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Capturing Heterogeneity in Customer Satisfaction Models:
A Finite Mixture PLS Approach
Abstract

A new approach for capturing unobserved heterogeneity in customer satisfaction models
is proposed based on partial least squares (PLS). The method uses a modified finite-mixture
distribution approach. An empirical analysis using quality, customer satisfaction and loyalty data
for convenience stores illustrates the advantages of the new method vis-a-vis a traditional market
segmentation scheme based on well known grouping variables. The results confirm the
assumption of heterogeneity in the individuals’ perception of the antecedents and consequences
of satisfaction and their relationships. The results also illustrate how the finite-mixture approach
complements and provides insights over and above a traditional segmentation scheme.

Introduction

The successful allocation of marketing resources requires that managers understand just
what factors drive customer satisfaction and subscquent loyalty. Customer satisfaction is a major
outcome of marketing activity and serves to link customers’ purchase and consumption
experiences with post-purchase phenomena such as attitude change, repeat purchase, and brand
loyalty (Oliver 1997). Managers in the service industry are placing particular emphasis on
customer satisfaction to enhance customer loyalty for long-term profitability (Heskett et al.
1997). Consequently, a marketing manager needs to know just what quality or price factors to
emphasize or invest in to improve satisfaction.

At the same time, any analysis of the drivers of satisfaction must build upon, or take into

account, segment-level differences. For example, satisfaction and loyalty to a convenience store

may be driven primarily by “convenience” for a frequent user and “safety” for an infrequent




user. One traditional approach is to usé separate marketing research (interviews, focus groups
and surveys) to identify a priori segments on which the analysis of satisfaction data is built. A
more recent trend in marketing research is to determine the segments when analyzing customer
data using a latent class or finite mixture approach (Jedidi, Jagpal and DeSarbo 1997a;
Ramaswamy et al. 1993).

There are two popular causal-modeling methods for estimating satisfaction models,
covariance structure analysis using programs such as LISREL and partial least squares (PLS;
Gustafsson and Johnson 1997). While the finite mixture approach has been added and applied to
covariance structure analysis (Jedidi, Jagpal and DeSarbo 1997a, 1997b), it has not been
integrated with PLS. This is despite the fact that, when operationalizing a quality and satisfaction
model, PLS has distinct advantages over other methods. The goal of this research is to integrate
the advantages of PLS with the advantages of a finite mixture approach to market segmentation.
The integration is unique in that it leverages the advantages of a least-squared procedure when
operationalizing a satisfaction model and the advantages of a maximum likelihood-based
approach when deriving market segments.

We compare and contrast the approach with a more traditional a priori segmentation
scheme using data from a national convenience store survey. The new approach both
complements that traditional segmentation scheme and provides unique insights into the drivers

of customer satisfaction. We begin by describing customer satisfaction modeling and approaches

to estimating satisfaction models. We then describe our Finite Mixture PLS approach, our

empirical study and results. The advantages and disadvantages of the approach vis-3-vis

traditional market segmentation are then described and discussed.




Customer Satisfaction Modeling

Customer satisfaction models typically include the concrete attributes that describe a
product or service, the benefits or consequences these attributes provide customers, a customer’s
overall evaluation of their purchase and consumption experience (customer satisfaction), and the
behavioral intentions or behaviors that result (such as repurchase, product recommendations or
word-of-mouth, cross-selling, or price tolerance). These models rest heavily on expectancy-value
model formulations (Bagozzi 1982, 1994), where beliefs about the consumption experience
(quality dimensions and price) affect customer satisfaction as a type of overall evaluation or
attitude, which in turn affects customers’ behavioral intentions and behaviors.

A key feature of satisfaction models is that the benefit, satisfaction, and loyalty constructs
in the models are inherently abstract or latent variables. The most common way to empirically
measure these latent variables is through the use of multiple concrete proxies or measurement
variables. Benefits are measured using their attributes, satisfaction is measured using different
overall evaluation standards (such as overall satisfaction, overall performance versus
expectations, overall performance versus an ideal), and loyalty is measured using behavioral
intentions (such as the likelihood of repurchase or recommendation to others). *

Statistical estimation of a satisfaction model must accommodate the fact that the model is
a network of cause-and-effect relationships (as from quality, to satisfaction, to loyalty) that
contains latent variables. There are two popular methods for estimating models of this type,
partial least squares (PLS) and covariance structure analysis (CSA; Fornell 1987). The methods
are more complementary than competing; their use should depend on the purpose of the analysis.
Covariance structure analysis is particularly well suited to testing among multiple causal models

based on strong theory and data, When, however, the goal is to operationalize an existing model,
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such as a company's customer satisfaction model, PLS is preferred (Gustafsson and Johnson
1997, Steenkamp and van Trijp 1996).

PLS is essentially an iterative estimation procedure that integrates principal-components
analysis with multiple regression (Fornell and Cha 1994). Whereas the objective of CSA is to
explain covariance, the objective of PLS is to explain variance in the endogenous variables in a
satisfaction model that have bottom-line managerial relevance (satisfaction, loyalty, profit).
Unlike CSA, the latent variables in PLS are easily operationalized as principal components or
weighted indices of the measurcment variables. This provides managers with explicit
benchmarks for evaluating their performance. When this performance information is combined
with the impact scores from the regression estimates, managers have both the impact and
performance information that they need to make key resource allocation decisions (Martilla and
James 1977).

