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Introduction

The purpose of this paper is to compare and contrast data
retrieval and document retrieval. Although these two types of
retrieval will be better defined, the meaning of each is just
what we might expect. That is, data retrieval is the type of
retrieval we wusually think of as occurring in a network,
hierarchic, or relational database. Document retrieval is more
akin to the process of looking for library books about some
topic and then being presented with a list of pertinent books.
More particularly, we shall assume this process is managed by a

computer.

Somewhat paradoxically, authors who write about these two
types of retrieval seem to fall into two camps. Either they say
the two processes are so similar--since they both manage the
storage and retrieval of records--that it is not terribly
important to distinguish them, or (and this is perhaps more
common) they suggest the two processes are almost entirely

unalike.

My feeling is that each of these positions is too extreme.
To make this point, this paper will be organized as follows:
First, a "life cycle"” of an information system will be
presented. Without great detail, we will examine, in order, each
step in this cycle with respect to data retrieval systems.
Document retrieval systems will also be examined against the

backdrop of this life cycle. But, to keep matters as clear as we



can, we will not look at each step of the cycle in order.
Instead, we will consider general need; then logical models;
then system performance and evaluation. Finally, we will re-
examine the entire cycle in order, from a better informed

perspective.



Life Cycle of an Information System

A computer information system has as its components
computer hardware, system software, application programs, files
of data, and even the people who must use the system. The
complexity of such systems is so great that they are not just
built cnce and for all. Instead, information systems evolve
through a life cylce. This cycle, described in greater detail

elsewhere, is comprised of these stages:

1. Statement of general need: the information requirements of an

enterprise are stated.

2. Examination of need: the need is studied in greater detail; a

feasibility study may be performed.

3. External system design: a logical, user-view design of the

system is created.

b, Internal  design: the system's internal structure s

considered and formulated.

5. Construction: a system meeting external and internal

specifications is constructed.

6. Testing/simulation: the system is tested in a real life

setting or its performance is simulated.



7. Operation/observation: a large scale operational system has

its performance monitored.

8. Maintenance/modification: the system is modified to better
suit the purposes for which it was created or is simply

maintained in proper working order.



DATA RETRIEVAL (Fact Retrieval)

General need

Databases are constructed to house, and permit the
retrieval of, data (or facts). We use the terms data and facts
interchangeably, since what we store in the database are facts
about the things we are interested in. The stored data should
conform to various constraints we may wish to impose. All
zipcodes, for instance, should be b5-place integers. No state
should have two capital cities. The data should be private, easy
to get to when frequently needed, and generally ‘'well-

maintained".

Particular needs (examples)

More specifically, fact retrieval may be used in a number
of ways, including: pay-roll information for pay-check or tax
purposes; a monthly report on inventory; to help book passengers
on airlines flights; decision support; or combinations of the

above types of uses within one organization.



Modelling within a data retrieval system

The information need of an organization is wusually
initially modelled independent or any subsequent constraints on
the data that may arise due to choice of particular logical

model of data or detail of implementation.

This initial pass at representing the data, which produces
an information structure, is followed by the modelling of user
views (or subschemas); the integration of these views into a
single schema; and the implementaion level decisions in which

data structures and device details are made.



Schematically, we view this process as something like:

Study of need

' User views !
! (Subschemas) '
domm e ——— +
External System
design
+ _________________
' Logical Structure'
! (Schema) !

Internal System
o e ¥ + design

We consider modelling at the information structurelevel
first, after which we will look at external and internal system

design.



Examination of need: (Information Structure)

At this level we try to determine just what type of
information an organization wants to maintain. Basically, two
sets of questions arise: questions about the entities (things)
we wish to store information about, and questions about possible

relationships among various kinds of things.

Entities

What type of objects or events from the real world are we
interested in and going to store data about? At this level it
would be inappropriate to say we will store data about John Doe;
rather, we would say that information about people (a type, in

an undefined sense) is to be maintained.

Every type of thing or event should be describable by a
collection of pertinent attributes (facts) which characterize
for our purposes a member of the type. Name, social security
number, and address might be the relevant attibutes we wish to

store about any person, for example.

Certain attributes (or sets of attributes) may distinguish
objects of the same type. If no social security number is
assigned to more than one person, then social security number
distinguishes any two people (and so the way they can be
accessed in computer storage). Any attribute or atribute set

having this property is a candidate key.



Finally, we may wish to examine the aggregation of
attributes we lumped together to see if they might be
partitioned to represent several object or event types instead
of one. Conceivably, one type of thing under consideration might
specify as attribute: name_of_person; last_book_person_read;
author_of_that_book; author's_spouse; spouse's_physician; ... It
should be apparent that we are trying to include too many
unrelated facts in this "mixed" entity type. Semantic guides
help us normalize entity-type descriptions so that we do not end

up with "entities" which are so all-encompassing.

Relationships

After we have identified the entity types we are interested
in, we still have to ask what relationshps exist between or
among such entity types. |f we have a PERSON entity type and a
CREDIT_CARD entity type, an obvious relationship is that of a

CREDIT_CARD belonging to a PERSON.

Additional information we need to make explicit about a
(binary) relation(ship) is whether or not it is an ("inverse")

function (1:M) or a general relation (M:N).

We tie together some of these ideas by producing an entity
structure diagram incorporating the entities and relationships
we have used as illustrations, plus a new entity type and

relationship.
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PERSON

- - - —F = - —— ———_—_——

- - ————————

Bachman Diagram;
DBMS-independent model
of data organization

In this diagram we are modelling the fact that a person can
hold zero or more credit cards (but no two people hold the same

card) .

The notational conventions of this Bachman diagram are:
entities are represented by labelled boxes with entity
attributes contained inside the boxes; entity keys (one of the
candidate keys) are underlined; a directed arrow indicates a 1:M
relation from the entity type at the foot of the arrow to the

entity type at the arrow head.
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Logical Design

After the information structure is modelled, we begin to
make further models which depend on the database management
system we will use to store our data. There are three major
""generic" logical models: network, hierarchic, and relational.
We consider briefly the network and relational models, since the
hierarchic model is more limited in what it is intended to

model.

Network Schema

Definition

A Codasyl-type model employs two major logical constructs.
The first, record type, names the types of entities our database
will consider and lists the attributes which will be associated
with each entity type. The other, set type, establishes
realtionshps between a particular entity type and one or more
other entity types. Particularly, one record type is deemed to
be a set-owner; one or more record types are deemed members of
the set type. The owner/member distinction becomes meaningful in
examining set occurrences. For, in any set occurrence, we have
exactly one owner record instance and zero or more member record

occurrences which are logically linked to their member record.

We illustrate with pseudo Data Definition Language
statements how we might define one of the records and one of the

relationships depicted in our information structure diagram:
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RECORD name is PERSON
Location...
Within...

Person_Name

Last
First
SSN
Address

SET name is OWNS_CARD
OWNER is PERSON
Sorted...

MEMBER is CREDIT_CARD

Pseudo Data Defintion Level Statements

We conclude certain statements with ellipses (...) to

indicate that these statements do not really convey logical

(non-implementation) information and to remind us that actual

Codasyl DDL statements (including those above) do exist which

begin defining such storage structure information.
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instantiation

By using data manipulation commands, we represent actual
entities and relationships which fit the template of allowable
data created by our data definition. That is, whereas data
defintion statements tell us what data must '"look 1like" (e.g.
that any person is modelled by storing a first and last name,
social security number, and address), data occurrences
(instances) and set occurrences which conform to such rules are

created and stored in the database.

