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BACKGROUND OF THIS PAPER

This paper is based on research in multiple
channel queueing systems. The intent is

to develop a methodology which can be
utilized to derive optimal customer selection
and allocation policies for this class of
waiting line problems.



The Determination of Optimal Customer
Selection and Allocation Policies for
Finite Queues in Parallel
1. Introduction

The determination of procedures for routing customers to servers is a
problem of substantial importance in queueing system design and control. The
"classical" results for a single channel queue assume that the nth customer is
accepted for service unless the system is "full" at the epoch of his arrival
[see, for instance, Cox and Smith (3)]. Recently, Cinlar (1,2) has developed
models for situations where the acceptance of the nth customer depends prob-
abilistically upon the acceptance (or non-acceptance) of the (n-1)st customer.
‘An "every-other" customer selection rule and a random customer selection rule
are two special cases of this selection mechanism. Cinlar (1,2) has also de*
veloped results for a single channel queue where the selection of the nth cus-
tomer depends both upon the customer type and upon the state of the system at
the epoch of his arrival. The case of queueing with selective rejection con-
sidered by Scott (12), in which low priority customers are rejected when the
queue reaches some specified subcapacity length in order to leave room for po-
tential high priority customers, is a special case of this second type of customer
selection rule.*

For multiple service channels in parallel, the system operator is
faced with the additional problem of allocating accepted customers to a service
channel. When the allocation rule depends upon the allocation of the previous
customer, the customer type, or the state of a single channel,Cinlar's previ-

ously referenced results can be used to decompose the arrival stream so that

*
The mathematics utilized in deriving this special case of queueing
with selective rejection from the results of Cinlar is developed in Appendix A.
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the arrival processes to each channel can be considered independently. There
are, however, many situations where this decomposition of the arrival process
is not sufficient. For instance, under a shortest queue-length customer alloca-
tion rule, which has been considered for two service channels by Haight (4) and
Kingman (9), the customer allocation depends upon the stafe of all queues at
the epoch of arrival. To analyze these more complex situations Hall and Disﬁey
(5) have developed results for a system of queués in parallel where the customer
selection and allocation policy depends upon the customer type and the state
of all queues in the system at the epoch of his arrival.

Even after the performance of a particular system has been character-
ized, the question remains as to which customer selection and allocation rules
are best for the system under consideration. For instance, in a single channel
queue with selective rejection, what is the optimal rejection level for low
priority customers? In a multiple channel queue, what is the optimal allocation
pattern for arriving customers?

A special case of this latter problem has been considered by Miller
(10). 1In the situation considered by Miller, n customer classes arrive inde-
pendently at a reserver system with no storage. A fixed reward is accumulated
when customers of each class are accepted for service, and the objective is to
select or reject customers to maximize the expected reward received over an
infinite planning horizon. Another special case is considered by Ireland (7),
who develops control policies for r servers when infinite queues are allowed
to form and when the objective is to sequentially minimize the expected reten-
tion cost for the next K customers.

In this paper, we shall consider the general problem of optimal cus-

tomer selection and allocation for systems of finite queues in parallel. The
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intent is to show how these systems can be modeled so that Markov renewal
programming.can be utilized to derive optimal customér selection and alloca-

tion policies, Within this modeling framework, the models of Scott, Miller and
Ireland become special cases. Moreover, an exceptionally wide range of operating
policies can be studied for a large class of queueing systems. The_basic model
will be developed inSection 2; various applications of this model will then be

considered in Section 3.

2. Development of the General Allocation Model
Assume that m customer types arrive at the queueing system according

to a semi-Markov process with transition probabilities given by A (x) =
ij

Pr{X <x, zn=j|z =i}y i,5=1,...,m [1]

n-1
where Xn is the time between the arrival of the (n-1)st and nth customer and

Zn is the type of the nth customer.

Denote the state of the system of queues at the epoch of the nth arrival

by {Sl,...,Sr}'= {S }, where Sk is the number of customers in the sub-system
n n -n n
formed by server k, k=1,...,r, and SE = Sk; Sk=0,1,...,qk, where Ay is the ca-

pacity of sub-system k. Assume that the service times in the k service channels

are negative exponential with channel~dependent rate U, k=1l,...,r.
Let Yn be equal to k if customer n is assigned to queue k and let
YHFO if customer n is rejected (not accepted) by the system. Under a given

customer selection and allocation policy g, we assume that the probabilistic

properties of the switch Yn are completely specified when the customer type

and system state are known. That is, we assume that the following conditional

probabilities can be determined:



Prg{Yn=2|ZO,...,Zn; 5 Y L...,Y

¢ 00 S
i -n’* o n-1

S
—-.o .