There are other reasons to use PLS in a satisfaction-modeling context. Bagozzi and Yi
(1994) argue that PLS is preferred over CSA (LISREL) when: (1) sample sizes are small, (2) the
data to be analyzed is not multivariate normal, as when distributions are highly skewed, and (3)
improper or non-convergent results are likely, as when estimating a complex model with many
variables and parameters. Satisfaction models often use small samples, especially at the segment
level. Quality and customer satisfaction data is also marked by large negative skewness (Fornell
1995). Furthermore, satisfaction models are often large and complex, involving multiple abstract
benefits and dozens of attributes. Thus PLS is arguably superior to CSA when operationalizing a
satisfaction model. One trade-off is that PLS tends to underestimate path coefficients and

overestimate loadings (Bagozzi and Yi 1994). As Bagozzi and Yi argue, however, this means

that the significant results of a PLS analysis can be given more credence because the test is more
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conservative. Other limitations of PLS are that jackknife or bootstrap procedures are needed to
obtain estimates for the standard errors of the parameter estimates and, because PLS is a limited-
information estimation method, its estimates are not as efficient as full-information estimates
(Bagozzi and Yi 1994; Fornell and Bookstein 1982). Overall, however, there are clear reasons
for integrating the advantage of PLS with the advantages of the finite mixture approach in a
satisfaction context.
Capturing Heterogeneity in Satisfaction Models

When estimating structural equation models, researchers frequently treat data as if it were
collected from a single population (Muthén 1989). This is unlikely to be the norm in customer
- satisfaction research. In multidimensional expectancy value models, customers from different
market segments can have very different belief structures (Bagozzi 1982). Thus the impact that
different drivers have on satisfaction, and their level of performance, likely varies from segment
to segment. Consider a simple model in which two drivers, price (P) and quality (Q), impact
satisfaction (S). The constructs are measured indirectly using multiple indicators, but our focus is
on the two path coefficients in the inner model, where price impacts satisfaction (P — S) and
quality impacts satisfaction (Q — S). In an aggregate model, say the estimated impacts are both
equal to 0.3 and the research concludes that quality and price are equally important. However,
suppose there are two unobserved segments of equal size. The individuals belonging to each
segment are homogeneous in how quality and price impact satisfaction. In segment 1 quality has
five times the impact of price (0.5 versus 0.1), while in segment 2 the opposite is true (0.1 versus
0.5). In reality, the population is composed of a quality-oriented segment and a price-oriented
segment. The aggregate structural equation model leads to meaningless results where managers

derive the wrong interpretation. As a result, marketing and quality resources could be poorly
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allocated and achieve little, In this case, the result would be a “value” positioning that appeals to
neither the quality nor price-oriented segments.

Typically, heterogeneity in structural equation models has been addressed by assuming
that consumers can be assigned to segments a priori of the basis of demographic variables, usage
levels, or other proxies for the underlying segments (Wedel and Kamakura 1999). A limitation of
the a priori approach is that heterogeneity is often not captured adequately by well-known
observable variables. Jedidi, Jagpal and DeSarbo (1997a, 1997b) propose a new approach based
on CSA where heterogeneous groups are identified simultaneously with the structural equation
model using a finite mixture framework. Arminger and Stein (1997) propose a more general
method based on covariance structure estimates.

An alternative is to develop a hierarchical Bayesian methodology for treating
heterogeneity in structural equation models (Ansari, Jedidi and Jagpal 1999). An important
advantage of this methodology is that it automatically provides individual-specific estimates of
model parameters and factor scores. This is an interesting source for marketing managers who
want to implement a relationship-marketing concept based on individual customer-to-supplier
relationships. However, the researcher requires some meaningful, a priori information about the
parameters and more than one observation from at least some individuals.

Again, our goal is to combine the advantages of PLS with the finite mixture approach.
Figure 1 provides a taxonomy of methods that seck to capture hetc‘rogeneity in structural
cquation models and shows where our proposed approach fits in the taxonomy. Substantively,
the approach allows the marketing manager to perform response-based market segmentation

where all consumers or customers in a segment are homogeneous in terms of the model’s path

coefficients. As we will show, the approach complements a priori segmentation by capturing
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heterogeneity within existing, well-known segments. Methodologically, the approach contributes
to marketing research by allowing researchers to detect unobservable, discrete moderating
factors that account for heterogeneity among consumers based on the prediction-oriented PLS
approach. This approach combines the advantages of predicting path coefficients, using PLS,
with the maximum likelihood estimation of a finite mixture model. Conceptually the approach
expands the a priori segmentation methods to prediction-oriented structural equation models.
- insert Figure 1 about here -
The Finite Mixture Partial Least Squares Approach

Wold (1966) originally developed the PLS approach as an algorithm for least squares
(LS) estimation of path models with latent variables. Each latent variable (LV) is indirectly
observed by a block of manifest variables (MVs). PLS predicts the linear conditional expectation
relationship between dependent and independent variables. As this approach is based on
predictor specification, PLS is quite different from covariance structure analysis like LISREL
that focuses on a causality concept based on accounting for covariances.

A path model with latent variables (structural equation model) consists of an inner model
(inner relations, structural model, substantive part) and an outer model The inner model depict'

the relationships among the latent variables as posited by substantive theory.

Let
I = the subject (observation, individual) ; with i = 1,..., N .
7 = the vector of the endogenous variables in the inner model for subject i
& = the vector of the exogenous variables in the inner model for subject i

The inner relations can be expressed by:

B+ Tg=§; (1)




where B(Q x Q) and I'(Q x P) are path coefficient matrices with Q = number of endogenous
variables, P = number of exogenous variables and ;" is a random vector of residuals.®

Outer relations define the relationships between the manifest variables (indicators) and the
latent variables (components). Two kinds of outer relationships can be specified: reflective and
formative. PLS allows for either type of relationship.
Let

the vector of observed measures for the exogenous LV for subject i

>
i

y; = the vector of observed measures for the endogenous LV for subject i

The outer relations for the reflective (outward) model can be expressed by:

1}

y = An+e, (2a)

x = AL+¢, (2b)
where Ay(K x Q) and A,(P x L) are the matrices of loadings that relate the latent variables to
their measures where K is the number of indicators for endogenous variables, L is the number of

indicators for exogenous variables and the €’s are the residuals and usually interpreted as

measurement errors or noise.