-As an illustration, we show a portion of a database
conforming to the information structure (and Data Definiton

statements) specified:

- — = - - —— = - - = = - -

_________________________________________________ +
I 1
Owns Card !
i
.|...> __________________________________ !
| Sears | #270 |--> | Hudson's | #465 |
---------------- G I e 4
1 !
Charges_Qutstanding ' Charges_outstanding
| ' I '
------------------------- -t

Comments

1. We are merely indicating that Mary Jones holds two credit
cards (two that we have taken the time to draw, anyway). We have
drawn ring structures to represent set occurrences (one

connecting Jones to her cards; and one for each card and the
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items outstanding charged to that card). Codasyl networks do not
have to be implemented using ring structures, however.
Logically, we require only that we be able to identify any set
member with its owner; a set owner with all its members; and

each set member with all other members of that set.

2. Record types may be members of more than one set type. Any
given set-type occurrence defines a binary relation which is
1:M. That is, each record occurrence of the owner record type
has associated with it zero or more record occurrences of the
member record type(s). But no record occurrence may have two

owners within the same set type.

3. Values are easily supplied to record occurrences. This point
may seem obvious. It simply reminds us that once we are given a
mold to which data must conform, filling in the values for a
particular record occurrence is not subject to debate. In terms
of the model we have defined, if we want to represent Mary Jones
in our database, values for her first and last names, social
security number, and address can be supplied without difficulty:
her firsf name is Mary; last name is Jones; etc. | mention that
values are easily supplied in data retrieval not because it is
subtle or profound--but as a contrast to document retrieval,
where there is considerable difficulty in deciding which values

we ought to use in describing a given document.

| make a similar comment now about the relationships we

witness in either data- or document retrieval. In data
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retrieval, ownership of one record occurrence by another is not
going to be debated either. (In our example, again, the Mary
Jones record is related to (owns) the Sears credit card record
with Card_# 270.) In document retrieval, the main inter-document
relationships deal with document similarity. And in determining
document similarity we cannot simply say yes, document-x is
similar to document-y or no, it is not. Our relationships will
likely involve degree of similarity. | will describe this
distinction more when we discuss document retrieval,
particularly clustering. For now, we see that data- and document

retrieval differ with regard to this issue.

Relational Schema

Definition

The only logical construct used in the relational model of
data is the relation. A relational schema is most easily thought
of as an ordered set of attributes (or names of attributes) and

a corresponding set of values (a domain) for each attribute.

For illustration, we examine the two relational schemas
below:
PERSON (LAST_NAME, FIRST_NAME, SSN, ADDRESS)

CREDIT_CARD ( STORE _NAME, CARD _#, PERSON_SSN%)

The PERSON relational schema is comprised of the attributes
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LAST_NAME,  FIRST_NAME, SSN (Social Security Number), and
ADDRESS. The domain of LAST_NAME is the "set of last names of
people." The domain of SSN is the set of all valid Social
Security numbers, i.e. all positive, 9-place integers. |
underline SSN in this relaional schema to show that it is a key
(attribute or set of attributes which distinguishes a unique
record occurrence conforming to this schema). (In the
CREDIT-CARD schema we see a concatenated key--i.e. set of

attributes forming a key.)

In the CREDIT_CARD schema | have also #*'d the attribute
PERSON_SSN. This was done to point out that this attribute is a
foreign key; that is, PERSON_SSN is a key to the PERSON
relation. Using the terms 'relation" and 'tuple'", each to be
discussed in the next section, | mean by the fact that
PERSON_SSN is a foreign key into the PERSON relation that the
PERSON_SSN wvalue of a given tuple of any relation over the
CREDIT_CARD relational schema picks ouf a unique tuple in any
relation of the PERSON relational schema. Less formally: tell me
the PERSON_SSN of some CREDIT_CARD, and I'l1 tell you the PERSON

""associated" with that CREDIT_CARD.

By embedding foreign keys in this way, we can mimic the set
ownership between record types in the network model. That is,
the foreign key PERSON_SSN embedded in the CREDIT_CARD
relational schema serves the purpose (in the way we are using
it) of the "OWNS_CARD" set we defined. Because relations, then,

serve to define both '"things" and '"relationships", no other



logical construct is necessary.
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Instantiation

Using the relational apparatus, we again depict in our
database the fact that Mary Jones exists and that she has a

Sears and a Hudson's credit card.

Last_Name First_Name SSN Address
Jones Mary 111-22-3333 150 S. Main

Store_name Card_# Person_SSN
Sears 270 111-22-3333
Hudson's k65 111-22-3333

CREDIT_CARD relation

i
A tuple is a particular set of values (again, think ordered

set of values) meeting the constraints imposed by domains and
conforming to the '"template" our definition of a schema
establishes. <Jones, Mary, 111-22-3333, 150 S. Main> is a tuple
"matching" the PERSON relational schema '"template." In the same

way, we see one tuple each for both of Mary Jones' CREDIT_CARDs.
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Collectively, a set of tuples over the same relational
schema is a relation over that scheme. The name relation is used
because relations (the notion we're trying to define now) are
relations (in the mathematical sense; that is a relation is a
subset of a Caretesian product, this product taken over the
(ordered) set of domains we associate with the (ordered) set of
attributes associated to a relational schema). Actually, it is
more correct to défine tuples and relations without any notion

of order.

Like the DBTG model, the relational model is a logical
model. It looks here that we have defined a PERSON and
CREDIT_CARD relational schema and have produced illustrative
relations over each by filling in appropriately labelled flat
tables. Doing so is for communications purposes only. It is not
necessary to physically represent data in this ''table fashion"

when we work with the relational data mode.
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Storage Structure design: Internal File Structures

Physical files are real collections of records (data)
stored in the computer. At the storage structure level of design
we discuss the organizations of such files. The nature of the
stored data (is it indirect? that is, pointed to, or direct? are
the data sorted in some way?), the nature of the sequence of
records (do the records follow each other in contiguous storage?
or is the record sequence established by pointers?), and the
access mechanisms to be employed (how do | get to the record I'm
looking for?) are the kinds of questions we examine at this

level.

(We still postpone '"lower-level" decisions such as data
encoding, blocking of logical records into physical records, and
choice of physical devices on which to store our data. These

kinds of considerations we call physical-design.)

Storage structure is well studied. Some of the file
organizations (kinds of physical files) that we consider for use
are: heap, hashed, indexed, sequential, hierarchic, inverted,

and pointer organizations (and combinations of these).
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Construction/Testing/Observation/Tuning/Redoing

Let us suppose now that we have progressed successively
through the 'need" and desgin stages of our life cycle in
designing a data retrieval system. We next build a real system
for experimental usage in a chosen setting. Where possible, we
may choose to simulate the performance of the system or parts of

it.

If all is well (or mostly well) we begin to use our system
in the (non-experimental) setting for which it was designed. The
performacne of the operational system 1is then monitored.
According to what we learn from doing so, we may have to perform
again one of the stages in the life cycle. (Sometimes problems
in our system become obvious far before we make our system
totally operational. For what has just been said and what | say

next this makes no difference.)

The stage we return to depends on the kind of problem we
encounter. We may then have to re-do or adjust (tune) parts of
the system. At times, it may even become necessary to go back to
ascertain needs again. Finding one problem (for example, 'need"
was not properly ascertained) may make it necessary to perform
other steps again as well (logical design, for example is
therefore rendered less than adequate, too). Data independence
can help insulate us from some of these chain reactions. But
that is not at all my main point here. | mean to say only that

it will 1likely become necessary to re-think and/or redesign
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parts of our system.

The various problems we encounter, being of different
natures, arise in conjunction with certain kinds of questions. |
illustrate what | mean with a 1list of problem areas and

correspoding questions:

Problem

1. logical: Are all entities and relationships adequately
represented?

2. storage structural: Is record access efficient?

3. physical structural: Is it now (or ever) time to allow
(actually, cause) data to "migrate" from one medium or device to
another?

L, user: Is the system easy to use?

5. control: Are the data private? Are they recoverable?
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Loose ends

| bring up another issue which, when what ['m saying is
understood, may seem too obvious to mention. |ts import is only
in comparison to the document retrieval situation where the same
cannot be said. The point is: the fact (data) we ask to receive
will always be furnished if it is modeled and represented within

the system.