= PrB{y =t]z =1, 5 =s} = b® (4,3) | [2]

S =s
—-—Tl—
for £ = 0,1,...,r; i=1,...,m; s§=0,1,...,qk; k=1,...,r and for ge&G, the

set of all feasible selection and allocation policies for the queueing
system under consideration,

For this basic model, Hall and Disney (5) have proven that:

1

(1) The r+2 dimensional process {Zn,Sn,

;..,Sz,Xn} is equivalent to

a finite state semi-Markov process.

(ii) The r+1 dimensional process {Zn,Si,...,S;} is a finite Markov

chain.

(iii) The r dimension process {Si,...,Sg} is Markov if and only if

the arrival process is a renewal process.
Further, for a given selection and allocation policy g, transi-

tion distributions in the {Zn,§n,Xn} process are given by:

Prg{§n=£, Zn=j, an-xl—s—n—]_zi’ Z =i} = Prg{i’_s_; j’E’X}

n-1

r X T
g . /
= ] b%(1,s) I ¢, (t,,s,,x)dA, . (x) [3]
k=0 k o p=1 k*72°7% ij
for i,j=1,...,m,
Sk’tk=0’l""’qk’
k=1,...,r

where bﬁ(i,g} is given by [2], dAij(x) is derived from [1] and ¢k(t2,sz,x) =

2 L .
Pr{Sn=t£}S Y =k,Xn=x} , so that the ¢k(t2,s£,x) are given by the

n-1"°4° n-1

following relations:
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Case i: k = £ [the nth arrival is assigned to the fth queue in parallel]

asz+l—t2 ('Q',X) 0<t2isz+l SQ, = 0,..., q,Q,_l
¢k(tz’ S, X) = 5,
1-7 a, (2,%) t, =0 8y = 0,.uty q,-1
k=0
0 otherwise

Case ii: k # & [the nth arrival is not assigned to the fth queue in

parallel]
a, ¢ (2,x) 0<t2§§ s, = 1,..., q,
2 2
sz-l
0 (Egs S, X) = L- ) 2 (£,%) =0 Sp = Loeves qp
k=20
0 otherwise
where
e_uﬁ,x(uzx)k
a, (4,x) = T k! k=0,1,...
L=1,...,r

The one-step transitions in the Markov chain.{Zn,§n} are obtained

from (3) as Prg'{i,gj Jot,®}.

To determine an optimal customer selection and allocation policy
from the feasible policy set G, it is necessary to develop a reward struc-
ture for the system under consideration. In general, we shall allow this
reward to depend on the nth customer type and the system state at the
epoch of his arrival, the (n-1)st customer type and the system state at
the epoch of his arrival, the time between the (n-1)st and nth arrival,
and the decision made at the epoch of the (n-1)st arrival. Then, cor-
responding to the transition distribution P% {i,s; j»tyx}, a fixed reward
Rg(i{§;jag,x) is accumulated if admission and allocation policy geG is

followed. Assuming that the set of feasible decisions G is finite, since
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the underlying stochastic process is semi-Markov it is possible to find the
- gelection and allocation policy which maximizes the total expected return
for both finite and infinitehorizon problems by utilizing the well -defined
technique of Markov Renewal programming [see for instance Jewell (8)].

In actuality, it is likely that the transition probabilifies

for the process {Zn,§n,Xn}dand the reward structure for the process

are less general than those considered in this section. In these special
cases, it is possible to develop more explicit characterizations, and
we shall do this for some special classes of problems in the next

section.

3. Applications to some specific Queueing Systems
(1) Single Channel Queue with Selective Rejection.
Denotiﬁg the state of the single service at the epoch of
customer arrival channel by Sn’ under the assumptions of the previous

sections the 3 dimensional process {Zn’sn’xn} is equivalent to a semi-

Markov process. We assume that at the epoch of arrival of a customer,
we have two potential decisions--accept the customer or reject him.
LettingYn = 1if the nth customer is accepted and zero otherwise, from
(2) we can write

bi(i,k) - {é llzf__g & bi(i,k) =0
where k is the system state at the epoch of arrival, N is the system

capacity, g=1 if we decide to accept the customer, and g=2 otherwise.