In the formative case, the relationships between the LVs and their indicators are defined as:

T+ 8, (38)

n

g

Tfé + 6§ (3b) ]

where the 1t’s are the multiple regression coefficients and &8s are the residuals from regressions.

* The more familiar formulation of the inner relations is: 1} = B'n + [+ §. Equation (1) can be easily obtained by

setting B = (I - BYand I = -I"and hence the two formulations are equivalent.

.9.




The usual PLS algorithm predicts B, I, the A’s and the n’s with an iterative scheme of
partial least squares and calculates the scores of n and & for every individual. The result is an
aggregate predictor specification based on the constraints of B and I" for the whole sample.

Conceptually, heterogeneity in a satisfaction model is concentrated in the path coefficients
that relate quality factors and price to satisfaction and subsequent loyalty (Johnson and
Gustafsson 2000). The proposed model is an approach to capture this heterogeneity. It assumes

that ; is distributed as a finite mixture of conditional multivariate normal densities, fj|x(¢):

K K B 1
N~ g;l)kﬁ,k(m Ié,‘vBurp q’x) =§p"[(§l’)_gl”%’? ex{_E (Bk’h +Flz§!) \}'I:I(Bkn: +rkéz)JJ (4)

where: ’ /
k = 1,..., K latent classes;
m = 1,..., Q number of endogenous variables;
J = 1,..., P number of exogenous variables;
By = ((Bymk)), the (Q x Q) matrix of endogenous variables coefficients for latent

class k (r=1,..., Q);

Iy = ((ijk))- the (Q x P) matrix of exogenous variables coefficients for

latent class ;

Yy = the (Q X Q) matrix with the variances for each regression of the inner model on

the diagonal and zero else;

P = (P} . Py), a vector of the K mixing proportions of the finite mixture (of which

K
K — 1 are independent) such that p, >0 and Z o =L

k=1

-10-
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Suppose, the 1; vectors are independent; the likelihood function for the N vectors (n,..., ) is

given by:

izl | k=l

~ N | K _—&—L—— . __l_ y
L"H[Zpk[(zn)gn l \_Pk luz Xf{ 2 (Bkni +Fké:}‘yk (Bkni +Fk§. ))j” (5)

The mixing proportions p can be construed as prior probabilities of any subject belonging to the
K latent classes. The posterior probability of membership for subject i in class & (f’,k) can be

computed using Bayes’ theorem, conditional on the estimates of the class-specific parameters

~ A a

p..B,.I,, W, via:

PR R VI )

ik X . A (6)
Epkfx]k(nilgi’gk’rk"yk)
el

Identification of the Model

Mixtures of multivariate normal densities are typically identified (McLachlan and Basford

1988), but the model specified in Equation 4 is not identified if all elements in "' = (T'y, ....['g), B
= (By, .., Bg) and ¥ = (¥y, ..., W) are free. Identification in this context requires placing

restrictions on model parameters. The most common restrictions set some elements of I', B and
Y to zero or some other constant, whereas others entail the imposition of equality or inequality
constraints on parameters (Joreskog 1977).
Estimation of the Model via the EM-Algorithm
The likelihood of the model developed in the previous section can be maximized using
the EM algorithm (Dempster, Laird and Rubin 1977; McLachlan and Krishnan 1997). The
algorithm contains an expectation part (E-step) and a maximization part (M-step). It should be

mentioned that another optimization routine such as Newton-Raphson or Fletcher-Reeves could

-1 -
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be used to maximize the likelihood-function. Convergence is not ensured with the two latter
methods. The EM algorithm is attractive because it can be programmed easily and convergence
is ensured. The estimation procedure can be described as a two-stage process. In the first stage a
PLS solution is estimated based on the aggregate sample with the aim of obtaining predictor
scores for the latent variables, 1) and &, for each respondent individually. In the second stage the
predicted scores of the [atent variables are used as dependent and independent variables for a set
of regressions of the inner model, defined by the constraints of B and I' respectively. Every
endogenous variable reflects a regressant of an OLS regression, whereas the regressors come
from a subset of endogenous and exogenous variables. All regression equations are computed
independently according to the PLS assumption, Consequently the matrix for latent class &, ¥, ,
is a diagonal matrix with the variances of the partial regressions on the diagonal. Our
segmentation approach relaxes the second stage by implementing a finite mixture model with
this set of regression equations. The modification of the M-step is described later.

In order to present an EM formulation, we introduce noncbserved data via the indicator
function:

i =1  if subject i belongs to class £,

=0 otherwise.

We assume that the nonobserved data in the vector z; = (z;;, ..., z;) are independently and

identically multinomially distributed with probabilities p. The joint likelihood of 7, and z; is
L, 25 6Bl Yoo 1) =H[pkf 16,8, 0. Y, )Jm Q)
k

The complete likelihood over all subjects is

L=I_H_I[pkf (nijéi'Bkak,lPk)]:" .
ik |
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and the log-likelihood is
InL=Y, ¥z, In(f @ |€.B,. L ¥+ Y Y 2, Inp,. o
ik ik

The matrix Z = (z,, ..., z,) is considered as missing data.

The E-Step

The EM-algorithm starts with an E-step, where the expectation of InL is evaluated over the
conditional distribution of the nonobserved data Z given the predicted values of 7); and &; of the
observed data y; and x,, and the provisional estimates (B, I'", ¥", and p ) of the parameters B, T,
'Y, and p respectively. These estimates can be calculated from a random sample of membership
probabilities of P;, or can be st from the analyst based on assumptions and/or prior knowledge

about the classes and the coefficients.