This statement is a 'data-access" (or, possibly, 'data-
entry'") issue. It says that to someone knowledgeable about a
data retrieval system, the data he or she wants will be easy to
obtain. For instance, for someone allowed to ask, it is simple
to find out Mary Jones' address or which credit cards she owns.
For the logical model of data presents us with a picture of what
information we can and cannot find in our database and, so,

(implicitly) how to access it.

(I'11 get ahead of myself enough to say that document
retrieval is not like this, however. There is no guarantee that
the ‘"right" document will be furnished to an inquirer, even if
he/she expresses his or her need reasonably well and this "right
document" is indexed and available in the system. Using some
document retrieval terminology, we can say that fact retrieval
systems are constructed with 100% precision and 100% recall, at
least if properly debugged. That is, the deductive, syntactic
nature of fact retrieval systems ensures that every time | make

a query | will be furnished with all the facts | need and no
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others.)

The final point | wish to make about data retrieval systems
is: other things being equal, performance is measure in terms of
space- and time-efficiency. These '"other things" can include
quite a bit, from ease of use to system security mechanisms. But
if these and other such concerns can be factored out, the chief
metric of system functioning is efficiency. Again, | suggest
what is to follow by stating that, in document retrieval,
effectiveness--the percentage of (average) recall and precison
of a system--is a more pressing concern than is efficiency. For
if the system is not behaving ‘'properly", its speed becomes
secondary. And it is a significant task to get document

retrieval systems to behave properiy.
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DOCUMENT RETRIEVAL

General need

Document retrieval systems are built to maintain and
provide access to a stored collection of references to
information. Computerized library card catalogues are document
retrieval systems. The catalogues store pointers to books
(information), pointers which will assist library patrons in

finding the books that they are looking for.

Particular need (Examples):

Library patrons may have vastly different needs, among
them: all legal documents mentioning the name "Miranda"; (some)
documents “about DNA"; a (or all) document(s) which will provide
the inquirer with new (to him or her) knowledge about computer
hardware; a single document which will 1list the mean monthly

temperature in Tucson for the last ten years.

Comments

A ‘'"document! means different things in different
situations. Most commonly, it means a scientific paper, journal
or magazine article, in-house memo, book, or something of the
like. But it need not be literature at all (in a very loose
sense). A museum which maintains and catalogues references to

the items it houses is a "document retrieval system." (The term
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"information retrieval system'" is used synonymously.)

| point out, too, that document retrieval, as | use the
term in this paper, will refer to some systems which are
actually built and in use; to others that have been implemented
on only a very small scale; and even to others which have never

made it beyond print.



Process

2]

The document retrieval process consists of three parts.

*|Indexing%*

Document indexed;

internally

Need translated into
retrieval query

User with information
need

#User Need=

representation stored

—

Matching performed
between query and
index representations.

Document pointers
furnished to "good
ones.'" Or, documents
ranked to correspond
to degree of match.

*Matching function#*



28

1. Indexing

A document must be labelled or represented in some way.
This is the process of "indexing" the document. It may be
performed manually (by humans) or with total or partial computer
assistance. Indexing sometimes involves selection of descriptive

labels from a restricted vocabulary.

Indexing usually is thought of as a process of attaching
descriptive labels to documents, but it is conceivable that

indexing be done is some totally different way.

Regardless, these document representations are internally

stored in the computer, forming the database of the system.

A user with an information need must translate that need
into a document retrieval query. The query may be posed in
English (natural language), in a more technical '"jargon", (by
means of a list or vector of terms interpretable by the system),

or in a variety of other ways.

3. Matching Function

The query is matched against some or all of the internally
stored document representations. In some situations, all

documents which match the query at or above a specified
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matching-threshold are furnished to the inquirer. In other
situations, the user may be furnished with a list of documents
sorted to correspond to their match with the query. (Actually, a
document call number or some other pointer is furnished in

either situation.)

Other processes can be seen as participating in some
systems as well. First, feedback information may be supplied to
a user which causes him or her to submit a revised query. (Other
guery modification techniques incorporate a user's report of
his/her satisfaction with furnished documents to automatically
adjust and resubmit a query.) In a different vein altogether,
documents themselves may be re-indexed, via feedback, in an

effort to'achieve better representation.
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"Logical' document retrieval models

What does '"logical" mean? My classifying a document
retrieval model as logical is done in the same spirit that
database (fact retrieval) models employ the term--and for the

same reasons.

By separating (data retrieval) user views from the total
schema--and both of these logical data models from the storage
and physical structure of data--we see how independent the
levels of data in a datbase are: the concerns we have at one
level are divorced for the most part from our concerns at
another. And so changes at one data level can be limited to just

that level (for the most part).

But this same separation of level of data can, and should,
be made in document retrieval, too. As they are designed and
conceived today, the logical structure of a document retrieval
database is less rich than that in most fact retrieval
databases. By using the expression "less rich" | mean that in a
document retrieval database we customarily define just one
thing: documents. And all of these we describe with the same
logical machinery, a weighted index vector, for example. Data
retrieval databases usually describe many different types of
things, each type being described in a different way. (For
instance, PERSON record types and CREDIT_CARD record types are
desribed considerably differently.) Adding to the richness of

the data-retrieval database are also the relationships that must
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be described between entity types.

But before we lose track of the main point, | assert that,
despite the less rich structure of the document retrieval
database (or its model), the same data separation should should
be employed in thinking about, designing, and building document
retrieval systems. That it is not is seen from authors who speak
of designing document retrieval models with the express purpose
of building a "faster'" one (less time from making the query
until the search is completed). These authors confuse the fact
that they are addressing storage structural (efficiency)
issues--nothing more. But document retrieval systems have their
logical machinery to consider as well. In this spirit we use the
term logical data models (i.e., independent of storage
structural considerations). The examples of models that follow
should point up this difference. And to help clinch matters,
possible storage strucutres will be described for certain

logical models.
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Genera of logical models

There are at least two major types of logical document
retrieval models, and | will also briefly mention a third type

(genre) that seems unlike the first two.

1. Models which emphasize representing individual documents

In such models (notice we are describing a whole class of
models) every document is indexed independently of all others.

Every document, therefore, receives its own description.

2. Models which emphasize 'clusters' of documents

Such models impose logical structure on a set of documents
by dividing them into (disjoint or intersecting) document
clusters. A cluster then stands as proxy for the set of
documents during the matching function process (or its first

stage) .

3. The third "genre" is actually less a genre than a model
itself, described by Doyle, which seems to fit into neither type
above. In rough outline, Doyle's model resembles a semantic
network, with various kinds of nodes, whose edges are formed

according to statistical co-occurrence data.

High level nodes might represent such subject headings as

"Biology", "History", "Mathematics", etc. Links (edges) between
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such nodes represent how related these terms are. So a Biology-
Mathematics link might be of strength .25 (in some undefined
sense for our purposes), weak perhaps, but considerably stronger

that a Biology-History link with strenth .07.

Other nodes represent notions at a more specific level.
"Zoology" and "Botany'" wouid likely appear as network nodes,
too. Each would be 1linked with Biology and each other, with
measures of their co-occurrence strenth listed, too. (Co-
occurrence strength is a measure of the frequency with which two

terms co-occur in the literature.)

Overall, we have nodes of many, many different levels of
specificity, including (finally) nodes representing individual
documents. All are inter-linked and '"weighted" (at least those

with links of sufficient strength.)

The job of the user is to physically navigate in this
network structure using the co-occurrence (strength) cues and
his or her own impressions of what topics or notions are alike
to guide the way. This navigation would take place in an
interactive way, user perhaps sitting at a graphics terminal,
light pen in hand, pointing to various nodes, the details of
whose inter-node structure becomes evident only when this node

is pointed to.
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Models which emphasize representing individual documents

{ now talk about logical models which rely on representing
individual documents as their chief logical device. Seven
examples of logical models falling into this category have their

workings explained.