Letting u denote the channel service rate, we have
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PR 3,0,0) = 1) Bk 0dh () gel,2

where
1,. -0 oepait
9" (2,k,x) = K -
1- ] a(x) =0
0 otherwise
a (x)
2 k-2 0<a<k
4) (‘Q”k,x) = k_l -
1-) a(x) 2=0
. g0 g
0 otherwise
and ap(x) =-E~——§E§l~

Observe that the decision to select or reject a customer
affects only bg(i,k) in this situation. One possible generalization
is to let dAij(x), the transition distribution for the arrival process,
depend upon the decision. For instance, such a dependence prevails
when the decision to accept (or réject) customers is made known to
future customérs, thereby affecting their arrival patterns.

To develop the reward structure, we shall assume that the
rewards accumulated are independent of the time between arrivals. Let
rj denote the fixed reward which is accumulated when a customer of
type i is accepted for service, let a be the system start-up cost, and
let B be the system shut-down cost. Further let Pi be a penalty cost
(loss of good will) accumulated when a customer of type i is rejected

by the system. Then
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r 0<f<N  O<k<N

. i
Rl(i,k; o) = r,-o k=0
ri—B 2=0

-p 0<2<N  O<k<N

Rz(i,k; 3s0)
‘—pi~8 2=0

In this special case the reward does not depend upon the type
of the next customer. Furthermore, the dependence of the rewards upon
the state Sn~l=k arises only through the system set-up cost when k=0.

A more sophisticated reward structure might assume that the gain from
selecting a customer of type i goes down as more customers are in the
system, reflecting both the additional burden placed on waiting facilities
and the potential cost incurred by the customer because of delays in
receiving service.

Sinée neither the reward structure nor the decision structure
influence the times between transitions in the process‘{zn,sn,Xn}, the
optimal decision policy can be found by applying the techniques of Markov
programming to the embedded chain {Zn,Sn}. Solution procedures are sim-
plified in this case, as indicated by Howard (6).

(ii) Multiple Channel Queues with no Storage.

In the situation considered by Miller, let Sg = (0 if server j
is idle at the epoch of customer arrival and let Sg = 1 if server j is
serving a customer at this time, j=1,..., r. Let Yn=k if the nth customer
is routed to the kth server and Yn=0 if the nth customer is rejected,
and let the admissible policies ge&G correspond to these values of Yn so

that from (2):
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1 if k=g>0 and s, =0
84 k
bp(i,s) =
0 otherwise
for values of k=0,..., r
To develop a reward structure, assume again that the rewards
accumulated are indepéndent of the time between customer arrivals. Let
L denote the fixed reward when a customer of type i is serviced by
server k, let Oy be the start-up cost for channel k, and let Bk be the
shut-down cost of channel k.* Then
r, +a_ for s =0, t #0
ig 8 g g

E(; = - =t =
R®(i,s; j,t,x) rig + ag Bg for sg tg 0
0 otherwise

As in the previous example, since the reward structure is
independent of x, Markov programming techniques can be utilized to find
the optimal policy for the embedded chain'{Zn,Si,..., S;}.

(iii) Extensions to more Complex Networks

The results of this paper apply directly to networks of parallel
service channels. Moreover, extensions to certain types of parallel-series
networks can be made by observing that the departure process from a GI/G/1
queue is itself a semi-Markov process. When this departure process serves
as the arrival process to a system of negative exponential parallel servers,
the results of this paper are immediately applicable when one is faced

with the problem of optimal customer selection and allocation.

*The specific situation considered by Miller assumes a simplified
reward structure in which LT i=1l,..., m, and ak=8k=0.
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Appendix A
Queueing with Selective Rejection

1. Introduction

Consider the following general class of queueing problems: customers
of several types arrive randomly at a queueing system where priority (type-
one) customers are admitted to the queue unless the waiting line is full; how-
ever, customers of the remaining types are denied admittancé if the queue has
reached some pre—specified sub-capacity lengﬁh. The motivation for designing
queueing systems with this selective rejection mechanism is to maintain waiting
room for potential priority (type-omne) customers, and such an operating policy
is apt to prevail in many applications. |

A specific version of this problem was formulated by Scott (12), who
developed analytical results for the case of two-customer types under the
assumption of independent, negative-exponential arrival and service processes.
An application considered by Scott arises in automotive repair. Here a dealer
accepts customers who have purchased a car from him for service unless the
garage is full. Other customers are rejected when the queue reaches some
specified sub-capacity length in order to leave room for the arrival of po-
tential type-one customers.