The expectation of the likelihood function is

EnLt,p=p" ,B=B'T'=I"¥=¥")
=Y N E(z, .0 BT W) In(f €07, BT, T, W) (10)
i &k

+Y Y EE, 0BT ) p,.
ik
The conditional expectation of z; can be calculated as

E(nL:£,p=p",B=B"T=I"¥=¥")

=0 @B, T WS o F e B, T ). (D)
k

Comparing (11) with (6) reveals that the posterior membership probability P,,” for subject i in
class k evaluated with provisional estimates is

Py = E(z,;&,B°, ", %' |,). (12)
The nonobserved data in matrix Z are replaced by the posterior probabilities calculated on the

base of provisional estimates. Thus equation (10) becomes

S13-



E(nL:é,p=p",B=B"T="¥Y=Y¥")
= ZEPMZ lﬂ(f(n.-léi:P‘k»B'kyr'kv‘P't)) (13)
ik

+2, ), Pilnp;.
i k

The M-step

In the M-step we maximize equation (9) with respect to the parameters subject to the

restriction p > 0 and Z P, =1, conditional on the new provisional estimates of z;, in order to
X

obtain revised parameter estimates. These revised estimates are then used in the subsequent E-
step to calculate new estimates of P;,. These estimates are used as expectations of z; in the next
M-step to get new estimates of the parameters and so forth.

In our approach the M-step contains a number of independent OLS regressions, one for
each regression in the inner model. The regressions of the inner model reveal the relationships
between the m endogenous variables (as dependent variables) and the exogenous and
endogenous variables (as independent variables) of the model. The relationships are defined via
B and T. Thus for each endogenous variable as a dependent variable an OLS regression is
calculated in the M-step. We use the Maximum Likelihood Estimator of the coefficient and the

variance, that is identical to the Least Squarcs Prediction in the OLS case.

Let
m = number of independent regressions in the inner model
A, = number of exogenous variables as regressors in regression m
B,, = number of endogenous variables as regressors in regression m
Y,, = the value of the regressant for regression m of individual i
X,;= the value of the regressor (A,, + B,, X 1)-vector for regression m of individual i
214 -
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We obtain the parameters of the regression for cndogenous variable m with
Ymi = nmi

Xmi = (E Nmi ),

mi?

where

mi

E (Given8s ) if A, >=La, =1..,A, and§, isregressorof regressionm
| else.

N = [(nl,...,nﬂ_) if B, >=1b, =\,..,B, andn,_isregressorof regressionm
mi ) else.

and the closed-form OLS analytic expressions for 7,, and @,

Tt =[E P.-k(x;,-xm,o] [Z P(X.,Y,, )], (14)
with

7= (B N ),

and

wmk = [E Pik (Ymi - Xmika XYmi - Xmirmk ) /ka ]‘ (15)

with

w,, =cell(mxm)of ¥,.

The result of each independent regression serves as a new provisional estimate for the next )
E-step iteration of the EM-algorithm. The E-step and the M-step are successively applied until
no further improvement in the In-likelihood-function is possible based on a pre-specified

convergence criterion. Hence, although convergence to at least a locally optimum solution is
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guaranteed, different starting values of the parameters must be used to investigate the potential
occurrence of the local optimum.
Model Selection

When applying the above model to data, the actual number of classes K is unknown and
must be inferred from data. The problem of identifying the number of classes is still without a
satisfactory statistical solution (Wedel and Kamakura 1999). The likelihood ratio test statistic for
example is not valid in a mixture model, because it is not asymptotically distributed as chi-
square. Bozdogan and Sclove (1984) propose using Akaike’s (1974) Information Criteria (AIC)
for determining the number of classes in a mixture model:

AIC, =-2InL+cN,, ' (16)
with ¢ = 2 is a constant and N, is the number of free parameters:

¢ =(K-D+KR+KQ. an

R is the number of predictor variables in all regressions of the inner model. The constant ¢ in
AIC imposes a penalty on the likelihood, which weighs the increase in fit (more parameters yield‘
a higher likelihood) against the additional number of parameters estimated (Wedel and
Kamakura 1999).

Two criteria'penalize the likelihood more heavily: Schwarz’s (1978) Bayesian information
criteria

BIC, =-2InL+InIN,, (18)
where ¢ = Inl and the consistent Akaike information criteria computed as

CAIC, ==2InL+In(I + )N, (19)

- 16 -
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where ¢ = (Inl + 1). However all measures discussed above are heuristics for model selection. To
assess the separation of the segments, an entropy statistic (Ramaswamy et al. 1993) can be used

to investigate the degree of separation in the estimated individual class probabilities.
ENK=1—[ZZ—P“ lnPik]/lan. (20)
ik

ENj is a relative measure and is bounded between 0 and 1. Values close to 1 indicate that the
derived classes are well separated. In addition the entropy measure indicates whether a solution
is interpretable or not. For example a solution with goods heuristics and a bad entropy measure,
say ENy =0, can not be interpreted accurately. The segments are “fuzzy,” which means that
only ‘patts’ of the subjects belong to a class. The fuzziness of any derived class memberships
makes the managerial implications equally “fuzzy.”
Empirical Application

We illustrate the Finite Mixture PLS approach using a national survey of customers’
perceived quality, satisfaction and loyalty with convenience stores. The survey was sponsored by
the National Association of Convenience Stores (NACS) and based on a representative cross-
section of convenience store customers and stores in the United States. The interview
methodology (computer aided telephone interviews) and random sampling procedure was the
same as that used for the American Customer Satisfaction Index (ACSI) survey (see Fornell et al.
1996). The data were collected in December of 1998, and the sample included 1,025 customers
who were selected to be representative of the demographic profile of convenience store
consumers. In terms of demographics, 42.4% were male and 57.6% were female. The age range
was from 18-81 with a median age of 37. The sample was also broadly distributed across

income and education levels.
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The NACS satisfaction model is presented in Figure 2. The Figure shows nine latent
variables, benefits or consequences that are immediate antecedents of satisfaction in the model.
Satisfaction, in turn, affects customer loyalty, both of which are also latent variables in the
model. Each latent variable is operationalized using multiple proxies or survey measures rated on
10-point scales (see Table 1). The satisfaction measures are the same as those used in the ACSI
survey, while the loyalty measures are rated likelihoods of revisiting the convenience store and
recommending it to others.

