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BACKGROUND OF THIS PAPER

This paper is based on material developed for a
course in linear optimization models offered at
the Graduate School of Business. The intent

is to illustrate how the post-optimal feature of
linear programming can be used in the firm to
guide the adaptive, decentralized response to
unplanned exogenous events.

Because this paper has been submitted for
publication in the Journal of Accounting Research
it follows the style prescribed by that journal
rather than that prescribed by the Bureau.




Introduction

An increasingly large number of industrial concerns are using linear
programming models to guide the allocation of resources to productive activities.
The utility of these models comes from their ability to characterize complex
optimal or near-optimal plans, and to examine quantitatively the effects of exogenous
factors and internal policies on these plans. The result is a more explicit
understanding of information requirements and planning effectiveness within the
firm.

The utilization of linear programming models in examining the sensitivity'
of optimal plans to changes in environmental factors and corporate policies has
been discussed by several authors, including Godfrey, Spivey, and Stillwagon (4),
Rappaport (7), and Jensen (5). The process of adjustment to such changes has also been
examined in order to gain insight into methods for minimizing sub-optimal
adjustments. In this regard, Samuels (8) and Bernhard (1) have discussed
opportunity costing techniques based on linear programming models to control
production volume variances. Furthermore, Demski (3) has developed an accounting
control system by conducting a comparison of attained results, planned optimal
results derived from a linear programming model, and theoretical optimal results
derived from a linear pfégramming model which has been adjusted for exogenous
changes incurred during the planning period.

The attempt here is to extend these concepts by examining the useful-
ness of linear programming models in control problems when planning is conducted
recursively over multiple time periods. We shall assume that the firm'sshort-
run objective is to optimally allocate available productive resources in each

time period, and that this allocation can be accomplished by formulating and

solving a linear programming model representing the intra-period decision problem.
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Thus, in developing a plan for N time periods, the firm can sbecify and/or
estimate resource availibilities and technological relationships for each period
‘and combine these with estimatés of demands and contribution margins to formulate
N linear programming problems. ' The optimal "base plan" is then obtained. by
solving these independent programming problems.¥

As the base plan is implemented, however, -the occurrence of unplanned
exogenous and internal events is likely to force deviation from the original plan
in certain periods. Moreover, in many situations, these intra-period deviations
may affect the implementation of the original plan in subsequent periods. For
instance, suppose that the firm receives an unplanned, high-priority order for
some product which must be filled by a certain deadline. To achieve this dead-
line, resources in a given time period may be re-allocated from other activities,
or resources which had originally been allocated to a future period may be re-
allocated to the current period. As a second example, suppose fhat an engineering
problem arises in a givén period, thereby placing additional constraints on the
maximum attainable levels of certain outputs. 1In this situation, the under-
production of these outputs yields resources which are potentially available for
the production of other outputs within the period. Alternatively, in some cases,
these resources can be inventoried to provide extra resource avéilability in
future time periods.

It will be shown ﬁere that the post-optimality featurés of linear
programming models can be ﬁsed to determine the optimal response to these types
of unplanned deviations from the original base plan. Consequently’these models
provide valuable controi.information by facilitating a comparison of the actual
response to unplanned deviations with the optimal response. Moreover, it will
also be shown that lineaf programming models provide economic information which

can help guide the respoﬁse to unplanned deviation on a decentralized basis.

*
The extension of these techniques to situations when constraints are
present which link the intra-period decisions will be discussed later in this
paper.
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Hence these models provide not only a method for evaluating a firm's‘adjustment
to dynamic perturbations, b&t also an adaptive process by which the optimal
adjustments can be guided and controlled.

The discussion will be carried out in terms of a slight variant of the
simplified linear model for the intra-period resource allocation problem which
was utilized by Samuels and Bernhard. This will allow the results presented here
to be integrated with the opportunity costing techniques introduced by these
authors. To simplify the discussion it will be assumed that the base plans for
all time periods are the same; that is, the intra-period linear planning models
are assumed to be identical. The extension of the concepts develbped here to
more complex and non-identical intra-period models will be discussed later in
this paper.

For this example, assume that the optimal single period production plan
for a three-department firm can be found for solving the following linear pro-
gramming problem:

Maximize P = 2x + 3y + 4z (Total contribution margin)

Subject to the constraints:

5+ y+ z ¢ 8,000 (Floor space restriction)

x+ 5y + z < 8,000 (Supervisor time restriction)
x+y+ 5z < 8,000 (Raw material restriction)

x*>0,y>0,2z2>0

Where x, y, and z are respectively the production levels in the three
departments.