The objective of this paper is to generalize Scott's model to include
m customer types (o<m<») whose arrival at the system can be described by a
semi-Markov process. Denoting the capacity of the system by N (o<N<w), cus-
tomers of type j are refused service if there are R, or more customeré in the
system, j=l1,...,m. [Without loss of generality we assume that RjiN and R1 = N,
the latter assumption implying that type-one customers are always accepted unless
the system is full.] Analytical results;describing the operation of this
queueing‘system are developed by u%ilizing results on semi-Markovian queues in

parallel. These systems have been extensively considered by Cinlar (1) and
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more recently by Hall & Disney (5). The application of these results to a
queueing systemvwith selective rejection yields the system parameters considered
by Scott--the expected queue-length, probability of rejecting a certain type of
customer, and the average rate’of change of the arrival infensity. Moreover,
many other éystem characteristics of interest can be derived, including charac-
teristics of the time between rejections of customers of the various types, the

time between overflows, and other related processes.

2. Basic Results

We begin the discussion by briefly summarizing the applicable results of
Cinlar (1). These are then applied to describe the behavior of a queueing
system with selective rejection.

Let Tn denote the epoch of arrival of the nth customer, n = 0,1,2,...,
and let Xn = Tn - Tn—l be the time between arrivals (nz}). Further let Zn denote
the type of the nth customer, where Zn takes on the values 1,...,m. Let
Aij(x) = Pr{Xnig, Zn = j‘Zn__l =i}, i,j = 1,...,m, characterize the distribution
of times between arrivals. Under these conditions it is known that the arrival
process {Xﬁ,zn; n = 0,1,2...} is equivalent to a semi-Markov process. [See,
for instance, Pyke (11)].

Denote the state of the gystem at the instant of the nth arrival by
Sn' Then Sn takes on'the values 0,1,...,N, where N is the system capacity.
Assume that the server operates according to a negative-expotential distribution
with parameter u.

Let Yn be an‘indicator variable taking on the value 1 if the nth
customer is accepted byithe system and the value 0 if the customer is rejected

by the system. Assume that the stochastic switch Yn is governed by the
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conditional distribution Pf{Yn = GlZn,Sn}, where § = 0 or 1. That is, we
assume that the accepténce of a customer depends both upon his type and the
system state at the epoch of his arrival.

Under thése conditions Cinlar (1) has proven that:

(1) the process {Zn, Sn’ Xn} is semi-Markov,
(ii) the progessv{Zna Sn} is a Markov chain,
(iii) the process {Sn} is Markov if and only if m = 1.

Furthermore letting ¢h (k,1,x) = Pr{Sn =‘1‘|Sn_l = k, Yn—l = h, Xn = x}
and letting bh (1,1 = Pr{Yn = hlSn =1, Zn = j}, the transitions in the

process {Zn, S > Xn} obey:

Pr{s =1, z =3, xnix[sn_l =k, Z_. =1} = P(i,k; j,1,%)

n~-1
X [1]
= 10 [bo(k,i)¢o(k,l,x) + bl(k,i)¢l(k,l,x)]dAij(x)

where

bo(k,i) =1 - bl(k,i)

and
ak_l+h(x) 0<1<k+h<N+k
¢h(k,lsx) = z Oln(x) 1 =o, iiN
n=i+h
0 otherwise
with
=uX n .
(Xn(X) = E_—Il—!(}:l}s_)_— n = 0,1’2,000

The one-step transition probabilities in the underlying Markov chain

{Zn, Sn} are given by
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=k, Z_. =i} = P(d, k; j, 1,%)

Pr{s_=1, Z = ils el

n-1
= JO [y (1 D¢k, 1,) + ) (s 16, (51,20 1dA, , (x)

Given an initial distribution PO (i,k) = Pr{Zo =i, SO = k} and
the one step transition probablities, the imbedded process {Zn, Sn} is completely
characterized. The theory of finite Markov chains can then be employed to

examine both the transient and steady state behavior of the process.

3. Application to the Selective Rejection Problem
Results for a queueing system with selective rejection can then be
derived by considering the following model for the stochastic switch Yn'
Again letting Yn = 1 when the nth customer is accepted and Yn =0
otherwisé, we note that customers of type i are accepted for service whenever
Sn<R s 1=1,...,N [Rl = N by our previous convention]. Then

i.7) = = = i = j} = i
bl(l,J) --,Pr{Yn 1|Zn i, Sn it .