- insert Figure 2 and Table 1 about here -

Aggregate results

The aggregate PLS results are shown in Table 2. The values of the inner model calculated
with PLS are equal to these of our new approach with K = 1. According to the aggregate path
coefficients, the largest drivers of satisfaction are perceived safety (0.193), store layout (0.174),
prices (0.168) and separate take out (0.152). The smallest drivers of satisfaction are products
(0.039) and motorist services (0.039). This suggests that, on the whole, both products and gas
services are relatively undifferentiated across convenience stores. Satisfaction has a large and
significant impact on loyalty in the model (0.625).

- insert Table 2 about here -

The aggregate results for K = 1 provide important benchmark values for the goodness of fit
measures AIC, BIC and CAIC, which are shown in the first row of Table 3. The next section *
discusses the constraining of parameters and results for X greater than one.

- insert Table 3 about here -
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Disaggregate Finite Mixture Results

We applied our new approach for a varying number of classes K. The impacts should be
greater or equal to zero (for both the aggregate and disaggregate models) as all of the survey
questions are valenced in the same direction (higher values are more attractive, such as higher
quality or more attractive prices). If we assume that all drivers of satisfaction are independent of
each other, the impacts can be interpreted as the increase in satisfaction that results from an
increase in any particular price or quality driver. Our initial disaggregate solutions contained
some small, negative coefficients for the drivers. With the assumption of independence, an
interpretation would be difficult. For example, a negative impact of service to satisfaction would
mean that higher quality service lt;wers overall satisfaction. To prevent such non-interpretable
solutions, we constrained our coefficients to be equal or higher than zero. Consequently we only
obtain local but interpretable optima for our coefficients.* In addition, we used the constrained
solution which has the minimized values in AIC, BIC and CAIC.

Table 3 shows the goodness of fit statistics for model selection (In-likelihood (LnL), AIC,
BIC, CAIC) and the entropy measurement (EN) described above for K =1, 2, 3,4, 5 and 6. In
the last scction we mentioned the problems associated with locally optimum solutions.
Therefore, we calculated all class options (2 through 6) ten times with different random starting
values to be sure that we find a global maximum. For K = 2 the algorithm always found the same
solution. For K = 3 we obtained different solutions close together, but the solution with the
values shown in Table 3 was the one with the optimal goodness of fit measures (the smallest

values for AIC, BIC and CAIC). The solutions for X = 4, K = 5 and K = 6 showed greater

* We note that negative coefficients are not “non-interpretable” per se. Negative values could indicate interaction

effects involving the drivers of satisfaction. A disaggregate solution with negative values and a global optimum
might cause the researcher to think about integrating interaction effects in the model. However, this is not the
focus of our research. Therefore we use the model with the assumption of independent drivers of satisfaction.

-19-
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variance. It shows that finding a global maximum becomes more difficult if we are looking for
solutions with higher number of classes K. A reason for this phenomenon is the high-
dimensional solution space for the local and global maxima. The success of iterative processes
like the EM-algorithm depends on a good (plausible) set of starting values. As we do not know
any good (or better plausible) sets of starting values, we have to increase the number of
alt;:malive solutions. Therefore for K = 4, K = 5 and K = 6 we started the approach twenty
instead of ten times. Table 3 shows the solution with the minimized AIC, BIC and CAIC for K =
4,K=5and K=6.

It is important to emphasize that the approach can be used in either an explorative or
confirmative fashion. If the researcher knows any a priori information about the real values of
the model, he or she can integrate this information when setting the starting values. If the
algorithm finds a solution that corresponds to or is very similar to the starting values, it is evident
that the prior information is a good start. In contrast, if the researcher wants to find new
information about his or her model a number of different starting values are used to be sure that
the result is not a local optimum in the high dimensional solution space. We focus on the 5-class
solution where the AIC, BIC and CAIC measures are minimized. This solution also has the best
entropy measure among the K = 2 through 6 solutions (EN = 0.43). Note that the selection of the
most interpretable solution is the same as for the unconstrained case mentioned earlier: the 5-
class solution.

Table 4 presents the path coefficients (impacts) for each of the 5 classes, where each class
represents a relatively homogeneous group of customers. Going forward, we refer to these

classes as market segments. Segments one through five comprise 10.7%, 36.8%, 17.2%, 27.7%

and 7.6% of the overall survey population respectively. For segment one, satisfaction is almost




synonymous with safety, which has an impact of 0.984. The next highest and only other
significant driver is cleanliness with an impact of 0.291. Segment two, the largest segment, is
more balanced in that service, prices, cleanliness, convenience and safety all have significant
impacts (ranging from 0.185 to 0.260). This segment also shows the largest impact of
satisfaction on loyalty (0.863). Segment three is quite different from either of the previous two
segments, as store layout and separate take out are the main drivers with impacts of 0.495 and
0.485. Segment four, which is the second largest overall, is the most price sensitive segment
where impact of price is 0.210. Store layout and separate take out also have significant impacts
for this segment. Segment five is marked by the importance placed on store layout and
convenience, witvh impacts of 0.595 and 0.312 respectively. These shoppers want to find what
they need and get in and out of the store quickly.
- insert Table 4 about here -

A membership probability is calculated for each customer in each segment. The entropy
measure EN = 43 for K = 5 gives an aggregate value of how strongly customers belong to one
particular segment. However the entropy measure gives no idea as to just what that means for
each segment, For example, on the one hand, a customer can belong to four different segments
with a membership probability of say .10 and to one segment with .60. On the other hand, a
customer can belong to each segment with a membership probability of .20. Table 5 shows the
number of customers who belong to a segment with a membership probability higher than .80,
.60, .50 and .40 respectively. In our application only 130 customers belong to one segment with a
membership probability higher than .80. This is about 13% of the whole sample. Ideally,
membership probabilities should be as unique as possible for one specific segment, hence the

probability should be near 1. But in reality, the lower membership probabilities illustrate the
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complexity of measuring response-based variables, Table 5 shows that 686 customers out of
1,025 belong to one segment with a probability higher than .50. This means that our 5-segment
solution is a fairly good approximation for grouping 1,025 different individuals together into 5
segments.
- insert Table 5 about here -

Post hoc analyses of the segments

To augment our interpretation of the segment-level results, we conducted post hoc
analyses of the posterior probabilities of membership based on a model from Ramaswamy et al.
(1993):

Q«k = Zziuauk +Vik ’ (21)

with

0y =In(F, /F),
uK
P =(H P, ] as the geometric mean of the posterior probabilities, -
k

Z,, as the value of descriptive variable « for individual i,
&8, as the impact coefficient for variable u for segment k,
Vv, as a random normal disturbance variable.