A classification scheme

Just as a lack of rigor leads to failure to make a logical
versus storage structural distinction in describing document
retrieval systems, a similar laxness often prevents some logical
models from being fully understood from their descriptions. For
any logical ﬁodel has three parts, and no pair of them even is
sufficient to describe a logical model (although authors in the
field make this mistake by trying to do so). These three parts
are the document representation to be employed within the model;
the style of query which is acceptable; and the matching

function which relates these other two.

The way | will classify any logical model, then, is to
describe it as a triple of this form:
<document rep, query rep, matching function>

("rep" is short for representation).

The examples that follow are not presented as
representatives of classes which partition or totally represent

logical document retrieval models. They are just examples of
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models occurring in the literature. In some cases |'ve made up a

name to describe a model.
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1. Simple boolean model

<binary doc vector, single query term, "logical" match>
(1 will often use the term "doc" for document; 'vec" for

vector.)

Conceptually, in this model we may imagine a set of

documents being represented by a binary matrix, D, as pictured:

term-1 term-2 ces term-N-1 term-N

doc-i 1 0 coe 1 1 = 0D

Document-i is represented by the i-th row in the matrix and

D-ij = {1 if doc-i is about term j; O otherwise

The "logical" match is an assignment rule stating whether a
given document should be presented (or, deemed relevant to) a
given query. More precisely, we characterize this assignment
rule as follows:

M: Binary _Document_Vectors X Boolean_Queries --> {Yes, No}
by M(b_d_v, b_q) = {yes if b_d_v satisfies b_g;

no otherwise
That is, "logical"™ match is a function taking an ordered
binary document vector-boolean query pair into the values {Yes,

No} according to whether the docuement" satisfies'" a query.

A query, q, is "satisfied" by a document in the sense
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easiest illustrated by exampie.

Example

term-A term-B term-C term-D

doc-1 1 0 0 0
doc-2 ] 1 0 0
doc-3 1 1 1 0

In this example, all three documents satisfy the single
(Boolean) query term A since each is indexed as being "about'" A.

On the other hand, only doc-3 satisfies query C.
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2. General boolean model

In this model, we expand the set of valid queries to
include any (well-formed) boolean query. (Otherwise, this model

is identical to the first.)

A boolean query is any composition of index terms and the
logical operators & (AND) V (OR) and -~ (NOT) plus parentheses, as

long as it is well-formed.

Example

term-A  term-B term-C  term-D
doc-1 1 0 0 1
doc-2 0 1 1 0
doc-3 1 0 1 0

In this example, all documents satisfy the boolean query

A V B; none satisfies A & B; only doc-3 satisfies A & C.

Comment

A logically equivalent way of representing a document in
the simple or general boolean model is as a list (unordered set)
of index terms. In the last example, for instance, doc-1 becomes
the set (list) {A, D} under this representation. (A" and "D"

are shorthand for 'term-A" and 'term-D", respectively.)

Full text retrieval systems logically employ the general
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boolean model. In such systems a document is represented by (a

list of) every substantive word used in that document.

Note we are adopting our alternate document representation
in saying this. Additionally, the dimension of vectors in this
model (thinking in terms of the original description of the
general boolean model again) 'grows" as documents containing

"mew' words are indexed.

Possible storage structure and implementation of match

To reinforce the idea that logical and storage structural
considerations are separate, | suggest a likely way for
accommodating the storage and matching inherent in the general

boolean model.

The method is to represent our document matrix (what |
called "D" originally) by inverted lists (sets) and to perform

our logical matching by means of set operations.



Lo

Example
If D=

term-A  term-B  term-C ... term-N
doc-1 0 1 0 ces 0
doc-2 1 1 1 ‘oo 0
doc-3 0 0 1 oo ]

then Set-A (inverted list-A) {doc-2}, set-B = {doc-1, doc-2},

and so on.

The query (A & B) V C is executed by

(Set-A INTERSECT Set-B) UNION Set-C.

(Compare this to doing a full scan over millions of

records, most of which are not indexed with any of terms A, B,

or C.)

The - operator is implemented by means of set complement.
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3. Counting boolean models

<binary doc vec, conjunctive boolean query, 'counting measure''>

We return to another example of logical model, counting

boolean models.

To explain the notion of '"counting measure', we resort to
our logical representation of documents as sets (lists) of index
terms. A conjunctive query, one allowing only conjunction of
terms, will also be represented as a set of terms (its

conjuncts) .

In this way, we can have:

X = set (list) of index terms describing some document
Y = set of terms used in conjunctive query
Some commonly described matching functions are:
a. | X INTERSECT Y | Simple matching coefficient
b. 2 % |X INTERSECT Y| Dice's coefficient
x|+ Y]
c. | X INTERSECT Y | Jacard's coefficient
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d. | X INTERSECT Y | Overlap coefficient

min {|X|, |Y|}

Note that the last three measures are attempts to normalize
the effects the underlying cardinalities |X| and |Y| have on the

cardinality of |X INTERSECT Y|.

Coordination level

A coordination level is sometimes advocated for use with
the simple matching coefficient. The coordination level supplies
a parameter by which we produce a function telling if a document
and query do or do no "match' (according to the simple matching

coefficient).

That is, we have
Match_level-t (X,Y) = {Yes, if |X INTERSECT Y| >= i3

No, otherwise}
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Possible storage structure

Again, | illustrate a likely storage structure and

implementation, this time for simple matching with coordination.

Our storage structure represents our binary document

vectors by inverted lists (sets); our simple match with

coordination is implemented by 'combinatoric' set operations.

Example

Given a query Q = A& B &C & D, we get

coordination_level L = (the set of documents with four--or more,
but this is impossible) terms in common with the set {A, B, C,
D}, i.e. Q)

{*) Set-i (Set-i = inverted list-i)

i=A,B,C,D

Also, coordination_level_3 (again a set) =
N Set—i> U (ﬂSet i ASet i Nset-i
i=A,B,C i=A,B,D i=A,C,D i=B,C,D

Generally, then, we have coordination_level_j (for a query
with n terms) = Union of ( 3 ) sets, each set the intersection

“n ) .
of one of the ( ﬁ ) combinations of the n terms.
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L. Similarity based vector models

<n-D real doc vec, n-D real query vec, "similarity measure'>

(n-D stands for n-dimensional.)

Logical models in the literature sometimes attach real
values to document vectors (usually in the interval from 0 to 1,
inclusive) in an effort to more precisely describe what a

document is "about'". Queries, in such models, are described

similarly.
Example

term-A term-B ... term-N
doc-x o 0 ves .5
query-y .6 .2 cee .3

A document description of the above sort assigns a value

(weight) to term-j of document~i according to "how much
document-i is about term-j." Automatic assignment might
resemble:

weight of term-j #occurrences in document-i of
in document-i cx( term-j and near synonyms

total # occurrences of all
terms in document-i

Queries in such a system are ''guesses" at how docuements

being sought will be indexed.
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Similarity measure

The "similarity" between a documnet D = <d-1, ... , d-n>

and a query Q = <gq-1, ... , g-n> must be calculated.

Example

Salton's Cosine measure calculates the n-dimensional Cosine
of D and Q (where D and Q are taken to be vectors in an n-
dimensional vector space). That is,

Cosine (0,Q) =D . Q =% (q-i * d-i)

("." is dot product; * is normal multiplication; ||X]|| is

the lenght of X, X a vector.)

Comments

We might wonder about such a model:
1. Are the n dimensions truly '"orthogonal" (or are they
"dependent") ?
2. Are the n-dimensions similarly scaled (or are we measuring
with something like "feet" in one component, and '"inches" in
another) ?

