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I. INTRODUCTION

In many economic situations agents base their decisions largely on the observed
decisions of other agents. Upon observing an empty restaurant we typically conclude that
the food is bad. There is evidence that money managers tend to choose their portfolios
based on the observed choices of other money managers, currency traders tend to gather
the same information as other currency traders, industries are unusually slow to deviate
from standard practices, female grouse tend to enter male territories already populated by .-
other female grouse, and analysts tend to bias their forecasts toward the previously-made
forecasts of other analysts (see Scharfstein and Stein (1990); Froot, Scharfstein and Stein
(1990), Zwiebel (1991), Bikhchandani, Hirshleifer and Welch (1991) and Stickel (1990,
1991), respectively). Défern'ng to conventional wisdom may not be irrational. Indeed a
basic message of information economics is that we can often infer the information of other
agents by observing their actions. Unfortunate outcomes can arise, however, when agents
defer to others' decisions so much that they ignore their own information completely and
simply take the same action that predecessor agents have taken. Such a strategy is known
as "herding" and its potential causes have been studied extensively.

The purpose of this paper is to analyze the observed similarity of agents' decisions.
In what follows we will distinguish between clustering, which is the observation that
agents' decisions tend to be very similar, and h@g, which is the statement that clustering
occurs because some agents ignore their own information entiiely. We provide a formal
definition of clustering, illustrate a simple mechanism for clustering that does not involve
herding and argue that clustering is likely to be a common phenomenon while herding is
not. In particular, we consider a setting where agents choose both an action and the time at

which to take the action. We show that allowing agents to choose when to act creates

clustering, even when the previously studied motivations for herding are absent.
Furthermore, the clustering of agents' choices that results from herding is informationally

inefficient -- agents ignore useful information -- whereas the clustering of choices in our



model is due to an informational efficiency; agents use their own information and can infer
other agents' information as well. Before describing our approach in more detail,
however, a brief review of the herding literature is in order.

The existing literature offers two rational explanations for herding, which we label
as statistical herding and reputational herding. Examples of statistical herding are given by
Bikhchandani, Hirshleifer and Welch (1991), and Banerjee (1990). Consider the situation.
in Bikhchandani, Hirshleifer and Welch (1991) where agents make binary decisions (accept
or reject) in a pre-determined sequence. Each agent has a conditionally independent signal
about the value of each choice and can observe the choices of all predecessor agents.
Suppose the first two agents receive "high" signals and choose to accept. It is quite
possible that the information implicit in the first two agents' actions overwhelms whatever
information the third agent might have and hence she too will choose to accept. But now
all subsequent agents are in exactly the same position as the third agent; they will each-
ignore their own information and choose to accept. This type of result, known as an
“information cascade," renders the economy informationally inefficient in the sense that
useful information is ignored. Note, however, that the result hinges on the binary nature of
the agents' choice set. It can be shown that for any fixed number of players, the larger the
choice set, the less likely statistical herding is to occur. In particular, if the choice variable
is continuous and agents are rewarded according to the proximity of their choice to the full-
information optimal choice, then no information goes unused. Each agent in the sequence
uses their own information and any information recoverable from the predecessor agents'
decisions. Although the agents' choices are closer together than if they were made
simultaneously, the economy is informationally efficient.

Examples of reputational herding are given in Scharfstein and Stein (1990), Froot,
Scharfstein and Stein (1990), Zwiebel (1991), and Trueman (1991)). Consider the
situation in Scharfstein and Stein (1990) where each agent receives a signal about the value

of alternative choices, but the signal may or may not be informative. Informative signals



have correlated errors while uninformative ones are independent, and agents do not know
whether their signal is informative. An agents does not attempt to make the most valuable
decision; rather, she attempts to maximize the probability that an outsider will place on the
possibility that she is an informed agent (i.e. her reputation). Because informed agents
receive signals with correlated errors a subsequent agent maximizes her appearance as an
informed agent by taking the same action as the predecessor agent, regardless of her
information. Note that this result depends critically on the assumptions that agents'
incentives are not aligned with the value of the actual outcome and that informed agents'
signals have correlated errors. If an agent wanted only to make the most valuable decision
then her own information would influence her decision and if the signal errors were
uncorrelated then common decisions would not indicate the presence of informed agents.
Reputational herding could be mitigated by a contract that would align the interests of the
agent with the value of the outcome to the firm.

In short, the herding literature explains clustering by showing that, for either
statistical or reputational reasons, agents rationally ignore their own information and mimic
other agents' actions. Note, however, that in both statistical and reputational herding the
order in which agents act is given exogenously. We offer a different and arguably more
plausible explanation for the clustering of agents' decisions based on the idea that agents
choose the timing of their actions strategically. If agents choose when to act then their
timing choice may reveal some of their information. Furthermore, if the choice of when to
act is informative then so is the choice of when not to act . Thus, the very first actor knows
something about the other agents' information by the simple fact that they have not yet
acted. The endogenous timing of actions creates an information leak that may enable the
first actor to make a more informed decision. While it may appear that the second agent is
biasing her action toward the first agent's choice (as in the herding models), we show that
the first agent is actually altering her decision toward the forthcoming decisioﬁ of the

second agent. This source of clustering is labeled anticipation. In addition, if the cost of



delaying an action is higher for agents with more extreme information, then in equilibrium
they choose to act first. Holding aside the improved decision of the first agent, if the most
extreme agent acts first and the second agent can recover the first agent's signal by
observing the action, then the most extreme differences in the two agents' decisions cannot
arise. This source of clustering is labeled ordering. In sum, the strategic timing of actions.
decreases the expected gap between the actions of the agents when those who have more 3
extreme signals act first (i.e. ordering) and when the those who act first to infer some of the
non-acting agents' information (i.e. anticipation).

Many economic situations present a trade-off between waiting for additional
information to present itself and acting quickly on the basis of less information. A money
manager may learn something about the optimal allocation between stocks and bonds by
waiting to observe another manager's allocation choice, but the longer he waits the longer
he holds a portfolio that is suboptimal based on his own information. A firm may wait to
observe another firm's success with a new product before deciding how vigorously to enter
the market, but the delay will cost the firm some market share if it subsequently chooses to
enter. The simple discounting of future payoffs creates a delay cost. The tradeoff between
more informed decisions and the urgency to make a decision is the main ingredient of our
model.! In our setting, agents prefer to make decisions that are accurate (in the sense of
being close to the full-information decision) and, for a given level of accuracy, they prefer
to make decisions with as little delay as possible.

In the next two sections we focus primarily on a game where the cost of delay
increases as the value of the unknown variable increases. While none of the previously-
studied causes of "clustered" decisions are present, we demonstrate that the agents'

decisions are closer together than when the timing of actions is exogenous. We then show

10ther papers that demonstrate the cost of delayed decisions include: Hendricks and Kovenock (1989), who
study the tradeoff between waiting to see the results of another firm's oil exploration and the cost of
delaying the profit if the results are favorable; Bulow and Klemperer (1991), who study how a buyer trades
off waiting to get a lower price against the probability that the seller will run out of stock; and in the
context of a public goods problem, Bliss and Nalebuff (1984), who show that the agent who suffers most
by waiting for the public good is the first to supply it privately.



that clustering occurs for any delay cost that is either a strictly monotone or strictly convex
function of the unknown variable. We illustrate this general theorem with two examples
from a setting where the first agent's decision remains unchanged as time passes (so there
is no anticipation). In one case the cost of delay is higher for agents with more extreme
signals, so they forecast first. Clustering occurs because the most extreme news is
available to the second agent and so she doesn't make the most extreme errors. However, -
in another case where the cost of delay is higher for agents with less extreme signals, the -
second agent makes the most extreme forecast errors and agents' forecasts become
dispersed rather than clustered together.

In section IV we discuss two extensions to our model. The first demonstrates that
our results hold in a setting where, in addition to time and accuracy, agents are also
concerned about their relative performance. The second shows how our results carry over
to a model with many agents. We conclude in section V by arguing that, in general, the set
of conditions sufficient for clustering are quite mild and, in particular, they are considerably

less stringent than the assumptions found in the herding literature.

II. THE MODEL

Consider a model with two agents. Each agent is interested in predicting the future
value of a project, denoted by the realization of a random variable W and, holding the
accuracy of the prediction constant, would prefer to make her prediction sooner rather than
later. Each agent has information about the realization of W; in particular, W = S1 + S and
agent i observes the realization s; (uppercase characters denote random variables and
lowercase variables denote their realizations). For simplicity we assume that the Sj's are
independent and have a uniform distribution on the interval I = [0,1]. Denote agent i's
prediction by z; and the time of the prediction by t;. Each agent makes only one prediction

and the second agent observes the first agent's prediction.