The descriptive variables in our study, collected as part of the convenience store survey, are: .
gender (male/female), age (in years), number of household members (5 categories), user
frequency (daily, weelgly, occasional user), education (3 categories), income (3 categories), 7-11
store user (Yes/No), neighborhood store user (Yes/No). The 7-11 brand was by far the most

frequently measured convenience store in the sample, hence its use as a descriptive variable.
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Also common were neighborhood store users who, when asked “At which convenience store do
you shop most often?” they respond with a store name that is not part of a franchise system. This
variable picks up the unique nature of “Mom and Pop” stores (typically family owned) that make
up a large proportion of the industry. Table 6 shows the impact coefficients from the post hac
analysis of our 5-segment solution.

- insert Table 6 about here -

Overall there are relatively few significant descriptors for the five segments. One exception
is gender, which is significantly related to segments two through five. For segment one, which is
the safety conscious segment, household size is the largest descriptor. The larger the family, the
more concern there is over safety. This is logical as larger families have more children who run
errands or meet friends at convenience stores. Segment two, which had the most significant
drivers of satisfaction (dominated by cleanliness), are primarily females who visited 7-11 stores.
Segment three shoppers, where store layout and separate take out food are the dominant drivers,
are primarily females who where not weekly shoppers. Segment four, the price conscious
scgment, is marked only by the fact that it is more female. In contrast, the store layout and
convenicnce segment (the “get me in and out quickly” segment) is predominantly male.

Clearly, our analysis demonstrates that the results of an aggregate satisfaction model can
be very misleading. Aggregate analysis hides the existence of meaningful subset of customers
that are more homogeneous in their satisfaction drivers. While some customers are dominantly
concerned with safety, other customers’ satisfaction is the result of convenience or price. It is
also clear from our post hoc analysis that the segments can not be clearly identified using simple
descriptive variables. This is natural, as segments do not exist at the level of descriptive variables

but rather at the level of benefits, consequences and needs (Best 2000). Yet marketing managers
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often require such variables to derive market action implication. Gender is clearly one variable
that helps to differentiate at least one segment. User frequency could also be such a variable.
Managers in the convenience store industry pay particular attention to daily, weekly and
occasional users and how their needs differ. In the next section of the paper, we use these a priori
groupings before the customer satisfaction model is calculated.

Disaggregate PLS results: A priori segmentation

Table 7 shows the PLS results for the a priori segmentation based on the daily, weekly
and occasional user segments (n = 265, 300 and 436 respectively). The solutions show that, in
each segment, there are five to seven significant drivers of satisfaction, none of which have
* particularly large impacts. Some notable differences are the increased importance of separate
take out for daily users (who likely obtain more of their meals from the stores), the importance of
service to weekly customers, and the importance of products to occasional users.

- insert Table 7 about here -

But the pattern of results for each segment is similar to what we found for the aggregate
sample. The finite mixture-based segments show much more pronounced differences in
satisfaction drivers across segments. This suggests that, while the user frequency groups are
homogeneous with respect to usage, they are still quite heterogeneous in their satisfaction
drivers. The solution for each group is still an aggregate of different coefficients for the drivers
of satisfaction.

Disaggregate PLS results: A priori and Finite Mixture PLS segmentation

To illustrate this heterogeneity and show how the Finite Mixture PLS approach provides

insight to an existing, a priori segmentation scheme, we applied the new approach to the daily

users segment. This “heavy user” group is of obvious import to convenience stores and a major
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focus of their marketing activity. But not all daily users are necessarily looking for the same
things from their convenience store. When we applied our new approach to the daily users, a
two-segment solution emerged based on minimal values for the In-likelihood, AIB, BIC and
CAIC statistics (entropy = 0.60). The results are shown in Table 8.

- insert Table 8 about here -

Satisfaction for Segment 1 (K = 1, 22.8% of the sample) is driven dominantly by store
layout and separate take out food, followed by motorist services. These “daily shoppers™ fill their
grocery baskets, stomachs and vehicles at their local convenience stores. They also appreciate
high quality service. In contrast, segment 2 customers (K = 2, 77.2% of the sample) are more
sensitive to safety, prices and clea;lliness. These “daily stoppers” seem to stop to get just what
they need. Satisfaction also has much more impact on loyalty for the segment 1 “shoppers”
(0.823) than for the segment 2 “stoppers” (0.460). We applied our posthoc analysis approach
described above to the two-segment solution one main difference emerged. Segment 1 customers
are significantly more likely to shop at 7-11 stores.

Discussion and Conclusions

Satisfaction modeling has emerged as an important tool to help managers set priorities for
improving quality, satisfaction and loyalty. However, satisfaction drivers should depend on the
market segment of interest. Aggregate drivers reflect what is important for an “average”
customer that may not exist. Clearly, satisfaction modeling should account for the heterogeneity
in drivers that exists across segments. An emergent solution to capturing heterogeneity in market
response is to use a latent class approach such as a finite mixture model, But whereas the latent
class methods are based on maximum likelihood estimation, the operationalization of a

satisfaction model often necessitates a least squares-based procedure. As a causal modeling
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methodology, PLS (partial least squares) is particularly well suited to estimating and
operationalizing satisfaction models in practice. PLS accommodates the skewed data and small
sample sizes common in satisfaction research and, compared to other techniques, it is less prone
to non-convergent or improper solutions. For managers, the performance scores and impacts that
emerge from PLS analysis provide the diagnostic and benchmark information required to set
priorities for improvement.