The optimal solution to this problem is
x% = 1,142, y* = z% = 1,143, and p* = 10,284. The first and last tableaus for

the problem in standard form are given in Table A:
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Table A
First and Last Tableaus for Intra-Period Production Planning Problem

b X y z sL1 ~ sL2 sL3
0 -2 -3 -4 0 0 0
8,000 5 1 1 1 0 0
8,000 1 5 1 0 1 0
8,000 1 1 5 0 0 1
10,284 0 0 0 5/28 12/28 19/28
1,142 1 0 0 6/28 -1/28 -1/28
1,143 0 1 0 -1/28 6/28 -1/28
1,143 0 0 1 -1/28 -1/28 6/28

Intra-Period Adjustment and Control Procedures

To illustrate the intra-period adjustment process to unplanned devia=-
tions, suppose that at the beginning of some period, an engineering problem is
detected which will cause one department, say Department 3, to fail to meet its
target production level Qf 1,143 units. Assume, for instance, that in the period
under consideration Depértment 3 can produce at most 1,050 units--93 units below
the optimal level. With no adjustment this reduction results in a decrease in
the firm's profits of $372, and Samuels and Bernhard would argue that for control
purposes this opportunity cost should be charged to the responsible department.

Notice, however, that the failure of Department 3 to meet its target
level results in the undér-utilization of some of the firm's resources. If the
remaining departments are made aware of these under-utilizations and if they can
appropriately adjust their production schedules, it is possible that some of the
opportunity cost incurred by Department 3 can be recovered. The question remains

as to how Departments 1 and 2 should adjust their production levels to maximize

this recovery.
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One potential method for solving this adjustment problem is to resolve
the associated linear programming problem after adding the comstraint z < 1,050
to reflect the upper bound on production in Department 3. Unfortunately, re-solving
the problem may result in considerable computational cost and time (a significant
factor in large-scale industrial application). Furthermore, this alternative can
be avoided by making certain post-optimality adjustments on the last tableau of
the original linear programming problem.

A decrease in the level of the basic variable z must be accompanied by
an increase in some non-basic variable (in this case one of the slack activities).
Then let z' denote the attained productive level in Department 3, let SIK denote

the level of the non-basic slack variable k, and let a . denote the marginal rate
of substitution between the output of department z and the level of slack activity
k. From the last row of the final tableau we can relate these quantities to the
optimal production level z* by the equation:

z% = z' + aZkSLK
or equivalently

z' = gz% - a  SIK
Z

k
Since in this case z'< z% énd the non-basic variable SIK > 0, the level of some
slack activity for Whiéh azk:,o‘must be increased to a positive level. Inspection
of the final tableau réveals that slack activity 3 (unused raw material) is the
only activity with a positive marginal rate of substitution with z, and
consequently the level of this activity must be increased when the output of z
is decreased. Since azB= 6/28 for slack activity 3, when z'= 1,050 we can write
1,050 = 1,143 - 6/28 S13
and solving for SL3 we obtain SL3 = 434. Consequently, the opﬁimal adjustment to
a 93 unit production decrease in Department 3 will leave 434 units of the raw
material unutilized.
Similar equations can be written from the last tableau relating the new

output levels in Departments 1 and 2 to the increase in unutilized raw materials.



These equations are giveﬁ by:

x' = x* - (-1/28) SL3

y

y¥* - (-1/28) SL3

and substituting SL3 = 434, one obtains x' = 1157.5 and y' = 1158.5. The
corresponding reduction in total contribution margin corresponding to this

adjusted plan can be calculated by observing that marginal profit associated

with a change in resource évailability is equal to the dual price of the resource in
the neighborhood of the.oétimal solution. Since the dual pricé of the raw material
is 19/28, 434 units of unysed raw material will decrease total contribution

margin by $294 = 19/28 (434).

In summary, we see that the failure of Department 3 to reach its target
level makes resources available to Departments 1 and 2 which conceivably allow
these depaftments to increase their output. If these departments do not take
advantage of the available resources an opportunity cost of $372 is incurred.
However, if Departments 1 & 2 modify their production plans to utilize the available
resources in an optimal fashion they each produce an additional 15.5 units and a
minimal opportunity cost 6f-$294 is incurred by the firm.

Hence, when departments have the ability to adjust to unplanned
deviations, the assignment of the opportunity cost to individual departments
should be based upon the minimum loss adjustments. That is, for control purposes,
departments should be evaluated on the basis of their performance with respect
to the best possible plan under the dynamic changes encountered. Such a control
procedure encourages adaptive planning and will certainly result in improved
performance for the firm.