To capture the tradeoff between the accuracy of the prediction and the time at which

it is made, assume agent i's utility is given by

u(w,zpty) = - (W - )2 - oowt;, (1)
where . > 0 is a constant. The utility function trades off the cost of an error in the agent's:
prediction (the first term) against the cost of delaying the prediction (the second term). "=
Note that, absent some interaction with the other player, there is no reason to delay in
making a prediction; the reason an agent may choose to wait is to observe the other agent's
prediction. If the forecast of the agent who acts first depends in some way on her realized
si then by observing this forecast the agent who acts second will be more informed about
w. The delay cost is increasing in the realized w, capturing the idea that there is more
urgency in forecasting more valuable projects. Later we present a model where the time ~
cost is increasing in the squared deviation of w from its prior expectation, capturing
situations where there is greater urgency in predicting extreme realizations in either
direction. Finally, o parameterizes the utility function's relative sensitivity to accuracy
versus delay.

For simplicity, the extensive form we consider precludes any pre-play
communication between the agents. This is noteworthy because the utility of agent i given
in (1) does not depend on agent j's actions, so both agents could achieve the highest utility
by simply sharing their signals prior to the beginning of the game. Of course, the incentive
to exchange information would be eliminated in a game where the players' utilities are
decreasing in the accuracy of their opponent's decision. This would be the case in a model
of relative performance evaluation, such as in Zwiebel (1991), or in any zero-sum game.
Later we modify our model to include a term in agents' utilities that is decreasing in their

opponent's accuracy and show that none of our conclusions are altered by the modification.



We focus primarily on the model without a relative performance term to highlight the
source of clustering in the simplest possible setting.

An agent's prediction zj can be interpreted in a number of ways. It may literally be
a forecast, as might be the case if the agents were financial analysts or macroeconomists.
Alternatively, it may be a more tangible action choice. For example, z; may be the size of
an initial investment in a new project and w the optimal level of investment based on all
available information. The agent prefers to make an investment as close to the full-
information optimum as possible and, the larger the full-information level of investment,
the more costly it is to delay the decision. In general, all that we require of z; is that it be a
one-to-one function of the agent's expectation of W.

Denote the stratégy profile of the two agents by 6 = (61,02). This set is potentially
quite large, but a few observations will greatly limit the set of possible best responses.
First, agent i's prediction should minimize the mean squared error of the forecast (the first -
term in the utility expression) conditional on the agent's signal s;, the equilibrium strategy
profile o and the elapsed time t. The forecast with this property is s; + E(S;lo,t). Second,
note that once one agent has made a forecast there is no benefit to the other agent in
delaying her forecast any longer. Thus, once one player makes her prediction the other
player predicts immediately afterward. With these observations, a strategy for agent i is
fully described by a function ti:I—>9(+, where tj(s;) specifies the atest possible time that
agent i will make her forecast (she will forecast earlier if the other agent forecasts before
this time). We will refer to the agent who chooses to forecast first as the first agent,
although this may be either the agent with signal s1 or the agent with signal s;.

A final observation is in order. For games in continuous time, guaranteeing that
strategies imply well-defined outcomes entails certain technical difficulties (see -
Stinchcombe (1988)). So, for example, the strategy that says one player will predict
"immediately after" the other player is somewhat vague. To make this precise, our game

should be considered as the limit of a series of discrete time games as the length of the time



between periods goes to zero. We show in the appendix that there is a unique symmetric
equilibrium outcome to the discrete time game, and that the equilibrium outcome converges

to the outcome given for the continuous time game.

1. RESULTS
The Symmetric Equilibrium

Most of our attention will focus on the symmetric equilibrium where tj(s) = to(sif=
t(si). In particular, we show that there exists a unique symmetric equilibrium. In this
equilibrium t'(sj) <0 and t(1) = 0. Consider such a strategy profile.

Note that, because t(s;) is invertible, the second agent can infer the first agent's
signal from the time the first agent made her forecast; denote the inverse of t(s;) by s(t;).
Because t(s;) is downward sloping, if the game proceeds to time T without a forecast, each
agent knows that the other agent's signal is not in the region [s(t),1]. Thus, if the first
agent chooses to forecast at time T then her forecast is s; + s(t)/2. Finally, because t(s;) is
invertible, finding the t(s;) that maximizes agent 1's expected utility for the given strategy

of agent 2 is equivalent to finding the s € I that minimizes

1 S S
[ ou(s + sp)t(sp)ds + ()I (s - 8/2)2dsy + ()j o(sq + sp)t(s)dsa (2)
S

for each sy e I.

Of course, agent 2 solves the analogous problem. To understand this expression note that
for sp € [s,1] agent 2 will forecast first. Thus, for this region agent 1 will forecast |
immediately after agent 2, get the prediction exactly right, and incur time cost

st + s2)t(s2). This is the first term in (2). For s € [0,s) agent 1 will forecast first. In
this case she will forecast s1 + s/2, her forecast accuracy cost will be (s - s/2)2, and her

delay cost will be (s + s2)t(s). These are the second and third terms in (2), respectively.




The following proposition gives the unique symmetric equilibrium of this game.

Proposition 1: There exists a unique symmetric Nash equilibrium outcome for the game
described above. In this equilibrium agent i predicts (3/2)s; at time t(s;) = (1 - s;)/6t if her
opponent has not made a prediction; otherwise she predicts s; + (23)zj=s1+8%
immediately after her opponent's announcement (at time t[(2/3)zj]). If agent i observes that
Tj # (2/3)z; then agent i forms an arbitary conjecture about the distribution of sj and
forecasts sj plus the mean of s; given her new conjecture.2 (The proof is given in the

appendix.)

The intuition for why t(s;) is decreasing and continuous is straightforward. First,
t(si) cannot be increasing because it is more costly for agents with higher signal realizations
to wait than it is for agents with lower signals, and the gain to waiting is not signal-
dependent. Second, there can be no region where t(s;) is constant; if there were, an agent
could wait an arbitrarily small amount of time and gain a strictly positive amount of
additional information. Finally, t(s;) must be continuous because no agent would be
willing to wait the strictly positive amount of time represented by the discontinuity to gain

an infinitesimal amount of additional information.

The Asymmetric Equilibria

An asymmetric sequential equilibrium for our model is the following. Suppose
agent 1's strategy is to make her prediction immediately and agent 2 is willing to wait
indefinitely before being the first to forecast: t1(s1) = 0 and ta(sp) = oo for all s1 and sp. In

this case agent 1 forecasts s1 + 1/2 and agent 2, after observing agent 1's prediction,

2Note that off-equilibrium forecasts (i.e. forecasts at time T # t[(2/3)zj]) play a very limited role in our
model. This is because the utility of the first agent does not depend on the forecast of the second agent.
Hence, the second agent's off-equilibrium beliefs do not affect the first agent's expected utility calculations
and, consequently, there is a multiplicity of off-equilibrium conjectures associated with the unique
symmetric equilibrium outcome.
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forecasts s1 + sp. If agent 2 is willing to wait forever before making a forecast then agent
1's best response is to forecast immediately. Similarly, if agent 1 is going to forecast
immediately then it is agent 2's best response to wait an instant, observe agent 1's
prediction, and then forecast. Another asymmetric equilibrium reverses the roles of agent 1

and agent 2. These equilibria are given in the following proposition.

Proposition 2: Two asymmetric sequential equilibria in the game described above have thie
properties that agent i predicts s; + 1/2 at time 0 and agent j predicts sj + (z; - 1/2) =51 + 5
immediately afterward. If agent i fails to predict at time 0 agent j maintains her belief that s;

is distributed uniform on I and continues to wait.

Note that neither aéent's strategy depends on her signal, so observing the time at
which an agent acts is uninformative. Consequently, this equilibrium yields exactly the
same forecasting and timing behavior that occurs if the order of the agent's actions is given
exogenously. As such, it serves as a useful benchmark when evaluating the degree of

clustering in the symmetric equilibrium created by the endogenous timing of forecasts.3

Herding and Clustering

In our economy neither reputational herding nor statistical herding arise. Agents'
utilities do not depend on an outsider's perception of their ability, so the second agent has
no reason to mimic the first agent in order to influence someone else's assessment of her
ability. In addition, each agent's decision variable is chosen from a continuum, so the
second agent always uses her own information to improve her decision. Nonetheless,

agent's decisions are clustered together.

3As in the standard war of attrition problem, the following other equilibria exist: for all s > s, agent i

forecasts sj + 1/2 with probability p at time zero and for all sj <'s, agents i and j play a suitably rescaled
version of the symmetric equilibrium.