3. Can we afford the loss of information about the magnitude of
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a document vector (which is normalized away in our computation

of cosine)?
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5. Discrimination-based models

<n-D binary doc vec, n-D real query vec, ''weighted sum'>

Note: we are employing a new kind of triple. Its use will

be explained below.

The idea here is that all terms are not equal. (At least as
far as being of value in helping us decide whether a document

should be furnished in response to a query.)

Example

| use an extreme example to help explain the above point.

Suppose that term-i is used as an index term in describing
90% of the documents in some document collection. (And so it is
not used in only 10% of the collection.) Suppose also that term-
j is used as an index term in only 5% of the same collection

(and, so, not used in indexing the remaining 95%).

Then, in the spirit of this model, an inquirer wanting a
document "about j" should see a very 'strong" match between his
request and one of the few (5%) documents that is indexed with
term-j. (The match should be much stronger than the match
between a query "about i'" and one of the documents indexed with
term i; for, remember, 90% of the documents are indexed with

this term.)
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Construction of triple

In this sense, j is a better discrimination term than 1.

And so, we might desire a matching function, M, relating queries
and documents such that

1. M=Ma+Mb+ ...+ Mn; and

2. M_j(Query involving term-j, doc. indexed by term-j) >

M_i (Query involving term-i, doc. indexed by term-i).

To accomplish this we can represent any user's query by
Q = <g-1, ... , g-n> where
g_i = {0 if user not interested in docs "about" i;
otherwise,
a positive real weight reflecting the "discrimination
power' of term-i (done in the sense above: the better

a discriminator, the higher the weight}

Our matching function, M(document,query) can be a 'weighted
sum'". That is, we can have

M(document,query) = Document . Query = :Z: d-k * g-k
LS
Again, "." is dot prodcut; * is regular multiplication.
"Document" and '"Query" are a binary document vector and a real
query vector, respectively. The latter is constructed in the way
just mentioned; the former is just a list (actually) of the
terms which the document is about. The resulting calculation, M,

becomes, therefore, a "weighted sum."
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Comments

1. This model is extendable so that documents, too, can employ
real weights. These real weights reflect the extent to which a
document is "about'" the varous terms used to describe it. The
calculation of M remains the same.

2. If the index terms are not independent, we may be either
"double-accounting" or '"under-accounting" in calculating M. In
other words, a more complicated expression than a (linear)

weighted sum might best reflect degree of match.
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6. Probabilistic Models

<real "aboutness'" doc vec, term, probabilistic" relevance'>
Note: "term" is a single index term. The other two terms in this

triple will be explained below.

Two terms in the document retrieval literautre, often used,
but not always in anything more that a ''colloquial'" way, are:
"about" and 'relevance". An important contribution of Maron and
Kuhns' probabi]ﬁstic model is that these terms are defined in

precise, well-defined ways.

Sample space

The model, being probabilistic in nature, relies on a
sample space. This sample space is the set of ordered pairs
{<q,d>|q=single index term used to pose a query;

d= document found relevant by inquirer to that query}

For example, the outcome (sample point) <A, L65> refers to
document 465 being furnished to, and then found relevant by, an

inquirer in response to his/her query, "A".

Events

The events we need to consider to understand the model are:

D-i = the event that doc-i is found relevant (no matter

what the request) ={<q',d'>|d' = doc-i}
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|-j = the event that a request is made with (index term) j

in posing a query ={<q',d'>|q'=j}

Definitions

Maron and Kuhns use the events above in defining what
"about'" and '"relevance'" are to mean.
1. The extent to which doc-i is about term-j
= (def) P(l—j|D-i)

2. The relevance of doc-i to term-j =(def) P(D-i|l-])

We may easily imagine less formal ways to bring life to the
definitons.
1. "About": Of a "totally representative'" group of users, all of
whom found doc-i relevant to their information need, we ask what
percentage requested this document with query term-j. This
ﬁercentage corresponds to how much doc-i is about index term-j.
2. "Relevance': Oppositely, of a '"totally representative'" group
of wusers making a request with index term-j, we ask what
percentage ;ound doc-i relevant. This percentage corresponds to

the relevance of the document to the query term.

Example

A diagram, assumed to be drawn so that areas of events

reflect their probabilities, illustrates better the distinciton:
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In this diagram, doc-i is very much about term-j; however,

doc-i is not too relevant to term-j.

Relation between about and relevance

We use probability calculus to show the relation between
"about''-ness and relevance; in doing so we will see the intgnded
application of the model.

1. P(1-j & D-i) = P(1-j & D-i) ==>

2. P(D-i|1-j)*P(1-j) = P(i-j|D-i) %P (D-i) ==>

3. P(D-i]1-j) = P(1-j|D-i) %P (D-i)

The left hand side of line 3 is exactly what Maron and
Kuhns define as the relevance of document-i to term-j. The
conditional probability in the right hand side is how "about" |-

j D-i is.

Now, the goal of a document retrieval system is to take
user queries and provide useful (hopefully) documents. In

particular, in response to query j, we may consider one document
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more relevant than another in the exact sense Maron and Kuhns

define.

But, in looking at line 3, we see that the denominator of
the right hand side is constant for fixed j no matter what i is.
And so, we may eliminate this from our relevance calculation,

obtaining:

b P(D-i|I1-§) &£ PU-j|D-i) * P(D-i)

This last equation expresses the spirit of Maron and Kunhs'
model. The left-most term, P(D-i|l-j) represents the
"proazbilistic relevance'" of a document to a query. This term,
calculated from the right hand side, thus embodies the third

component of our descriptive triple, the matching function.

The conditional probability on the right hand side of the
proportion (that is, P(I-j|D-i)) is, again, an "aboutness" term.
Any given document, Document-i, is described, at index time,
with an aboutness vector, whose value at the j-th position is
the aboutness term, P(I-j|D-i). The remaining term in line 3,
P(D-i), (or the probability that document-i is found relevant to
any request), is discernable from the circulation data in a

library.
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Reiterating, we have

Po-i|1-i) ol P(I-j|D-i) # P(D-1)
— - -

relevance match: supplied at index "eollectable" from
derived from r.h.s. time in forming library statistics

aboutness vector

Since we have "cancelled out" a constant term in producing
line 4 from line 3, the relevance match (the left hand side of
the proportion in line L) is not precisley Maron and Kuhns'
relevance of a document to a query, but is in proportion to it.
And clearly a rank ordering of document to a query according to
either relevance of 'relevance match" will be identical. Maron
and Kuhns in fact suggest that the function of a retrieval
system ought to be producing such rankings. The user, then, may
be assured of seeing the '"most relevant document the system can
produce" first; then the next most relevant; then the next; and
so on. This scheme lets the user stop his or her search as soon
as his/her need has been met instead of presenting him/her with
an unordered document set which must be searched through to see

if any satisfies his/her need.
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7. Another probabilistic model

<binary document vector, %, ‘probabilistic weighting">

Probabilistic models are often discussed currently in the
document retrieval literature. These models differ from that
suggested by Maron and Kuhns. Here is another, discussed by
vanRijsbergen, Croft, and others, which attempts to answer a
fundamental retrieval question: given a document's description,
how likely is the document to be relevant to an information need
expressed by a given query? Note that this model tries to answer
the question of a document's relevance to a query by making a
calculation from its description, a strategy not employed in
Maron and Kuhns' model. Note, too, that the model does not rely
on a particular type of query, a'fact | have indicated by "*" in

the second positon of the descriptive triple above.

Sample space

A1l points (and so events) in the sample space are with
respect to a given query, q, which does not figure directly into
the calculations in the model. But | will use notation in
describing events to emphasize that the model relies on

answering the question of relevance with respect to this query.

A sample point in the model is of the form:
<document, binary document description, relevance>
where ‘''document" is some document (its title, if you will);

"binary description" the way it is described; and '"relevance"
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one of the values "True" or "False" according to whether or not

the document is relevant to the query, g.