From equation (1) the one-step transition probabilities for the semi-
Markov process {Z , S , X } become:
n’ n’ “n

Pr{s_ =1, z_ =i, xngxlsn_l =k, Z_ . =1i} = P(i, k; j,1,%)

n-1
X
) Jo¢l(k,1,x)dAij(x) if k<R,
) % | [2]
o¢o(k,l,x)dAij(x) if k>R,

and the one-step transition probabilities for the finite Markov chain

{Z_, S_} become:
n. n



-14-

J o ¢l (kslsx)dAij (X) k<Ri
P(i, k; Jsl,®) = e [3]
. b (e 1,x)da, , (x) k>R,

Hence, the imbedded Markov chain for the selective rejection queueing
system has an exceptionally simple form. Letting Pn(j,l) = Pr{Zn = i, Sn = 1}

denote the probability the system is in state (j,1) at time n, we have the

recursive relationship from the theory of Markov chains:

m N
[ I PA, k5 3,19 B (4,8)

Fldst) = 151 k=o
N [7
) izs kZo J, oLy @) P G
T
+ i§§ kzo bt Uelixdh ) B (1K) n=1,2,...

where S is that subset of the integers (1,...,m) such that for ies§, k<Ri and §
is the complement of S.

The distribution of the state of the system at the arrival of the nth

m
customer is given by Pn(l) = Z Pn(j,l), and the expected number in the system
31
N m
at this epoch by z ;Z 1Pn(j,1).
1=0 j=1

The probability of rejecting a customer of type i at epoch n is

Pr{y = olzn =i} = J priy =0z =1, 8, = 1} Pr{s_ =1}

N N
= )L b WD EW= ] 2@
1=1 1=Ri

When i=1 this is the probability of an over-flow from the queueing

system [i.e.--the probability that the system is full at the epoch of the nth

arrival].
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The averagebrate of change of the arrival intensity at the epoch of
the nth arrival is equivalent to the probability of rejection of the nth cus-

tomer. Hence this parameter is given by the relationship.‘

m N
Pr{Y = o} = .Z ] Pr{Y =o|z =1i,s =1}pr{z =14, s =1}

i=1 I=o0
P

= b (i,1) P _(i,1)
i=1 1=0 ° "
m N

=] I @D
i=1 ]_zRi

Analogous results for the system operation in steady state can be

1im P

obtained by computing the limiting stateprobabiliti‘esn+°°

n(i,l) using con-
ventional techniques from the theory of finite Markov chains. Steady state
analogues for the system parameter developed above follow immediately.

We note that the one-step transition matrices P(i, k; j,1,*) have a
very simple form which facilitates numerical computation for this class of
problems. For instance, consider the case of two customer types (m=2), where
type 1 customers are admitted when Sn<N and type 2 customers are admitted when

s _<R [ReN].

Letting the two-triple (Zn’ sn) denote the state of the system and

[ _ - Kk
k e ¥ (ux)
Jo k! dAy5 ()
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the one-~step transition matrix for the process {Zn’ Sn} is given by:

(1,0)

(1,1)

(lsN—l)

(1,N)

(2,0)

(Z,R'l)

(2,R)

(2,R+1)

(2,N)

(1,0) (L,R) ... (1,N) (2,0) .. (2,R) ... (2,N)
o o0 0
k 0 a a 0 .o 0

} a;; a;; 0 . 0 %12 %12

1 1

vk 1 0 vk 1 0

g all all all 0o... 0 g al2 a12 al2 0 .o 0

0

Z ail a?ll ‘e an—r a0 E ak an—l an—r aO
n 11 114 t12 12 " %12 12
OX a?l an—l an-—r aO E k an—l an—r : a0
n 11 %1 1 L 812 3p e ¥p et 12
vk 0 w

) a a,, 0 ... k 0

T 21 0 § 8y 8y, 0 .. 0
Tk r-1 0 vk r-1 0

g a21 a21 oo a2l 0 .o 0 E a22 a22 .o a22 0. 0
vk r-1 0 5k r-1 0

g 821 a2l vee 321 0o ... 0 § a22 322 a22 0.. 0
Tk r 1 0 vk r 1 0

Z a a cee 8pq Bpy ees 0 Z a a ev 8o 8n, 0 ... 0
4 2 21 21 %21 41 22 22 22 %22

ot k n—l o'}

) a ap " .. 0 k n-1 0
o 21 21 321 E 322 a22 “es a22
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To find the distribution of the time between rejections of customers of

any type i (i=1,...,m), it is sufficient to note that this time interval is the
recurrence time of the state {Sn = Ri’ Zn = i} in the semi-Markov process

{Sn, Zn’ Xn}. Thus, the times between rejections of each customer type form a
renewal process, and the distribution of these times can be found from the
transition probabilitiés P(i, k; j,1,x) using conventional techniques discussed
by Pyke (11) and Cinlaf (2).

When i = 1, Ri = N, and the recurrence time of the state {Sn = N, Zn

is the time between overflows from the system.
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