In the previous herding studies, agents' decisions are clustered together in an
extreme way: subsequent agents take the same action as the predecessor agent. In these
studies there was no need to define a more general concept to capture the notion that
"agents' decisions are too close together." For our purposes it is necessary to define a

more sensitive metric of clustering. We will say that clustering has occurred when the

squared difference between the two agents' predictions in the economy with endogenously--

ordered forecasts is smaller in expectation than the squared difference between the two
agents' predictions when the forecasting order is exogenously given.# Because the
forecasts that arise when the order is exogenous are the same as in the asymmetric
equilibria to our game, the appropriate benchmark is naturally defined from within the
model.

Let den = E{[Z1 - Z9]2) be the expected squared difference between the two

predictions when the forecasts are ordered endogenously and dex be the analogous measure -

when the forecasts are exogenously ordered, so that our clustering measure is dex - dep.
The second agent can always infer the first agent's signal from the first agent's forecast
using the relation z; = s; + E(Sjlo;t), so the second agent always forecasts zj = s1 + $2.
Thus, the difference in forecasts is effectively the difference between the second agent's
signal and the first agent's forecast of that signal. Denote the first agent's signal by X =
JS1 + (1-))Sp, where J=1 if t(s1) < t(s2) and J=0 otherwise, and the second agent's signal
by Y = (1-1)S1 +JS2. With this, den, can be written as den = E(E{[Y - E(YIX)]2X} ); that
is, the mean-squared error of the first agent's forecast of the second agent's signal,
averaged over all possible realizations of the first agent's signal. Further, the inner
expectation is Var(YIX), so den = E{ Var(YIX)}. When the forecasting order is given

exogenously, who forecasts first is uninformative. In this case the first agent's forecast of

4More generally, for the models in propositions 1 and 4, the results that follow can be established for any
measure of clustering that is increasing in the absolute difference between forecasts (i.e., the mean squared
difference, the mean absolute difference etc.). For these models, the absolute difference between
endogenously-ordered forecasts is first order stochastically dominated by the absolute difference between
exogenously-ordered forecasts.

11



the second agent's signal is simply the prior mean, s dex = E{[S; - E(S;)]2} = Var(S;).

The clustering measure can now be written as

dex - den = Var(Sj) - E{VaI(le)};

that is, the difference between the exogenous variance of a signal and the expected variance-

conditional on the first agent's signal. e

A different decomposition of dep will illustrate two sources of clustering. Note that
den = B{ Var(YIX)} = Var(Y) - Var{E(YIX)} = Var(Y) - E{[E(YIX) - E(Y)]2}, so that

dex - den = Var(S;) - Var(Y) + E{ [E(YIX) - E(V)?}. ©)

ordering anticipation

Label the first two terms together as ordering and the last term as anticipation. Anticipation
represents the change in the first agent's forecast that results from the realization that she is
indeed the first agent (i.e. the conditioning on X). This inference potentially informs her
that the second agent's signal must not be in certain regions of I. For insta}lce, in the
previous model the ex ante forecast of the second agent's signal is E(Y) = 1/3.5 However,
when the first agent realizes that she is indeed the first agent she can conclude that the
second agent does not have a higher signal than she does, so her optimal forecast is‘si/2.

1
In expectation, then, anticipation contributes [ [si/2 - 1/3]2ds; = 1/36 to clustering in the
0

previous model. Anticipation cannot be negative; the first agent's forecast cannot become

less informed than the ex ante forecast E(Y). Consequently, unless the first agent's

5Note that the forecast is of the second agent's signal as opposed to the agent with signal S, which would
be 1/2.

12
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forecast is completely insensitive to the passage of time, the inference that the first agent
can draw from the second agent's lack of action contributes to clustering.

Ordering is the difference between the ex ante variance of an agent's signal and the
variance of the second agent's signal. Thus, if the equilibrium strategy is for agents with
more extreme signals to forecast first then the second agent's signal must be less extreme,
so it will have a smaller variance. For instance, in the previous model Var(S;) = 1/12 but =
Var(Y) = Var(§j | Sj < §;) = 1/18, so ordering contributes 1/36 to clustering.

The next proposition shows that clustering is a general phenomenon. In particular,
while the delay cost in the previous model is awt, we show that clustering occurs for delay
cost functions of the form ag(w)t, where g(w) denotes the function g: [0, 2] — R+ and is
either strictly monotoné or strictly convex; that is, when the expected cost of delay is higher
for agents with relatively more extreme signals. Further, we show that ordering is positive
when g(w) is either strictly monotone or strictly convex, so clustering occurs even absent

any anticipation.

Proposition 3 Suppose agent i's objective function is

u(w,ziti) = - (W - )2 - og(W)tj,

where o >0 and g(w) is either strictly monotone or strictly convex. In this case i) there
exists a symmetric equilibrium such that t(s;) is strictly quasi-concave;8 ii) in all symmetric

equilibria, t(s;) is strictly quasi-concave; and ii) in any symmetric equilibrium, ordering is

positive, so clustering occurs. (The proof is in the appendix.)

6As in proposition 1, agent i forecasts sj + E(sj | ¢(sj) 2 7) at time t(s) if her opponent has not made a
prediction; otherwise she predicts s1 + s2 immediately after her opponent's announcement.



-As seen in the proof, the existence of a strictly quasi-concave t(s;) depends only on
the strict quasi-convexity of g(w). Adding the requirement that g(w) is either strictly
monotone or strictly convex allows us to prove that any t(s;) is strictly quasi-concave and
clustering occurs for any symmetric equilibrium. With strictly convex or strictly monotone
costs, it is most costly for agents with extreme signals to delay their forecast. Therefore,,
the best response to any strategy profile in a symmetric equilibrium is for agents with more
extreme signals to forecast first. 3

If the equilibrium results in agents with relatively more extreme signals forecasting
second, then ordering can work against clustering. The next two examples illustrate how
ordering can either contribute to or mitigate against clustering. To isolate the effect of
ordering, each example uses symmetric delay costs, so that the equilibrium strategy allows

no anticipation.

Symmetric Equilibrium with Two-Sided Cost of Delay

Suppose that the cost of delay increases as the squared deviation between W and its
prior expectation increases. The idea here is that an agent is eager to act when the value of
the unknown variable is extreme in either direction. A money manager's allocation
between stocks and bonds is be a good example, where W is the optimal fraction to have
invested in stocks given full information and E(W) is the existing fraction. Another
example is an analyst's forecast, where it is as valuable to predict extreme decreases in
earnings as it is to predict extreme increases. This idea is captured by the following utility

function:

u(w,zj,t) = - (W - 23)2 - 0w - 1)2t;. )

We show that a symmetric equilibrium exists for this model, where t(s;) is symmetric about

1/2, increasing for sje [0,1/2), decreasing for s;e (1/2,1] and t(1) = t(0) = 0.

14



Note that as time passes without a prediction each agent learns that the other agent's
signal is not in an extreme region of I. However, because t(s;) is symmetric about the prior
mean of sj, the optimal forecast does not change over time: zj = s; + 1/2 for all t. Once the
first agent makes her prediction, however, the second agent can use the observed forecast
and the time that it was made to recover the first agent's signal (as in the model with one-
sided cost of delay). The t(s1) that maximizes agent 1's expected utility for the given

strategy of agent 2 is determined by finding, for each sy € I, the s € I that minimizes

S 1 1-s 1-s
[ a(sy+s2-1)2t(s2)dsg + [ au(si+s2-1)2t(sp)dsy + [ (s2-1/2)2dsg + [ au(sy+s2-1)2t(s)ds2. (5)
0 1-s S S

As before, agent 2 solves the analogous problem. To understand this expression, note that

for spe {[0,s)U(1-s,1]} agent 2 will be the first to forecast. In this case agent 1 will get

the forecast exactly right and incur only the time cost. This is given by the first two terms

in (5). For spe[s,1-s] agent 1 will be the first to make a prediction. For this case the third
term in (5) measures the cost of her forecast error and the fourth term measures her cost of

delay. The following proposition gives the equilibrium.
Proposition 4: There exists a symmetric sequential equilibrium to the game with two-
sided delay cost. In this equilibrium agent i predicts s; + 1/2 at time

t(sj) = - f—- log(12s; - 11) if her opponent has not made a prediction; otherwise she
o

predicts sj + (zj - 1/2) = s1 + s immediately after her opponent's announcement of zj. If

her opponent forecasts at some time Tj # t(zj - 1/2) then agent i forms an arbitrary
conjecture about the distribution of sj and forecasts s; plus the mean of s given her new

conjecture. (The proof is in the appendix.)

15



While the first agent's forecast does not change with the passage of time, so there is
no anticipation, clustering still occurs in this model due to ordering. In particular, Var(Y) =

E{min[(S1 - 1/2)2, (S2 - 1/2)2] } = 1/24 s0 the measure of ordering equals 1/12 - 1/24 =

1/12.7 Thus, the agents' forecasts are closer together in the economy with endogenously-

ordered forecasts than when the forecasting order is given exogenously; that is, clustering.. -

occurs.