Events

The events we need to describe to understand the model are
these:
1. g-rel-i= the event that doc-i is relevant to the query, q =
{<doc!', bin_desc', rel_val'>|doc'=doc-i & rel_val=true}
2. ~g-rel-i= the event that doc-i is not relevant to the query,
q=
{<doc', bin_desc', rel_val'>|doc'=doc-i, rel_val=false}
3. assigment-i-X: event that doc-i has the binary vector, X, as
its description. That is, X=<x1, ... , xN>, (the xi's are fixed;
xi either 1 or 0 for 1 <= i <= N) is the way doc-i has been
indexed, and assignment-i-X=

{<doc', bin_desc', rel_val>|doc'=doc-i, bin_desc'=X}

Fundamental issue

There is a question which all this probabilistic machinery
is constructed to answer. In informal terms, the question is:
Given a document's description, is it more likely the document

is relevant (to the underlying query, q) or not relevant to it?

We express this question symbolically by:

P(g-rel-i|assignmnet-i-X) > P(~g-rel-i|assignmen-i-X) ?
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By some simple algebra, we may phrase this question in an
equivalent way:
(1/P (assignment-i-X)) % P(assignment-i-X|q-rel-i) * P(q-rel-i) >

(1/P (assignemnt-i-X)) % P(assignemnt-i-X|~q-rel-i) # P(~q-rel-i)?

Assumption

A calculation will be performed to answer the above
(second) inequality. But some major assumptions are made to

carry out the calculaton.

The first assumption is that, given it is known a document
is relevant to a query, the probability that the document has a
given assignment, X, can be broken into a product of N (the
number of positions in X conditionally  independent
probabilites. (That is, if we conseder X a collection of
indicators, X!, ... Xn, then the expectation of each Xi is
conditionally independent given g-rel-i). In symbols, this
amounts to:
P (assignment-i-X|q-rel-i) = /TTI P (assignment-i-Xj=Xij|q-rel-i)
(where X=<X1, ... , Xn> is an N-place binary vector; and
assignemnt-i-Xj=Xij is the event that the j-th position of X

(which describes doc-i) is Xij).

The second assumption, totally analagous to the first, is
that, as indicators, X1, ... , Xn are conditionally independent

of =g-rel-i. Or:
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P (assingment-i-X|~g-rel-i)= P (assignment-i-Xj=Xij|-q-rel-i)

Calculation

With these assumptions, and using the notation

]

p-k = P(X-k=1|q-rel-i) and

]

q-k = P(X-k=1|~gq-rel-i)
we may compare the logarithms of both sides of the inequality we
are interest in (the second one). Upon subtracting (log of right
hand side from log of left hand side), we obtain:
If g(X) =’rrc-k * x-k +C>0

*
then document-i is relevant to query ¢

otherwise, it is not. (At least this is the way our calculation

tells us to make a relevance judgment.)

In the above expression,
c-k = Tog ((p-k/ (1 - p-k))/(q-k /(1 - q-k)))
C = constant for any document which will depend only on the

query being made.

Comments

1. If the p-k's and g-k's (which, | emphasize, are with respect
to a given query, q) are known, then the c-k's are easy to
calculate; and so the calculation of g(X) is an easy, linear sum
of certain c-k's (the ones asssociated with document description
positions which are 1's, not 0's).

2. We can make an intuitive interpretation of c-k by looking at
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it as a log (which let's now forget about) of a ratio. The
numerator of this ratio is p-k/(1 - p-k).

The denominator is gq-k/(1 - q-k).

But the numerator is a ratio itself, this ratio contrasting
(dividing) the probability that, given doc-i is relevant to q,
doc-i is indexed with x-k with (by) the proability that it does

not.

The denominator ( of the entire ratio) is again a ratio,
just like the one |'ve just tried to describe, but with respect

to the fact that document is not relevant to qg.

So c-k =
P(x-k=1|q-rel-i) P(x-k=1|~g-rel-i)
P(x-k=0|q-rel-1) P(x-k=0|-g-rel-i) which suggests:

N \__———-~\v~‘__,//

relative likeliness relative likeliness x-k being 1
of x-k being 1 (given (given doc not relevant to q)

doc relevant to q)

In this fashion, the entire ratio, (c-k), can be thought of

as a measure of the discriminatory ability of x-k.
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3. The independence assumptions are quite big. For, given we
know a document is relevant to a query, the assignment of

various terms (x-i's) will 1likely be quite dependent on each

other.
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Cluster based methods

Purpose

A document collection which is not partitioned or divided
in some way may necessitate the computation of a match between a
given query and every document index in a document retrieval
database. With only a moderately large database, such searches
can begin to take far too long; with very large databases, such
"'serial-matching" techniques become prohibitively lengthy

(especially for on line retrieval).

As a result, documents are sometimes grouped into clusters
(sets). In response to a given query, an entire cluster may be
presented. Alternatively, in response to a query, one or more
clusters may be selected and serially-séarched by the system

before presenting documents to a user.

Dissimilarity-based models

Some cluster-based methods rely on pair-wise dissimilarity
measures. The dissimilarity between two documents is a real
value between 0 (totally similar) and 1 (totally dissimilar).
Dissimilarity is a symmetric measure (dissim(doc-1,doc-2) =
dissim(doc-2,doc-1)). Various statistical measures are suitable

as dissimilarity measures.

| present first the single-link clustering model. [t s
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based on a dissimilarity matrix, which it uses as input, and

produces a dendrogram (a tree with levels) as output.

Clusters do not have to be disjoint; also, some clustering

methods do not rely on a dissimilarity matrix. A non-hierarchic,

intersecting cluster model is presented second.

Example: single-link

1 o .2 .3 .5 .5 .5
2 0 3 .5 .5 .5
3 0 .5 .5 .5
L 0 .1 .k
5 0 .5
6 0

symmetric dissimilarity matrix

We wuse this matrix to form clusters (which | will show by
graphs) at various "levels'". Using the levels, .1, .2, .3, .k,
and .5 (the positive values found in the table) we form a graph

at the t-level as follows:

There is a unique node for each document.

Two nodes are connected if and only if the dissimilarity

between them is at most t.
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At the .5-level, for instance, we obtain:

2
G

+

-

>

We consider each disjoint subgraph of any graph a cluster.
(At the .5 level there is only one cluster then.) In this way we

are partiticning the set of documents. Qur first partion is

{{} ’2!3"+’5’6}} .



Continuing in fhe same way we obtain:
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Dendrograms and cluster representatives

Another way of depicting these

same data

is

with

b4

a

dendrogram (tree with levels). The dendrogram for the cluster in

the example is:
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Each node in the dendrogram represents a cluster (set of

documents) . X, for example, stands for the cluster {4,5}. Note
that clusters at a lower level are subsets of clusters at a
higher level. X SE& Y, for example. Each individual document is a

leaf of the dendrogram.

A method is needed to represent clusters. Two approaches

(there are others) are:

1. maximaliy linked representative

Re-examine the graphical representation at the .4 1level.
There we have 2 disjoint subgraphs (2 clusters). In the one,
Y={4,5,6}, we see that 4 has 2 links emenating from it whereas 5
has only 1 and so does 6. L4 is thus the "maximallly linked
representative" of this cluster (there may be more than one) and

is used to describe the cluster as a whole.

2. "Average' representaive

Suppose documents are represented by real vectors. The
representative of a cluster containing three documents would be
their vector sum divided by three. Similar techniques apply to

clusters of binary vectors.
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Search Strategies

Two types of searches can be used with dendrograms, top-

down and bottom-up.

Top-down

Visit first the root of the dendrogram (hereafter
considered an ordinary tree) and match the query with the

cluster representative of this node (the root).