The goal of this article has been to merge the advantages of least square estimation, when
estimating a satisfaction model, with the advantages of maximum likelihood estimation, when
deriving market segments. Our Finite Mixture PLS approach is designed to capture heterogeneity
in structural equation models that -link quality and price drivers to satisfaction and subsequent
loyalty. It empirically derives segments and directly estimates model relationships. The
advantage of the approach compared to an a priori segmentation scheme is that the derived
segments are homogenous in terms of model relationships. The approach calculates segment

proportions, or the degree to which customers belong to particular segments, and the results can

be statistically tested with goodness of fit measures. Thus the proposed Finite Mixture PLS.

model expands the existing Partial Least Squares approach to include one of the central issues in
marketing theory and practice - segmentation.

When we apply the Finite Mixture PLS analysis to a national survey of quality,
satisfaction and loyalty for convenience store customers, it reveals significant heterogeneity. Our
five-segment solution identifies clear differences among customers who, for example, either
value safety, separate take out and store layout, or prices. Another interesting observation is that,
when we conduct a post hoc analysis that related descriptive variables to the segments, relatively

few significant predictors emerge. Exceptions include gender, household size and frequency of
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usage. This finding is consistent with the prévailing view in marketing that segments exist at the
level of benefits, consequences and needs, while descriptive variables such as age, gender and
frequency of use may be weak proxies (Best 2000). To illustrate the problem, we analyzed a
prominent a priori segment, daily users, using the Finite Mixture PLS approach. The results
again reveal clear differences in both the drivers of satisfaction and the effect of satisfaction on
loyalty. Whereas “daily shoppers” value store layout, separate take out food and motorist
services, “daily stoppers” value safety, prices and cleanliness.

Our findings reinforce an underlying premise in marketing that is often lost in practice,
particularly in the practice of measuring and managing customer satisfaction. Satisfaction studies
often rely on concrete, descriptive attributes of the product, service and customer segment.
According to our findings and in line with means end theory, customers do not purchase a
package of attributes, but rather a complex of benefits or even a set of values. And the benefit
segments themselves are not easily described using traditional demographic variables. Applied
satisfaction models should strive to capture both the abstract nature of satisfaction drivers and
satisfaction-based market segments. Finite mixture-based segments that are built upon a Jatent
variable modeling approach, such as PLS, can go a long way toward explaining variance in
satisfaction judgements. They also help companies to draw more reasonable conclusions than
those based on descriptive variables alone, such as frequency of usage.

One limitation of the proposed approach (mentioned in Footnote 4) is that it does not
consider interaction effects in the inner model. In addition, in following the standard assumptions
of the PLS approach, we assume that the regressions of the inner model are independent. Future
research should focus on these aspects and on large-scale simulation studies to test the Finite

Mixture PLS method in different marketing applications where heterogeneity is present.
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Table |

LATENT AND MEASUREMENT VARIABLES

Latent Variables

Measurement Variables

Service

Accuracy of the checkout

Friendliness of the employecs
Attentiveness of the employees

Grooming and appearance of the employees

Products

Stock or availability of products
Brand names of products
Variety and selection of products
Freshness of products

Store layout

Ability to find what you need
Neatness and orderliness of displays
Feeling or sense of fun you get when walking through the store

Prices

Overall value

Competitiveness of gasoline prices
Competitiveness of store prices
Frequency of salc items

Cleanliness

Cleanliness inside the store
Cleanliness outside the store
Cleanliness of the rest rooms

Convenience

Convenience of the location

Hours of operation

Speed and efficiency of employeces
Availability of parking

Safety

Lighting of the premises
Ability to see what is happening in the store
Feeling of safety and security

Motorist services

Accuracy of signs, gauges, and meters at the gas pumps
Ability to pay at the pump

Availability of air and water for vehicles

Working operation of equipment such as gas pumps and air

Separate takeout (food)

Accuracy of food preparation
Quality of takeout food

Customer Satisfaction Overall satisfaction

Overall performance versus expectations

Overall performance versus an ideal convenience store
Customer Loyalty Likelihood of revisiting

Likelihood of recommending
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Table 2

AGGREGATE RESULTS
Endogenous Variables
Satisfaction Loyalty
Endogenous isfacti 55
s Satisfaction (25.592)
Loyalty
Exogenous ; ol
Variables Service (2.940)
.039
Products (1.483)
174
Store Layout (5.914)
) 168
Pn‘ces (7.071)
‘ 109
Cleanliness (3.728)
Convenience S
(4.322)
193
Safety (7.356)
Motorist 039
Services (1.794)
152
Separate Take Out (6.560)

Values in brackets are the t-statistics.
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Table 3