The expression for Var(Y) given above clearly demonstrates the source of the
clustering in this model. The equilibrium ordering reveals the most extreme signal first,
leaving only the difference between the less extreme signal and the forecast of 1/2. While
the ordering of agents has not altered their point forecasts, it does rule out the extreme
regions of the joint distribution of S1 and S».

Proposition 3 gave.some sufficient conditions for clustering to occur. By
eliminating anticipation and inverting the two-sided delay cost of the previous example, the
next example demonstrates how ordering can cause forecasts to be dispersed rather than
clustered. Suppose that agents were more eager to act when the value of W was closer to

its prior mean. This idea is captured by the following utility function:
u(w,zi,t) = - (w- )2 - of1 - (w - 1)2]t;. (6)

It can be shown that a symmetric equilibrium‘ exists to this model where t(s;) is symmetric
about 1/2, decreasing for sje [0,1/2), increasing for sije (1/2,1] and t(1/2)=0. As in the
previous example, the optimal forecast remains z; = sj + 1/2 for all t. Unlike the previous
example, however, the agent with the less extreme signal is the first to forecast. Thus,
Var(Y) = E{ max[(S1 - 1/2)2, (S3 - 1/2)2] } = 1/8, so the measure of ordering is 1/12 - 1/8

= - 1/24. We offer this example to illustrate that ordering can be either positive or negative;

7To compute this value note that the cummulative distribution function of v = (s; - 1/2)2 is 2\v with
support on (0,1/4) and so the probability density function of the minimum of two independent v;'s is 2(1 -
2vu)Nu with support on (0,1/4),
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not because we have a particular economic situation in mind that exhibits this type of delay

cost.8

Efficiency

In the herding literature the economy is informationally inefficient in the sense that.
subsequent agents ignore their own signals when the information is still useful in making a:
superior decision. The observed clustering of behavior in many economic situations is
seen as the undesirable outcome of herding. In contrast, our economy is informationally
very efficient. Not only do both agents use their own information, but the second agent
can recover the first agent's information by observing her forecast and, as long as the delay
cost is not completely symmetric, the first agent can partially infer the second agent's signal
from the passage of time. Even when the delay cost is two-sided, as long as the cost is
higher for agents with more extreme signals, the first agent doesn't make the most extreme
forecast errors. In all cases, both agents use their own information and all the information
provided by the endogenous variables in the economy.

Another kind of inefficiency is present in the symmetric equilibrium of our model,
however. In the symmetric equilibrium each agent trades off her own gain in accuracy with
her own cost of delay without considering that the other player would also benefit from an
earlier prediction. By delaying their predictions, each agent imposes a negative externality
on the other agent.

In contrast to the symmetric equilibrium, there is no delay cost in the asymmetric
equilibria, or in a setting where the order of forecasting is given exogenously; the first
agent gains nothing from waiting, so she forecasts immediately. The asymmetric equilibria

do not strictly dominate the symmetric equilibrium, however, because the first agent's

8 Another way that anticipation may be zero is if the cost of delay does not depend on the agent's signal.
For example, if the utility function is u(x,zj,t) = - (x- zi)2 - otj, then the passage of time does not reveal
anything about an agent's signal and the optimal forecast remains z; = s; + 1/2. This is a standard war of
attrition; its symmetric equilibrium strategy at time t is for each agent to mix between forecasting and

waiting based on the probability density f(t) = 12¢-120¢,
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forecast is less accurate in the asymmetric equilibria. Nonetheless, the sum of agents'
expected utility is higher in the asymmetric equilibria than in the symmetric equilibrium, so
there is a sense in which the asymmetric equilibria are superior. In particular, if utility is

transferable between agents then the asymmetric equilibria Pareto-dominate the symmetric

equilibrium.® Suppose that agent 1 forecasts first in the asymmetric equilibrium. Herex .

ante expected utility (averaged over all realizations of s7) is

11 1
({ g - (1/2 - s9)2dsadsy = - SV

Agent 2 forecasts in the next instant and so her expected utility is zero. In the symmetric

equilibrium each player's expected utility is given by

1] 1 51 51

1 - I-
J [ [(s1+ 82)(——d682) s2- [(s1+ Sz)(——d6sl) 82 - ({ (5 - 52)2ds [dsy
0 Lsi 0

3 2
_‘[ (L-s?Gsi + 1) St s1<1-s1>]d s
‘({ ) 36 T2 T4 e

The sum of expected utilities in the asymmetric equilibria (- 1/12) is greater than the sum of
expected utilities in the symmetric equilibrium (-1/8). Note also that the expected utilities
do not depend on the players' sensitivity to the cost of delay, as parameterized by o. In
particular, reducing the cost of delay does not reduce the public goods problem present in
the symmetric equilibrium. Although it becomes less costly to wait as the delay cost
diminishes, in equilibrium the second agent will wait longer before the first agent reaches

the point where her gain from increased accuracy equals her loss from additional delay.

9While the sum of utilities as defined here is larger at the asymmetric equilibrium, there are behaviorally
equivalent representations of preferences (for example, the cube of the utility given here) such that the
symmetric equilibrium yields the higher sum.
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IV. EXTENSIONS
A Model with Relative Performance Evaluation

For the models presented so far, both agents could increase their expected utility by
simply sharing their information prior to the beginning of the game. However, if an agent
derived some utility from the forecast error of the other agent -- as would be the case if the
agent was subject to some type of relative performance evaluation -- then she would no
longer find it in her best interest to truthfully share her information. The following utility

function captures this idea:
u(w,zi,zjti) = - (1-B)(W - 2)2 - ooty + B(w - z))2, 7

where P is positive and small enough to keep agent i's focus primarily on her own forecast
error (it is shown in the appendix that B < 1/18 satisfies the second order condition). For
this model, agent i's utility is increasing in the forecast error of agent j so an agent's offer
to truthfully her reveal information prior to the beginning of the game is no longer credible.
Consider the symmetric equilibrium and, as before, consider the strategy profile

t'(sj) < 0 and t(1) = 0. For each s; € I, agent 1's objective is to choose s € I to minimize
1 1

J st +s)t(s2)dsa - | Bs1 - 2)ds
S S

S S S
0B~ )l + s + s - (B - 5) ds2 ®

As before, agent 2 solves the analogous problem. The first, third and fourth terms of (8)
are the same as in (2). The second term in (8) captures the effect of agent 2's forecast error

when agent 2 is the first to forecast. In this case agent 2 forecasts (3/2)s2 and agent 1
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forecasts immediately afterward. The last term in (8) captures the effect of agent 2's
forecast error when agent 1 is the first to forecast. In this case agent 2 forecasts s + s
(which at this point need not be equal to s1 + s3). Note that agent 1 internalizes the effect
of agent 2's off-equilibrium belief through the last termin (8); choosing an s # s1 misleads

agent 2 by exactly the difference between s and s;.

Proposition 5: There exists a symmetric sequential equilibrium outcome for the game with '
relative performance evaluation described above. In this equilibrium agent i predicts (3/2)s;
at time t(sj) = (1 - s;)/6¢ if her opponent has not made a prediction; otherwise she predicts
si + (2/3)zj = s1 + s2 immediately after her opponent's announcement (at time t[(2/3)z;]). If
agent i observes that T; # (2/3)zj then agent i continues to believe that E(S;) = s(t;) and

forecasts zj = sj + s(tj) immediately. (The proof is in the appendix.)

The equilibrium strategy described in proposition 5 is the same as in the original
model given in proposition 1. In this model, at the margin an agent trades off the cost of
waiting an instant against the benefit of improving her own forecast and the benefit of
harming the other agent's forecast by misleading her. By weighting the agent's own
forecast erro-r and the other agent's forecast error as a convex combination, the combined
marginal benefit is exactly as in the original model. It is not incentive-compatible for agents
to share their informatior; prior to the beginning of the game in this model, yet it exhibits
the same behavior as our original model. This justifies our original assumption of no pre-

play communication.

An N-Person Game
The basic results of the two-person game will continue to hold in an n-person
version of our model, where the future value of the project is now W =81 + Sg + ...+ Sp.

A strategy in this game specifies a set of functions, each specifying the maximum amount




of time an agent will wait after the beginning of the game, and then wait after each observed
forecast, before making her forecast. Denote a strategy in a symmetric equilibrium by the
set {t(s,y): ke {1,2,...,n}}, so that tX(s;,y) gives the maximum amount of additional time
agent i will wait before forecasting, given that k agents have not yet forecast and the sum of
the forecasts made so far is y. As in the two-person game, t!(s;,y) = 0 for all s and y;
once everyone else has acted there is no reason to delay.