IF the node being visited has children (direct descendants)
and any of them better matches the query than does the node

being visited

THEN visit the child which best matches the query and apply
(recursively) the same test as above (the "IF" part) with that

child

ELSE /% no children or none which better matches than the
node being visited %

node being visited is the desired node (desired cluster).

For a given query, g, and a dendrogram (drawn as a tree)

with nodes A, B, ... , G which match q with the associated real

Al 65)

values (as indicated),

C(-30)

g (-75)

e(81) &(.#9)
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the pattern of visitation is A, B, D. And D is taken as the

desired cluster.

Bottom-up

Bottom up strategies rely on the user knowing one 'good"
document in the first place. The idea is to provide the user
with documents which are most similar to this one--and as many

as the user wants.

The flavor of a bottom-up search is given by:
1. Visit first a leaf (the one corresponding to the 'good"
document already known) .
2. Visit the parent of the node being visited provided it
contains not more than m documents (where m is a user-supplied
parameter) .

3. Re-apply step 2 (recursively).

The final node visited has the property of containing the

known document, being at most size m, and containing (hopefully)

those documents which are most like the '"good one."

Algorithmically defined clustering

The clustering method described above relied on pairwise
dissimilarity values computed over all document pairs. Another

style of clustering does not rely on such a calculation.



68

Further, not all clustering methods produce hierarchic--or even
disjoint--clusters. | present a version of clustering by means
of a single-pass algorithm. This method is an example of non-
disjoint cluster generation without the aid of a dissimilarity

matrix computation.

Example Single pass clustering

List all documents docl, ... , docN.
docl is a cluster (and its representative)
For each remaining document, doc-i, do:
1F doc-i "matches sufficiently" any existing clusters
THEN add doc-i to that/those cluster(s) (and periodically

re-calculate cluster representatives, too)

ELSE doc-i becomes a cluster (and its representative).

The above algorithm is usually adjusted, too, so that no
cluster ever exceeds a certain size. Note that the clusters
generated by this algorithm must be serially searched, since
there is no structure among them. (They are not hierarchic, for

example.)

Competing motivations in clustering

Two competing issues come to bear in clustering: speed of
calculation versus  theoretical soundness. Single pass
clustering, avoiding the calculation of a dissimilarity matrix,

is a faster technique than sinle-link clustering(0(nlog(n) v.
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O(p%n)). It fails, however, to possess two ‘'theoretical"
properties considered quite desirable. First, the order in which
the documents are presented determines the resulting clustering.
Second, and somewhat related to the first, as the collection
size grows significantly, the original clustering may prove to
be wunsuitable and may need to be totally redone. That is,
algorithmic-based schemes most often do not possess this

property:

Clustering of (Initially clustered set + many documents

subsequently added to the document collection) =

Clustering of (Initial set (unclustered) + [same as above]

additional set of documents)

This property is usually achieved only when some underlying
theoretical principle (such as pair-wise dissimilarity)

regulates clustering.

As such, clustering methods fall into two broad schemes:
those which opt for theoretical soundness above all; and those

which opt for efficiency first.
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Product of search

| have already suggested that there are two different
styles of presenting documents to a wuser. Briefly, | will

discuss each.

1. Partitioning

Systems sometimes partition a document collection into two
sets with respect to a query: a relevant set and a non-relevant
set. The relevant set is really
{doc|M(query,doc) >= threshold}
where '"query'" is the user's query and M is the matching functien

being employed.

Even logical models which do not readily fit the formal
characterization above are still partitioning in the same sense.
| am thinking of the general boolean model which explicitly
divides a set of documents into those that "satisfy'" a query and
those which do not. With just a slight bit of imagination we can
change our explanation of that model and devise a threshold so
that only documents which match a boolean query at or above the

threshold are the ''right ones'" anyways.

2. Rank order

Instead of partitioning the document set into the 'good

ones' and the '"bad ones", documents may be rank ordered
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according to how well they match the given query. That is, with
respect to query g, doc-i precedes doc-j in the rank order
exactly when M(doc-i,q) > M(doc-j,q) (let's disregard ties). The
user customarily continues reviewing the documents, in order,
until his/her need is satisfied. Note, of course, that we could
easily partition a rank-ordered set by saying that the first m
belong in the relevant set while the others belong in the non-

relevant set.

Evaluation

Retrieval techniques are evaluated to determine the
effectiveness of document retrieval systems--sometimes one

system compared to another.

The effectiveness measures most commonly discussed in the
literature are those which pertain to searches which partition
documents--not rank them--and the most common of these | mention

here.

The easiest way to explain these two measures is by means

of a 2 by 2 table, as below:

Retrieved Not Retrieved
relevants | a | b |
not relevant | c | d |

Performance of document retrieval system for one query
(* User determined)

Using this table we have:
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Recall= proportion of relevant documents retrieved = a/(a+b).
Precision= proportion of retrieved documents which are relevant

= a/ (a+c)

Note the change in the way we are using the term "relevant"
in the table (and also in the definitions). "Relevant" now means
"actually relevant to a user's need, as the user determines it."
Algorithms which partion documents into a "relevant" and ‘'non-
relevant" set are utilizing quite a different interpretation of
the term relevant--one that is algorithmic or syntactic in its
very nature. It is this difference we are analyzing in our 2 by
2 table (and our definitions of recall and precision). The
"relevant" and '"non-relevant" sets of documents--according to
the system which prodcued our table--are the documents tallied
in the left column and right column, respectively; (that is,
what we are calling the ‘retrieved" and ‘'not-retrieved"
documents. In fact, recall and precision are statistics which
attempt to measure these two very different meanings of
relevance: recall measuring the extent to which the "actually
relevant' documents were judged by the system to be relevant;
precision measuring the extent to which only those documents

which are "actually relevant'" were judged so by the system.
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| present a 2 by 2 table reflecting the behavior of a data-

retrieval system (one that is behaving properly):

Retrieved Not Retrieved
relevants | X | 0 | x and y are
---------------------------------------------- non-negative
not relevant | 0 | y | integers

Performance of document retrieval system for one query
(% User determined)

For instance, a data-retrieval request to fetch all records
"in which the last name is Smith" will furnish all and only the

appropriate records.

The striking difference between the two tables suggests the
contrasting nature of the two types of retrieval. The
explanation of this difference stems from the inferential nature
of document retrieval. That is, since our document descriptions
only suggest what a document is about, and since a query only
suggests what a user's information need is, a document retrieval
system may do no better than infer that doc-x is (is not) useful
(relevant) to query-y. And this inference is conducted by means
of a matching funciton (i.e., an algorithm) which cannot account

for all the indeterminacy inherent in the system.

In data retrieval, on the other hand, facts (or data) '"are
what they are." There is no need, that is, to resort to a higher
level of description to represent them. (My explanation below

will help explain the meaning of "higher level.") And users are
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permitted to ask for only those data precisely represented in
the database. Therefore, the "matching function" in data
retrieval is tantamount to selecting the best access path. Thus
we see the 2 by 2 table of the second form in data retrieval,

one reflecting perfect recall and perfect precision.

Think for a moment of using a data retrieval system in
document retrieval fashion (that is, in a "higher level' fashion
than it was designed for). What sort of precision and recall
would we expect if we posed to a database containing the
relation
PEOPLE (Name, Salary, Make_of_car, Address)

the query: Which people are doctors?

It is customary to plot recall versus precision for a
document retrieval system. In doing so, we usually see a curve
resembling the one below, where each point represents system
effectiveness for a single query. (Alternately, we observe a
similar curve for a system which is furnishing documents in
response to a fixed query with some system parameter being

changed.)

Precision

Recall
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As the figure suggests, it 1is easy to achieve high

precision or high recall--but usually one at the expense of the

other.

