., Thus the seemingly paradoxical situation arises in
which the p's cannot be determined until (15) is solved, but (15) cannot be
solved until the p's are known, One way to circumvent this difficulty is to
guess the form of A\; however, this has been done only for the case of pinned
ends. For any other boundary conditions, exact values for A have not been
obtained and therefore the normal modes are unknown.
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b. The second method, known as the Mindlin-Goodman (3) method, is
applicable for stress as well as displacement boundary conditions, This
method consists, essentially, of defining each displacement as the sum of
two functions, one of which is chosen to remove the time-dependent edge
conditions. The problem is thus transformed to a forced-vibration problem
with homogeneous boundary conditions, For practical reasons, it is again
essential that the normal modes be known, thus the same difficulty as out-
lined in Part a is again encountered.

c. The third method is to use the Laplace transform(h). This
method has the advantage that the time-dependent boundary conditions are
handled in a straightforward manner, However, the task of obtaining the
inverse transform can be very difficult.

The Laplace-transform approach was used on the problem of a cylindri-
cal shell loaded at the end x = O (see Fig. 1) by the forces

F
- z <z 1
Fi =Fp sin X 0Zt=r |
T
=0 t>T f'l |
Fg =Fasin®™ 0%t %+
T
=0 t>T _ o
T ' t
Ll - -.—
where Fy and Fgq are known constants, Fig. 5

The edge x = L is taken to be free and the shell is assumed to be unstrained
at t = 0,

In view of the loading, the boundary conditions at x = O are
chosen to be

F
N = - =1 M =0
X|%=0 ora X|x=0
(16)
B _ Fa o
Tx|g=0 = O » %X|x=0 = 75 5P -

Equations (16) appear to be the simplest conditions which will satisfy equation
(13). The boundary conditions at x = L are:

=0

I
o

NX IX::L Mx IX=L =

(17)
Tx|gep, = © % |xeL,

Before transforming the above problem to the Laplace plane, it is
necessary to solve the third of equation (5)and then calculate Py, Pg, and
P, from equation (12),
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After transformation, the problem consists of the solution of three
partial differential equations in the two independent variables x and s
(equations (1), transformed), subject to eight boundary conditions (equations
(16) and (17), transformed), The determination of the solutions of the system
of three equations can be reduced to the determination of the complete solu-
tion of a single eighth-order nonhomogeneous equation4 plus the pafticular
integrals of two fourth-order equations,5

The single eighth-order equation has the transformed w(i.e.W) as the
dependent variable, and the homogeneous solution may be found by assuming

% AX
- \ a ns
w =§£ A e cos = .
n=0
The resulting characteristic equation for the determination of A\ is the same
as equation (15) when p2 is replaced by -p2., Some preliminary computation

has indicated that the roots of the transformed characteristic equation, at
least for small values of n, have the form

~
N;2y354 = t ctid
A58 = te g (l@)
>‘-7}8 =tiad J

where ¢, ¢, d, and d are, as yet, unknown functions of the Laplace parameter p.

Using equations (19) and equations (15) of reference (1), expressions
for the transformed displacements U, Vv, and W may now be found, These expres-
sions involve eight arbitrary constants (one for each \) as well as the un-
known functions c, ¢, d, and d. Substitution of the expressions for 4, v, and
w into the transformed boundary conditions yields eight simultaneous equations
for the eight arbitrary constants., The determinant of the coefficients of
these constants is directly related to the natural-frequency equation, and
the roots of this equation must be found before the inverse transform can be
obtained.

The transformed frequency equationé cannot be solved immediately,
since it involves the unknown functions ¢, ¢, d, and d, However, if equations
(19) are substituted into the transformed characteristic equation, then a
system of nonlinear algebraic equations is obtained, These equations must

4 Equation (15c) of reference (1), transformed,
5 Bquations (15a) and (15b) of reference (1), transformed,
e The transformed frequency equation, i,e. the expansion of the determinant

mentioned above, has not been written down here because it would occupy at
least 20 pages of this report, 10
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be solved simultaneously with the transformed frequency equation to obtain
the desired roots, This is clearly a task which exceeds all bounds of practi-
cality. ‘

The solution of the transformed frequency equation for the case
n = 0 (symmetrical vibrations) can be carried out with considerably less -Aif-
ficulty, since the transformed characteristic equation can be factored and
explicit expressions found for the A's, After tonsiderable computation, it
was found that the symmetricel frequencies, for the dimensions used, were
very close to the frequencies obtained from the membrane theory; intuitively
this is exactly what one expects to find., Unfortunately, the symmetrical
problem is of little interest as far as stress analysis of a torpedo is con-
cerned and therefore the problem was not carried to completion,

6. Conclusions

Before a problem as complicated as the "water-entry" problem can
be solved, a great deal of fundamental research must be done on dynamical
problems of shells., The authors firmly believe that unless this fundamental
research is undertaken there is no hope of obtaining any useful design
formulas.,

11
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