Note that in the n-person game each subgame that ensues initially and after a x
forecast is essentially a rescaled version of the two-person game. Two features in
particular remain the same. First, for one-sided delay costs, the cost of delaying any
increment of time is higher for agents with higher signals. While some of the unknown
components of W may be realized, it is still the case that, for agents who have not yet
announced, the expected value of W is higher for agents with higher signals. Second, the
expected forecast accuracy does not depend on an agent's own signal. An agent's own -
signal is forecast without error, as are the realized signals an agent observes from previous
agents' forecasts. |

Using arguments similar to those given in the appendix for the two-person game,
these two facts can be used to prove that in a symmétric equilibrium, for all k and y, tK is
strictly decreasing in s. The tK are non-increasing in s because the expected cost of delay is
higher for agents with higher signals. To see why the tk are strictly decreasing, given that
they are not increasing, suppose that for some k, tk is constant in some region of I. An
agent with a signal in this region can gain a strictly positive increase in forecast accuracy by
waiting an arbitrarily small amount of time. This contradicts the supposition that the tX is
constant in some region.

Two implications follow from the fact that tK is decreasing in s for all k and y in the
n-person game, First, there will be intervals of time in which no forecasts are made, just as
in the beginning of the two-person game, but there will never be a frenzy of forecasting

activity. Basically, agents' timing choices are strategic substitutes; a more aggressive
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choice of when to forecast is met by other agents with less aggressive choices. They
benefit by waiting to observe the other agent's forecast. Second, the two sources of
clustering in the two-person model, anticipation and ordering, are also present in the n-
person model. Because each tK is invertible, the passage of time is informative. Each
agent's forecast will incorporate some knowledge of the subsequent agents' signals, thus....
moving all forecasts toward the full-information prediction. Furthermore, agents with
more extreme signals forecast sooner, so subsequent agents do not make the most extreme:

forecast errors.

V. CONCLUSION

We have provided a framework in which clustering and herding can be defined
formally and have shown that the tradeoff between delayed decisions and more accurate
decisions creates clustering without the informational inefficiencies that accompany
herding. In this final section we argue that clustering is likely to be a general phenomenon
while herding is not.

Given a finite sequence of observed actions, z1, zy, ... zy, the "natural" assumption
is that each agent i knows her own information and the information of all the agents j <1 at
the time she takes her action zj. That is, she knows the signals (i.e. types) of all agents that
preceded her and knows nothing about the signals of agents who have not yet acted, other
than what she can deduce from her prior and the realizations of the earlier signals. Thus, at
the end of the game, all the agents' information is revealed. This "natural” level of
information at each stage of the game corresponds to the level of information that players
have in the two asymmetric equilibria discussed in section III.

Using the "natural" assumption as a benchmark, note that both statistical and
reputational herding generate clustering because, in equilibrium, the typical agent i knows
less than under the natural assumption. In the statistical herding models this is because the

binary choice sets provide an insufficient vocabulary to sustain a fully separating
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equilibrium, given the incentives of the players. At some point in the sequence of
decisions, the information available from observing predecessor agents' decisions
overwhelms agent i's information. Thus, she ignores her information and, consequently,
her decision does not transmit her information to subsequent players. Similarly, in
reputational herding the sequence of decisions fails to aggregate information at some point
because the incentives of agents are such that they maximize their reputation by pooling
with their predecessor agent. Hence, in a 3-person model the third agent would not have
complete information about the second agent's signal. Herding can be eliminated by
enriching the setting in a way that allows prior agents' information to be transmitted; a finer
set of action choices eliminates statistical herding and more appropriately aligned incentives
eliminates reputational herding. It is in this sense that we feel that herding is not a
particularly robust phenomenon.

In contrast to the herding models, clustering occurs in our model because, in
equilibrium, a typical agent i knows more than under the natural assumption. In particular,
she knows the exact signals of all agents who have announced before her and she knows
that she is the i'th highest signal (or the i'th most extreme signal in the case of two-sided
delay cost). Hence, information has leaked. In our model this information leak is a result
of the tradeoff between accuracy and delay. Whenever the appropriate marginal
calculations for this tradeoff are not identical across agents' different possible signal
realizations, the choice of when to act will cause an information leak and may result in
clustering. In sum, the herding literature explains clustering by noting that agents may
know less than you thought, while we explain clustering by noting that they may know

more than you thought.
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APPENDIX

Part I of this appendix derives the symmetric equilibrium to a discrete-time version of our

game with one-sided time cost and Part II presents the proofs of propositions 1, 3, 4 and 5.

Part I: The Symmetric Equilibrium for a Discrete-Time Model

The first proposition in the text is somewhat vague regarding certain aspects of the‘;
equilibrium strategy as they relate to choosing t; from a continuum (in particular, the idea )
that the second agent acts "immediately after” the first agent). Here we make these ideas
precise by considering a model with the same features as the continuous time model given
in section I, but where an agent can act only in discrete time periods. We show that a
symmetric equilibrium can be constructed, it is unique, and that as the time between periods
goes to zero the equilibrium strategy converges to the strategy in the continuous time
model.

Let A denote the time between subsequent periods. Thus, an agent who forecasts

in period k does so at time t; = (k - 1)A. Agent i's utility if she announces z; in period k is

now

-(w-z)2-aw(k - DA. (al)

As before, the optimal forecast is zj = s; + E(Sjlsj,0,t). Furthermore, once one agent has
forecast there is no additional benefit to waiting, so the remaining agent will forecast in the
next period (this is the analog to forecasting "immediately afterward" in the continuous time

model). Thus, a symmetric equilibrium is described by a function t A(8) that specifies the

latest time that an agent with signal s will forecast. If an agent with signal s is willing to

wait indefinitely for her opponent to forecast then we will write this as t A(8) = oo

Replacing At with A in the proof that t is non-increasing (see part II of this
appendix) establishes that ta is non-increasing for all A > 0. Now suppose that no type

forecasts in period k. If this is the case then either all types have forecast by period k or




there exists a first period k >k such that t A(8) = (k - 1)A. Butif such a k existed then the

agent with signal s would be strictly better off by forecasting in period k -- the time cost is
lower and she learns nothing between periods k and k. Thus, in every period k either some
types forecast in that period or both players have announced prior to k (in which case the
game is over). Together with the fact that ta is non-incr;:asing, this establishes the

existence of a sequence of sk such that s0 =1, sk < sk-1 and

tA(s) = Ak - 1) for s € (sk, sk°1), k=1,2, ... (a2)

The existence of the t A(s) given in (a2) together with the continuity of utility in the

agent's own type imply that the agent with signal sk is indifferent between acting in period
k and waiting to act in period k+1 (provided that the game does not end with probability
one by period k). If the game has proceeded to period k without a forecast, then agent 1
with signal sk knows that s is below sk-1 and forecasts in period k. Her expected utility is

k-1 k-1
1y, skl 14
(Sk—l) ({ (- s2)dsy + (S—k—l) ({ a(sk + sp)(k - 1)Adsy. (a3)

The term (slg_l) is the density of sy, given that no forecast has been made prior to period k.

Alternatively, if agent 1 with signal sk waits to forecast in period k+1 then her expected
utility is
k-1
sk-1 - gky® K 1
( o )sjka(s + sz)kA(—————-Sk_l - Sk)dsz +

sk

sk 1 s sk 1
(sk_'l 'S'EI (5 - s2)%ds2 + —S—Eg o(sk + sp)kAdss |. (a4)
0




k-1_ ¢k
To understand the first term in (a4), note that with probability (s_;(__l_s_) agent 2 forecasts

. in period k, so agent 1 incurs only the time cost, and in this case the density of s2 is

k
uniform on the interval [sK, sk-1], With probability (;Sk_l) agent 2 does not forecast in

period k. In this case agent 1 is in a position very similar to when she forecast in period k,

except she has waited an additional A of time, and now knows that s lies below sk rather

than below sk-1. This is given in the second term in (a4).

Because agent 1 with signal sk is indifferent between acting in period k or period
k+1, the expected utility in (a3) must equal the expected utility in (a4). Equating these two
expressions and evaluating the integrals gives

sk-1y2

ok-1)2
(k12 ok - DA(sksk-1 + (-2—)) ) okA(sksk-1 + ( 7) 68
12 sk-1 - ok-1 12sk1
which simplifies to
(sK)3 + 12aAsk-1sk + 60A(sk-1)2 - (sk-1)3 = 0, (as)

Thus, sk is the root to a cubic that is parameterized by sk-1 and A. There is at most one
solution to (a5) because the cubic's first derivative is strictly positive for sk-1 > 0.
Furthermore, at sk = sk-1 the cubic is strictly positive, so the root is strictly less than sk-1,
Substituting in sk = sk-! yields the results that the sequence {sk} is strictly decreasing.
Also, for sk-1 > 6A, the cubic is less than or equal to zero at s = 0 and greater than zero
at sk = 1, so there is exactly one root in the interval [0, 1] for sk-1 > 60A. Thus, the
sequence {sk} is uniquely determined for sk-1 > 60A. Finally, for sk-1 < 60A, sk <0, so
the sequence{sk} decreases to zero (or lower).