Loose ends

Actually, many questions revolving around system
effectiveness remain to be answered, including:
1. How should recall be estimated? (Observe that recall involves
the number of relevant, but unretrieved, documents--a quantity
which can usually be just guessed at.
2. Can a <Precision, Recall> pair be collapsed meaningfully into
a single figure? |If so, retrieval effectiveness comparisons
become easier to make.
3. Are precision and recall adequate effectiveness measures?
(There are others.)
L. How can individual preferences be incorporated into measuring
system effectiveness? Users do have various needs, after all,
from searching for a highly specific document (whose title s
forgotten) to doing a very broad bibliographic search. Users
vary also in their "futility points'" (the maximum number of
documents which a wuser is willing to examine in response to a
given query). Issues such as these deserve attention in
measuring effectiveness.
5. How effective are document retrieval systems? Surprisingly,
in a situation seeminigly quite conducive to achieving high
recall (full text retrieval) a study suggests recall is on the

order of only 20%! The implication in that finding is that
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natural language is so fraught with "indeterminacy" (alternative
expressions for the same idea and the same expression for
different ideas) that it is a less than adequate device for
document retrieval (at least as it is used in most systems). A
caution however: the low recall can be attributed to users'
reluctance to use much more general terms in posing a query. For
general requsts, while improving recall, can drastically reduce
precision (and so present the requester with an overwhelming

number of documents) .
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Re-evaluation of document retrieval

As | indicated at the outset, certain issues in document
retrieval will be considered now that the basic problems have

been described.

Information structure

In brief, users' needs have not received wide attention in

studying document retrieval.

At the earliest stages of designing a system, these needs
should be ascertained. |s the '"average" user more likely to want
all documents on a topic, just one, or something in between?
What "futility points" (number of documents a user is willing to
look through) does the "average'" user have? Are user requesting
patterns and library indexing procedures coordinated? (A
situation like that in document retrieval exhibits what can
happen with poor coordination. At the Smithsonian Institute,
geological artifacts are catalogued and may be examined by
patrons. Unfortunately, patrons most commonly wanted to make
references about artifacts acco;ding to their geographic

positions, and the artifacts were not "indexed" in this way!)

We have considered various logical models. Various user
needs have been indicated, too. A study matching user needs with
logical models is desirable in bridging the gap between the two.

Scientists, for example, may have information needs highly
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suited to full text retrieval. Then again, they may not.

Another idea 1is to build various "record types' within a
logical model. For example, we can imagine a document retrieval
system with a 'scientific record type" and a "fiction record

type" (as below) without any difficulty:

FIELD MONOGRAPH//TUTORI AL THEORETICAL//EXPERIMENTAL

scientific record type

AGE_LEVEL MYSTERY//HISTORICAL//...

fiction record type

Another information structure issue deals with establishing
appropriate ‘'contextual clues." Up to now, we have been

interested in establishing only the content-description of a

document, (what a document is about). "Contextual clues" are
such things as date of publication, author, number of pages,
publisher, etc. All of these, in combination, can serve to
effectively partition a database into many smaller--and more

easily searched--ones.
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Logical models

Even when we have chosen a logical model our problems are
not over. (Let us suppose that model will represent documents
with binary vectors, for example.) We still have other

difficult, and still logical, problems to consider, including:

Definition level

How many "dimension'" (places) should we use in our document
vectors? What terms should we use (how general or specific
should they be)? Answers to these questions will strongly
influence systeﬁ effectiveness. (If we need to distinguish
scientific from non-scientific documents, then  choosing

“"science'" as one of our vector terms makes sense.)

Instantiation

Even when the terms in the model are selected, the problem
of deciding whether a document is or is not about that term
remains. (I am still supposing that we are using a binary
document vector. Similar arguments can be advanced for other
models, however.) Even indexers disagree considerably about how
to supply values. Quite importantly, too exhaustive indexing
(lots of 1's in a binary document vector) promotes recall and

hinders precision.

Ultimately, we must determine how the definition-level
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decisions and the way we instantiate a document (represent it in

the model) affect retrieval effectiveness.

Two final considerations:

1. What other models might be employed? (Doyle's model is
certainly different fundamentally from most of the other models
| have discussed. Other ''radical” models can of course be
developed.) Possibilities exist for developing systems whose
recall and precision is far superior to the existing models.

2. Can't various users conceive of the same database in
different ways (much like different user subschemas--or views--
make a fact retrieval database appear different to different
users)? This "view'-approach would be an attempt to match user
needs with logical models. In doing so, a new issue arises: how

can these views be integrated (into a single "schema)?

Summary

Perhaps P. Leslie described the overall problem of indexing

best:

""Somebody has defined indexing as a game involving two
players--an indexer and a user. In this game, the first player
(the indexer) tries to guess where the user will look for a
particular record. The second player (the user) tries to guess
where the indexer put it. The game gets a little complicated
when the user tries to guess where the indexer guessed the user

would guess the indexer guessed the user would look for it."
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Storage Structure and Implementation

We have seen how certain logical models might be
implemented. (Boolean models, | suggested, employ inverted lists
and set operations. Clustered models likely emplcy pointer
organizations.) But, for others, questions remain as to how data

should be stored and the matching function conducted.

For instance, similarity based real models or probabilistic
models, to mention just two, need to employ storage and matching
techniques which avoid record by record serial searching while

still carrying out the logical functioning of the model.
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Performance

| break up performance into two categories: effectiveness

and efficiency.

Effectiveness

By effectiveness we mean how well do user information needs
get satisfied (speed aside). Admittedly, this is a bit vague,
since effectiveness can be measured in terms of precision,
recall, or a variety of other ways. | have suggested, too, work
has still to be done in establishing and validating useful

effectiveness measures.

Other issues which require attention are:
1. How effective are the models described in this paper (and
others) ?
2. How can we correctly attribute effectivenss? That is, | have
tried to show that in a document retrieval setting we pass
through several stages: selection of a model (boolean v.
probabilistic v. ...); selection of '"attributes" of a model
(which terms will we index with?); and, finallly, instantiation
within the model (is doc~i about term-j or isn't it?).
Consequently, the decisions we make at stages two and three
strongly determine how effective we judge a model.
3. What measures of effectiveness are appropriate for ranked-
output systems?

L. How effective do systems remain after considerable update
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activity takes place (especially insertions of records)? | have
never seen this issue brought up outside the context of cluster-

based systems.

Efficiency

Several questions need answering:
1. What amount of storage is needed to implement a model? Can
this storage space be reduced somehow? (For instance, can we
collapse ''sparse vectors', i.e., ones with lots of O's, in the
same way we store sparse matrices?
2. How much time does it take to implement the matching function

of model?
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Summary

| summarize the chief similarities and differences between

data and document retrieval.

Similarities

1. Both obey the same information system life cycle.

2. Each is a repository for, and supplies access to, a vast
amount of information.

3. Possibly, they may share logical models. (Suggestions to use
a relational data model for document retriev;l have advanced.)
L, The wunderlying storage structures and access mechanisms are
the same in both cases.

5. Each type of retrieval should depend on coordinated,

centralized administration.



User
need

| tems
wanted

Matching

Ease of
Represen-
tation

Perform-
ance

Differences

Data

Answer to specific
question. Assemble,
maintain, and provide
factual information

Only records exactly
corresponding to
query

Exact match
(between query and
record)

High

Definition level:
Important attributes
of an entity type are
identifiable

Instantiation:

Easy to represent fact
that particular occur-
rence of an entity type
has particular value for
a given attribute

Chief concern:
efficiency
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Document

Point the way to
information

Items most relevant
to query (one, some,all)

Best match (hopeful
match!)

Lower

Definition level:
Important terms are less
easily identified (due to
issues such as term
generality/specificity,
exhaustivity and possible
effects on matching
function)

Instantiation:

Not "rote." When does D-ij
in a binary document vector
e.g.? What does D-ij=0.7
in a "real" document vector
mean? What are the implica-
tions of these values on
the matching function?

Chief concern:
effectiveness
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