MODEL SELECTION

Model LaL AlC BIC CAIC EN
&gf‘ffa‘e -2152.430 4305.860 43083263  4308.8263 1

k=2 -2046.217 4096.434 4106.299 4108.299 32
k=3 -2018.076 4043.153 4060.416 4063.916 41
k=4 -1989.551 3989.103 4013.765 4018.765 39
k=5 -1951.910 3916.820 3948.881 3955.381 43
k=6 -1951.204 3918.409 3057.868 3065.868 37
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Table 4
DISAGGREGATE RESULTS: FIVE-SEGMENT SOLUTION
Segment k=1 k=2 k=3 k=4 k=5
Segment 107% 368% 172% 27.7% 76%
See
Sausfaction Loyalty Satisfuction Loyahy Satisfaction Loyalty Sausfachion Loyalty Satsfaction Loyalty
Endogenous . 551 863 532 530 554
Varobles  S¥isfection (19.73 (16.881) (8 598) (6442) 2007
Loyalty
Exogeous ) . 185 146 046
Variables  SeViee o @19 o (1.766) s
104 a9 180
Products @ (.538) (2634) o o
495 197 595
SoreLayoux 0% o (6.688) (2.090) (18451
103 136 210 189
Prccs (1417) (5.986) o @907) (7.65%)
) 29 260 1006 000
Clanliess (v, P (o 0* (.004)
Comvemence 08 188 110 1S an
(129) sm) (1.69%) 1375 )
St e 189 o 112 051
Y (15.438) (5.482) (.396) (1.422) (1692)
Motorist 020 o o 087 079
Services 317 (1.108) 1412) (3593)
Separate o .030 485 160 002
Take Out (1.031) 9.543) (198%) (085)
The values in brackets are the t-statistics
* Values are constrained to zero
.
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Table 5
MEMBERSHIP PROBABILITIES: FIVE-SEGMENT SOLUTION

l“,{rf]';‘:;i‘,’i’:‘yip Segment1  Segment2  Segment3  Segment4  Segment5 TOTAL %
>.80 12 18 6 93 1 130 13
> .60 27 220 30 133 24 434 42
>.50 41 370 50 166 59 686 .67
> .40 68 486 91 229 93 967 94
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Table 6
POSTHOC ANALYSIS: FIVE-SEGMENT SOLUTION

K=1 K=2 K=3 K=4 K=5
Descriptive . -070 769 608 855 2.161
Variables ~ >onéer (-.197) (2.494) (2.036) (2.257) (-2.039)
A 206 -374 372 -524 1.064
ge (572) (-1.201) (-1.235) (-1.372) (.995)
871 .004 073 -.104 -844
Household (2.419) 014) (241) -271) (-788)
Daily -.148 -635 -784 -.864 2.430
User (-.139) (-.691) (-.881) (-.764) (.769)
Weekly -495 -1.385 -1.726 -1.966 5572
User (-454) (-1.465) (-1.884) (-1.692) (1.714)
Occasional -763 -.694 -1.055 -1.105 3.618
User (-652) (-.685) (-1.074) (-.888) (1.038)
Education -1.833 -.631 -.949 -478 3.891
high/less high |  (-.909) (-.361) (-.561) (-223) (.648)
Education -2.634 -583 -1.005 -525 4746
tech/assoc (-1.254) (-320) (-570) (-235) (.759)
Education -2.456 -.541 -1.181 -700 4879
coll/post_grad |  (-1.183) (-.301) (-678) -317) (789)
Income -668 -118 -048 -262 1.096
<=30 (-1.165) (-238) (-.099) (-.430) (.642)
Income -366) -384 -079 -416 1.244
>30 - <70 (-631) (-766) (-162) (-.675) (721)
Income -447 -.025 221 .005 .246
>=70 (-.825) (-053) (485) (.009) (.153)
7_11 -004 610 490 591 -1.686
Customer (-.010) (1.946) (1.614) (1.534) (-1.565)
Neigborhood -295 370 257 340 -671
Customer (-823) (1.190) (.853) (.890) (-.628)
Interceot 340 7.522 6.378 7.764 -22.004
P (.983) (25.141) (21.992) QLI13)  (-21.380)

The values in brackets are the t-statistics
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Table 7

A PRIORI SEGMENTATION BASED ON FREQUENCY OF USAGE

Daily User Weekly User 'Occasional User
n=265 n =300 n=436
Satisfaction Loyalty Satisfaction Loyalty Satisfaction Loyalty
Endogenous - 620 599 646
Variaples  Satsfaction (12.869) (12.958) (17.660)
Loyalty

Exogenous Service 058 123 073

Variables (1.072) (2.491) (1.738)
064 010 081

Products (1.260) (221) (1.976)
153 176 186

Store Layout (2.565) (3.463) (4.034)
pi 109 182 A77

rices @2n (4312 (4.846)
Cleanliness 141 121 060

eantl (2.327) (2.246) (1.354)
Convenieace 100 162 142

" (1.768) (3.243) (3.372)
150 189 214

Safety @.74%) (3.886) (5.493)
Motorist 070 045 046

Services (1.479) (1.060) (1.389)
Separate 213 .083 115

Take Out (4.351) (1.907) (3.306)

P
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Table 8

DAILY USERS: TWO-SEGMENT SOLUTION

K=2
71.2%
Satisfaction Loyalty Satisfaction Loyalty
Endogenous R .823 460
Variables  Sisfaction (5.910) (12985
Loyalty
Exogenous . 211
Vanables  SerVice (2.353) o

210 015

Products (1670) (268)
448 .030

Store Layout (3.482) (465)
. 114 170

Prices (1.081) (3.128)
" 170

Cleanliness 0* (2.362)
. 120

Convenience 0* (1.831)
.016 248

Safety (167) (3.638)
Motorist 267 063

Services (2.485) (1.222)
Separate 406 .167

Take Qut (3.604) (3.116)

The values in brackets are the t-statistics

* Values are constrained to zero
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Figure 1.

METHODOLOGICAL TAXOMONY FOR CAPTURING HETEROGENEITY IN

STRUCTURAL EQUATION MODELS

Path Model

-

Covariance Partial
Structure Least
Analysis Squares
. Simultaneous| | Hierarchical U B
A Priori . e A Priori Finite Mixture
Segmentation Segmentation Bayesian Segmentation PLS
& & Estimation Approach &
Joreskog 1977 Self Sclection New Approach

L 3

I Ansariet al. 1999

Finite Mixture]
LISREL

Finite Mixturej
SEM with
Regressors

Jedidiet al. 1997a

Armingeret al. 1997

-36-

Cluster Analysis
Based on

Demographics,

Psycholgraphics

Response Demands,

or Needs.




Figure 2.

THE NACS CUSTOMER SATISFACTION MODEL
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