To distinguish between the sequence of points sk-! for k =1, 2, ... and the generic
parameter sk-1 to the cubic in (a5), denote the root of (aS) as a function f(r, A) where r

corresponds to sk-1. The cubic can now be re-expressed as

26



f(r, A)3 + 120Arf(r, A) + 60tAr2 - 13 = 0, (a6)

where sk = f(r, A) for r = sk-1. Thus, the sequence {sk} defined by s0 = 1 and

sk = f(sk-1, A) for all k > 1 is uniquely determined. In any symmetric equilibrium this

sequence determines the behavior of any s # sK. For any s = sk, arbitrarily specify

tA(s) = A(k - 1). Thus, for any arbitrarily specified off-equilibrium path belief, the t as

defined above is the unique equilibrium outcome (up to the behavior of type sk agents) of
the discrete time game.
We will now show that along any sequence A, > 0 such that lim A, =0 as n — oo,

) 1-s
limt,(s) =
A(S) .

asn — oo, for all s € (0, 1]. First, fix an s € (0, 1] and choose a A

such that 60tA < s/2. To see that the function f: [s/2, 11 x [0, Z] — [0, 1] is continuous
(jointly in 1 and A), define a sequence (rn,. Ay) that converges to (r, 0) as n = oo and
observe that by the definition of f, the ordered triplet [f(ty, An), In, An] solves (a6) for each
n=1,2, ... Further, if lim f(ry, Ap) exists as-n — oo, then [lim f(rp, Ay), lim 1y, lim Ap]
solves (a6) as well. Thus, to verify the continuity of f, it is enough to show that lim f(r,
Ap) exists as n — oo, Because the range is compact, if the limit did not exist then two
subsequences would exist such that each would converge to a different limit. But each of

these limits would constitute a solution to (a6), which contradicts the fact that there is only

one root to (a6) for r > 60A.

Next we derive an expression that is analogous to the derivative of t A(8). In

particular, solve (a5) for A to get

A= (k-1 - sK)((sk)2 + sksk-1 + (gk-l)z)

> a7
6a.(2sk + sk-1) (@)

so that

27



28

_A_
Gk _ gk-1

(Sk)2 + Sksk-l + (sk-l)Z
sk-1(2sk + gk-1y - -

—1—B(sk'1, A), where B(sk-1, A) = (a8)
6o

Note that (a8) loosely resembles t'(s) = -1/6a. in the continuous time model. To establish
the continuity of B we again use r to denote the generic value of the parameter sk-1 in (a5)
in order to distinguish it from the particular point sk-1 in the sequence {sk}. Recalling that

f(r, A) = sk for r = sk-1, B can be expressed as

f(r,A)2 + f(r,A)r + 12
T @A) +1]

B(, A) (a9)

Because f is continuous on [s/2, 1] x [0, Z] and the denominator of the B is strictly positive
forr > s/2, B is also contiﬁuous on [s/2, 1] x [0, Z]. Since this domain is compact, for a
given A, B attains its minimum and maximum. Denote the minimum and maximum of B

by mp and M, respectively.
We now establish bounds for t,(s) using ma and M. First, note that by using

(a7) we can express the Ain t A(s) =(k-1)Aas

(51 - SB(sK-1, A)

A= al0
. (al0)
which holds for all k = 1, 2, ..., N. Consider the lower bound
1 (sl - s)mp
t,(s) =——. all
A o (all)

To verify that this is a lower bound to t, (s) note that, for s € [sk, sk-1), ti(s) is at its
highest point at sk. Thus, consider

(sl -smy _ ;‘:(sj'1 - slma

12
60 =2 60 (al2)

ta(sh) =



Because (a10) holds for all k and mp is the minimum of B, each of the k-1 terms in the

summation of (a12) is less than or equal to A. Thus, ti(sk) <t,(s¥). Since this bound

holds for each sk, tll\(s) <t,(s) for all s.

As an upper bound consider

(1 - 5)Mp

h

t,(s) = al3
a® =" (al3)
For s € [sk, sk-1), tg(s) is at its lowest point at sk-1, Thus, consider

h (1-skhMy  Klir1 - siymy

ty(sk1) = =3 , (ald)

6a =l 60

recalling that sO= 1. Since each of the k-1 terms in (al4) is greater than or equal to A,
tg(sk'l) > t,(sk-1). Since this bound holds for each sk-1, tg(s) >t,(s) for all s.

The preceding expressions were derived for a given A. We now consider the

behavior of the t A(5) as the A goes to zero. First, define a sequence (rp, Ap) that converges

to (r, 0) as n — oo. Note that because f is continuous lim f(r,, A,) = f(r, 0) =1
asn — . This implies that the term s1(1), which is used in the lower bound t}&(s),
converges to one as n — oo,

We now show that my and M converge to one as the sequence of A, converges to

zero. By definition, M, = max B(rp, Ap), for r,, chosen from [s/2, 1]. Because the
y Ap

domain of B is compact, there exists a value T, where B reaches its maximum. Thus

limM A, = lim B(1y, Ap) as n — eo. Suppose that lim B(ty, Ap) # 1. This would imply

that there exists a neighborhood V of 1 and a subsequence (fnj, Anj) such that none of the
elements of the subsequence B(fnj, Apj) belong to V. Now consider a subsequence of
(Tnj, Anj), denoted by (Tnk, Ank), that converges to (r, 0). The compactness of the domain
of B assures the existence of a convergent subsequence and, by definition, all
subsequences of A, converge to zero. Since f(r, 0) = T and by the continuity of B,

lim B(rnk, Ank) = B(r, 0) = 1. But this is a contradiction. If the subsequence
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B(rnk, Ank) converges to 1 and this sequence is a subsequence of B(fnj, Apj), then some

elements of B(Tpj, Anj) must belong to V. An analogous argument shows that lim m Ag= 1

asn — oo,

With both the minimum and maximum bounds of B converging to 1 and s!(1) converging

to 1, it follows that as n — oo,
. . 1- .
lim t(5) = lim £} 5) =i-6—a—sl , (al5)

which is t(s) of the continuous time model given in proposition 1. Since both the upper

and lower bounds are converging to the same number, t A(s) must also converge to the t(s)

given by the continuous time model. This establishes the desired result.

Part II: Proof of Propositions 1, 3. 4, and 5

Parts of the proof of proposition 3 can be used to prove proposition 1, so we

present it first.

Proposition 3

First we establish the existence of a symmetric equilibrium when g(w) is either
strictly monotone or strictly convex. Consider the case where g(w) is strictly convex but
not monotone. Denote by s* the agent type with the lowest ex ante expected delay cost; that
is, s* = 1/2 argmin g(w), where we [0, 2]. We postulate a symmetric equilibrium t:[0,1]
such that t is differentiable on [0, s*)U(s, 1], strictly increasing on [0, s*), strictly
decreasing on (s*, 1] and satisfying either t(0) = 0 or t(1) = 0.

Denote by h(s) a function h:[ s, s*) = (5%, s ]. This function will be used to
identify the agents with signals s and h(s) who will both forecast at the same time. As the
proof proceeds, two cases will present themselves, depending on the nature of g(w). In

one case s =0, h(0) ='s and t(1) = 0 is the initial condition. In the other,s =1, h(1)=s



and t(0) = 0 is the initial condition. For clarity, we present the entire proof for the former
case; the proof for the latter case is symmetric and is discussed briefly at the conclusion of

the proof. With this, agent 1's optimization problem is to choose s from [0, s*) to

s 1 h(s) h(s) .
y
J(xt(sz)g(sﬁsz)dsz + Jat(sz)g(sl+sz)ds2 + J(xt(s) g(s1+s2)dsa + J[sg - h(;)+s ] dsy
0 h(s) s s a
for all s;€[0, s*). This yields the first order condition
. - g]2
t(s)o{Gls1+h(s)) - Glsts)} + 205 iy - 17 = g, (a16)
X
where G(x) = [g(w)dw. Substituting s; for s in (a16) gives
0
. h -g112
s { GGst+h(sp) - G@sp)} + LU ey - 1y =, (a17)

Equation (al7) is the equilibrium condition for an agent with s;e[0, s*). For an agent with

sy € (5% 1], replace s with h(sg) in (1) and then substitute s for s to get

(s (G(2h(s1) - Glhispyesp) +-BED81 sy 172, al8)

Both (al7) and (al8) are satisfied if there exists a differentiable h(s1) such that, for all

s1€ [0, s¥),

G(2h(s1)) + G(2s1) = 2G(h(s1)+s1). (al9)
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Consider two mutually exclusive cases; either G(2) = 2G(1) or the opposite inequality
holds. If the inequality is as given then there exists an s € (s%, 1] such that G(2s) =
2G(s). This follows because G(x) is continuous and G(2s*) < 2G(s*) since g(w) is strictly
decreasing on [0, 25*). Thus, we are in the case where h(0) = s and the appropriate initial
condition is t(1) = 0. If the opposite inequality holds then we are in the case, to be

discussed later, where there exists a s such that h(s) = 1 and t(0) = 0. To verify the

existence of a function h:[0, s*) — (s*, 5] that satisfies (a19) for all s1&[0, s*), implicitly ’

differentiate (a19) to get the first order differential equation

ey = BHs1) - 8(2s1)
(s1) = g(ah) - gesn)’ @20)

Let Q¢ = [0, s* - £)x(s*, 5]. The RHS of (a20) is a continuously differentiable and
bounded function from Q¢ to R with a bounded derivative on C for a fixed € > 0. Hence

the function h satisfies a Lipchitz condition sufficient to guarantee a unique solution to

(a20) on Q¢ (see Bartle 1976, p. 256). Bartle's theorem requires that the domain be open.

This creates no problem in our case since both g(w) and the RHS of (a20) can be extended

differentially to (-¢, s* - €)X(s*, s). To extend h to the domain [0, s*), lete = 0. This

establishes that there exists a unique solution to (al9).

For s1 € (5, 1] agent 1's optimization problem is to choose s to minimize

1 S S

Jatspgtsresadss + Jor)gsirsadsy + [[s2-s21dsa,
s 0 0

which yields the first order condition

t'(s)o{G(sy +s) - G(s1)} +s2/4 = 0. (a21)
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Setting s=s; yields
t'(s1)a{G(2s1) - G(s1)} + (s1)%/4 = 0. (a22)

Since (a22) holds for s; € (5, 1] and a solution can be obtained by integrating and using o
the initial condition t(1) = 0, t(s1) is described by this solution on this region. Further,
taking the calculated value of t(s) from the solution of (a22) gives a boundary condition t(0)
= t(s) for (a17). By integrating (a17) and using this boundary condition, t(s1) is described
on [0, s™). On (s*, 1], t(s1) is described by the relation t(s1) = t(h(s1)). Finally, define
t(s*) as lim t(s}) as s; = s* for 57 € [0, s*)U(s*, 1]. Note that this limit exists, but may
be infinite.

We have shown that t(s;) satisfies the first order condition for all 51 €
[0, s*)U(s*, 1]. To establish that t(s) is a global minimum we will show that for s and S1
belonging to [0, s*), when s1 < s the LHS of (al6) is positive and when s; > s the LHS is
negative.

The first order condition states that for s; = s the LHS of (al6) equals zero. Note
that the only term in (al6) involving s1 is { G(s1+h(s)) - G(s1+s)} and that t'(s) is positive
on [0, s¥). If this term is greater or lesser at values of s1 # s than it is at s1 = s then the

d
LHS of (al16) will be positive or negative, respectively, for these values. Consider -é——
81

{G(s1+h(s)) - G(s1+s)} = g(s1+h(s)) - g(s1+s). This derivative equals zero at most once
because g(w) is strictly convex. Further, g(2s) > g(s + h(s)). If this was not the case then
the ordering g(2s) < g(s+h(s)) < g(2h(s)) would imply that G(s+h(s)) - G(2s) < G(2h(s)) -
G(s+h(s)), which would contradict (a19) at s; =s. Thus, {G(s1+h(s)) - G(sj+s)} is
decreasing at s; =s. This, combined with the facts that { G(s1+h(s)) - G(s1+s) } is also
decreasing at 51 = 0 (by the monotonicity of G) and changes direction at most once,
establishes that for all 51 <'s, {G(s1+h(s)) - G(s+s)} > {G(s+h(s)) - G(s+s)}. Thus, the

LHS of (al6) is positive for all 57 <. For sj >, it is possible that
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{G(s1+h(s)) - G(sy+s)} is increasing in s1. However, even at 51 = s*, { G(s*+h(s)) -
G(s*+s)} < {G(2h(s)) - G(s1+h(s))} = {G(s+h(s)) - G(s+s)} by the definition of h(s)
and (a19). Thus, {G(s1+h(s)) - G(s1+s)} < {G(s+h(s)) - G(s+s)} for s1 > s, so the LHS
of (al6) is negative for all s > s. This establishes that choosing t(s) for s < sy or s > s1
would yield a higher value, hence the derived t(s1) is indeed a global minimum.,

Recall that following (a19) we assumed that G(2) > 2G(1). The proof when G(2) =
<2G(1) is symmetric. In this case s =1, so his defined as h:[s , s*) = (s*, 1], h(l) =5 =
and the initial condition is t(0) = 0. The equilibrium conditions given in (al7) and (al8)
remain the same and an equation analogous to (a22) is obtained for the segment [0, ).
Finally, the proof for the case where g(w) is strictly monotone follows from the
construction of the equilibrium t(s1) on the segment [s ,1] when g(w) is increasing and
from the construction of t(.sl) on the segment [0, s) when g(w) is decreasing. Thus a

symmetric equilibrium exists.

Next we show that when g(w) is either strictly monotone or strictly convex, any
symmetric equilibrium t(s) is strictly quasi-concave. Recalling that Sj and S; are
independent, denote the expected squared error of agent i's forecast made at time no later

than T as

W= |[s-Esj0ldEs),
si¢ Aj(r)

where Aj(T) is the subset of I for which agent j forecasts before T (recall that when agent j

forecasts first, agent i's mean squared error is zero.) Also, denote the expected cost of

delay to agent i who forecasts at time no later than T as

csim=  Jors)elits)dR(s) +  [ot(sirs)dE(s).
si€ Aj(t) s Aj(r)



Note that the first term represents the delay cost when agent j forecasts first at time t(s;), so
that t(s;) < for sj € A;j(t). With this, agent i's objective function is to choose 7 to
minimize 1(t) + c(s;,T).

To show that (s;) is’quasi-concave, suppose the contrary (strict quasi-concavity
will be shown later). If t(s;) is not quasi-concave then there exists a Ae (0,1), sand s such
that t(A s + (1-A)S) < min[t(s),t(5)]. Let§ = A s+ (1-A)5, £ = t(}), T=t(s)and T =t(5).

By the optimality of T we have

1(%) + ¢(8,7) <min{l() + ¢(,7),1@) + .5},

which implies

1) - 1(t) <c,0) - ¢(3, 1) (@23)
and

1) -1@) < B, 7) - ¢, 7). (@24)

Similarly, the optimality of T and T imply

(%) - 1(0) 2 (s, 1) - cs, T) (a25)
and
1}) -1®) 2 ¢, T) - 6, 7). (a26)

We show that either (a25) contradicts (a23) or (a26) contradicts (a24). Consider
c(si, T) - c(sj, %). Denote A1 = Aj(?), Az = Aj(R)CNA(T) and Az = Aj@)C, so that Ay, Ag

and A3 are disjoint sets and their union equals I. With this,
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c(si, T) - c(si, T) = j(lt(Sj)g(Si+Sj)dF(Sj) + jafg(si+5j)dF(Sj)
sie AjUAy sje A3

- JottspeGsits)dRGs) - Jog(sivs)dEG).
sjeAl sie AgUA3

= Ja[t(sj') - 1] g(si+spdF(s)) + joc[f - 1] g(sitspdF(sy) ° (27)

si€ Az Sj€ A3
where the final simplification follows because A1, A and A3 are disjoint sets. Recall that by
supposition T< min{7T , T) and note that, for sje As, t(sj-)~ >1. Thus, (a27) is positive; forecasting
later yields higher expected delay costs.

Using (227), [¢(, T) - ¢(5, T)] - [c@, T) - ¢, T)] can be written as

J‘(x[t(Sj) - TllgG+s;) - g(8+s)]dE(s) + Ja[i - T][gG +sj) - g(8+5)]dE(s)). (a28)
Si€ A2 Si€ A3
For strictly monotone or strictly convex g, either g(s+s;) > g(/S\+Sj) or g(s+sj) > g(’s\+sj'). If
g(5+sj) > g(3+s9), (a28) is positive, implying that [c(, T) - ¢, T)] > [¢(§, T) - ¢(§, )] and
(A26) contradicts (A24). Alternatively, if g(s+s;) > g(§+Sj) then, substituting s for s and T
for T yields another positive (a28), and [c(s, T) - c(s, '/c\)] > [c(’s\, T) - c(’s\, %)] and (A25)
contradicts (A23). This establishes that t(s;) is quasi-concave.

To show that t(s;) is strictly quasi-concave, suppose to the contrary that there exists

s and s such that for sj e (s, s), t(sj) = T. The optimality of s; € (s, s) implies that
I(%) - 1T + At) < c(si, T+ AT) - c(s, T) (a29)
for at AT > 0. However, I(IT\) integrates over Aj(%)c -- it includes the region (s ,s) -- while

l({c\+AT) integrates only over Aj(%-‘l-AT)C -- it excludes the (s ,s) region. Hence, since the

integrand is always positive, there exists € > 0 sukch that 1(%) - 1(%+At) > ¢ for all At > 0.



37

Further, c(s;, %+At) is continuous and increasing in A, so there exists a At sufficiently
small to make c(si,%+A'c) - c(sj, '/c\) sufficiently close to zero such that (a29) is contradicted.
Thus, t(s;) is strictly quasi-concave.

Finally, we show that the strict quasi-concavity of t(s;) implies that ordering is
positive. Because anticipation is non-negative by definition (see (3) in the text), |
establishing that ordering is positive is sufficient to establish that clustering occurs. First,,-
note that Var(S;) = 1/12, so ordeﬁng is positive if Var(Y) < 1/12. By the strict quasi-
concavity of t(s;), when the first agent conditions her belief on X she knows that the
second agent's signal, Y, is uniformly distributed on an interval [a(y), a(y) + 7] and, as the
notation implies, the ihperval is uniquely determined by its length y. The cummulative
distribution function of I" (with realizations denoted by 7) is P(I'<y) = P(s1e[a(y), a(y) +v1)
* P(spe[a(Yy), a(y) +41) = ¥2, and so the density of I"is 2yonye [0, 1]. With this,

1

a(y)+y
Var(Y) = J J (y - W2(1/ydy2ydy,
) a(y)

where L = E(Y). To find p, note that E(Yly) = a(y) + ¥/2, so

1 1
p=E(EYID) = [lati+y2l2wdy=2 [achydy+ 113, (230)
0 0

Now note that Var(Y) can be written as E(Y - 1/2)2 - (1/2 - w)2, so

1

a(y)+y
Var(Y) = J f(y- 1/2)2(1/y)dy2ydy - (1/2 - ). (a31)
a(y)
0

Integrating (a31) with respect to y and simplifying gives
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1

Var(Y)=2 [a(ynla(y) +v- 1]dy + 1/12 - (1/2 - w2 (a32)
0

Note that the first term (involving an integral) and the last term in (a32) are non-positive.

The first term is zero only if a(y) = 0 or a(y) + Y= 1 for all . By the strict quasi-concavity

of t(s;) it cannot be the case that a(y) = 0 for some of the domain and a(y) +y=1forthe - -
remaining domain. But, from (a30), when a(y) =0 for ally, . = 1/3 and when a(y) +y=1-
for all y, i = 2/3. Thus, when the first term is zero, the last term is strictly negative. ?

Hence, Var(Y) < 1/12.

Proof of Proposition 1

This proposition is a special case of proposition 3. By substituting w for g(w) in

2
(a22), so that G(2s1) - G(s1) = 3(;1) , we get the equilibrium condition

1
! E 33
t(Sl)— (a )

Integrating (a33) and using the initial condition t(1) = 0 gives

1-5s1
60,

t(s1) = (a34)

The solution given in (a34) is unique within the class of differentiable strategies.
Next we show that any symmetric equilibrium to the game with g(w) = w must be strictly
decreasing and differentiable, so (a34) describes the unique symmetric equilibrium. First,
to show that t(s;) is strictly decreasing it is sufficient to note that g(sj+s;) is strictly
increasing in s; so, from the proof of proposition 3, (a28) is positive and, if t(s;) were non-
decreasing, (a26) would contradict (a24).

Next we show that t(s;) is continuous. With it"established that t(s;) is strictly

decreasing, we can express agent 1's optimization problem as minimizing
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1 S S
L(s1,8) = [ ousy + sp)t(sp)dsy + Oj (s2 - 5/2)2dsg + ({ a(sq + sp)t(s)dso (a35)
$

where the second argument of L is agent's choice variable. By relying on the invertibility
of t(s), choosing s is equivalent to choosing t.

Suppose t(s) is discontinuous at s and, without loss of generality, suppose that the
discontinuity takes the form t(s1) > lim t(s1 + €) as € { 0. We show that if this is the case
then by forecasting a little sooner agent 1 can reduce her cost of delay by a positive amount

without reducing her forecast accuracy. In particular, for agent 1 with signal s1, L(s1,51)

equals

1 S1 S1

Jost + sts)dsa + J(s2 - s1/2)%dsz + fasy + so)tcspdsa. (a36)
81 0 0

However, if agent 1 chooses to predict at time t(s1+€) then L(sg,s1+€)) equals

1 S1+€ S1t+€
Josi+stsdsa + [s2- 1401225 + fagsi + sy +e)dsy. (@37)
S1+€ 0 0

As e 0 the first two terms in (a37) converge to the first two terms in (a36) but the third
term converges to

§1
Jouts1 + sp)timit(s + ))dsp. (a38)

0

Because t(s) is positive and decreasing, and by the discontinuity of t(s) at s1, (a38) is

strictly less than the third term in (a36). This contradicts the optimality of t(s) at s.
Finally, we show that t(s;) is differentiable. If agent 1 with signal s1 chooses s=sj,

it must be the case that for all€ > 0

L(s1,81+¢€) - L(s1,81) S
€

0. (a39)
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Similarly, if agent 1 with signal s1 + € chooses s=51 +&, it must be the case that for all

e>0

L(s1+€,81) - L(s1+€,51+€) >0
- > 0.

(a40)
By substituting in the component terms of L and taking the difference term by term, (a39) ...

is expressed as

1 1 $1t€ S1
[ o(s1+s2)t(s2)ds2 - | Oc(sl+sz)t(sz)d82:|+é[ 0[ (s2 - SI—ZE)ZdSZ -| (sz-%)zdsz}

€ s1+e 51 0
1 S1+€ . S1
+= [o(sy + s2)t(sg+€e)dsy - Jou(sy + so)t(s1)dsa |2 0. (ad1)
€ 0 0
2

S
As €4 0, the limit of the first term in (a41) is -2sj0t(s1), the limit of the second term is '21}

+g) -
and the limit of the third term s 2510ut(s1) + 35 m{wﬁ] Thus, the limit of

€

@@39)ase Ois
32 3 t(s1+€) - t(s1)
1y S lim =20 s (a42)
4 72701 e
A similar exercise yields the limit of (a40) to be

57 3 ((s1+€) - 1(51)
-Zl-zas%mr{——l—e-——l] 0. (@)

Because the LHS of (a43) is of opposite sign of the LHS of (a42), the only way to satisfy

+ -
both inequalities is for each to equal zero. This yields lur{w] =- -61—
€ a

The conditions in (a39) and (a40) are given for € > 0. If € <0 the inequalities in

both conditions are reversed (as is the limit direction) and hence the inequalities in (a42)
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and (a43) are reversed. As before, the only way both conditions could be satisfied is for

each to equal 0. Thus, hn{_t(slj)_t(sl_)]
€

- 6—1— regardless of the direction that the limit
(0

is taken; consequently, t(s) is differentiable.
Thus, the unique symmetric equilibrium strategy for the model with one-sided delay
cost is strictly decreasing and differentiable. Hence, the solution given in proposition 1 is _

the unique symmetric equilibrium.

Proof of Proposition 4

Proposition 4 is a special case of proposition 3. The solution to (a20) is h(s) = 1-s
(which we guessed based on the symmetry of g(w)), and s* = 1/2. Substituting 1 - s1 for

h(s1) and (w - 1)2 for g(w) gives the equilibrium condition

3
t)=-—7T"—= a45
(s1) 20251 - 1) (ad45)
Integrating (a45) and using either initial condition t(1) = 0 or t(0) = 0 gives
t(s)) = - 3 log(12s1 - 11). (a46)
4a

Proof of Pr ition

Differentiating equation (8) in the text with respect to s gives the first order condition

-R)<2
0=PB(s1- -;—)2 + a E)s +osg + %)st'(s) + 25B(s1 - 5) - B(s1 - 5)2

Solving for t'(s) and evaluating at s = s1 gives

1
t'(s)) =-—;
(s1) p.
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integrating and using the initial condition gives

(1-s1)
60,

t(s1) =

To verify that this is a global minimum, substitute the derived t(s) into the objective

1-18
function and note that the first derivative is ( g B)(s2 - 81 s). This quadratic has a

root at s=s1 and at s=0. For P<1/18, the first derivative is negative between the two roots o

and positive elsewhere. This guarantees that s=sj is the unique minimum when p<1/18.
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