The question remains, however, as to how to implement such dynamic
planning. One way is to compute the optimal adjusted plan and announce the re-

vised target output levels to the individual departments. Unfortunately, in
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many situations this is infeasible or costly. 1In these cases, however, the
linear programming model provides a surprisingly large amount 6f information
~ which will aid the adjustment process on a decentralized basis. For instance, in
our example suppose that Department 2 is informed that 434 units of raw material
are available. If the department knows its marginal rate of substitutions
between output level and raw material (-1/28), the revised outéut level can be
computed from the linear equation

y' = y* - (-1/28) SL3

= 1143 + 1/28 (434) = 1158.5

Thus we see that knowledge of the marginal rates of substitution between
activities is sufficient to guide the optimal decentralized adjustment of various
departments to changing resource availabilities. These marginal rates are always
available as a by-product of the final tableau for a linear programming problem.
Hence the oniy problem inlutilizing these in an adaptive control process is to
insure effective communication to the individual departments;'

A similar situation occurs when other unplanned events force deviations
from the base plan. For instance, assume that in some period Department 1 is

required to produce 1,182 units--40 more than in the original base plan.

Here again an increase in the level of the basic variable x must be
accompanied by an increase in the level of some non-basic variable SLK. Hence
we can write

x' = x* -a
X

kSLK1

Since x' >x%* and SLK > 0, in this case SLK must be chosen so that the
marginal rate of substitution between x and SLK is negative. Inspection of the
final tableau in Table A reveals that the appropriate marginal rateS of substitution

are negative for both SL2 and SL3 (utilized supervisory time and raw material).
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To minimize the reduction in contribution margin obtained when one of these slack
activities is increased to a positive level, we wish to choose that activity with
the smallest unit cost. The unit cost of these activities can be computed by
dividing their dual values by the mafginal rates of substitution, and taking

absolute values obtaining

. Marginal rate of Dual Unit

Slack activity substitution with.x - value cost
2 -1/28 12/28 12
3 -1/28 19/28 19

Hence, we wish to increase slack activity 2 (unused supervisory fime) to a positive
level. The actual level of unused supervisor time can then be obtained by solving
the equation »

1182 = 1142 - (-1/28) S1L2
yielding S12 = 1120, which indicates that the optimal production plan when Depart-
ment 1 produces 40 unifs over the base plan will have 1,120 units of unutilized
supervisory time.

Adjustments in ﬁhe outputs of Departments 2 and 3 can then be found by

developing the following equation from the final tableau:

y

y* - (6/28) éLl

1

z z*k - (-1/28) SL1

for SL 1 = 1,120, one obtains y' = 903 and z' = 1,183. The minimal reduction in
the firm's total contributioﬁ margin is given by 12/28 (1,120) = $480.

' This result is both interesting and important, for it illustrates that
the best adjustment to overproduction in Department 1 is for Department 2 to re-
duce output and simultaneously for Department 3 to increase output. Here again,
the optimal adjustment can be attained With‘knpwledge only of the marginal rates of
substitution between activities, and as before; an opportunity costing plan can

be implemented to control deviations from the optimally adjusted base plan.
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As a final example of intra-period adjustment, suppose»that in some
period Department 1 improves its technological relationships so that only 5/6 of
a unit of supervisory time is required to produce one unit of output, thereby
freeing 1/6 (1,142) or approximately 190 units of supervisory time. The determin-
ation of the optimal adjustment to this event is more difficult, since the
marginal rates of substitﬁtion between activities all may be changed %ecause of
this technological improvement. The mathematical effects of such a change in a
basic activity coefficient are discussed in detail by Dantzig (2:pp 271-275) and
Spivey and Thrall (9:pp 188-189). For our purposes it is sufficient to stateé the
result proved in Appenéix A, which indicates that a revised optimal program can
be found by adding the perturbation vector given below to the original optimal

program, yielding:

x' | 1,142 -8 1,134
y' | = |1,143 + | 48 | = 1,191
2! L1,143 -8 1,135

L -l e - P N | o— p—

with an incremental contribution margin of 96.

As indicated ianppendix A, the significance of this result is that the
optimal adjustment of Department 1 to an internal technological improvement is to
reduce the level of depértmental output. This illustrates again the importance
of controlling departmehtal adjustments on either a centralized or decentralized
basis.

Unfortunately, it is shown in Appendix A that the optimal ad justment
to such a technological chqﬁge or a decentralized basis requires the knowledge
of the marginal rates of substitution between all activities in all departments.
Furthermore, significant Eomputation,is required to determine the optimal adjust-
ment. Because of these informational and computational requitrements, it is unlikley
that decentralized. adaptive control is feasible in the situation of changing

technological relationships.
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Inter-period Adjustment and Control Provcedures

In the first examble of the previous section it was shown that the opti-
mal adjustment to a specified engineering problem in Department 3 results in the
under~utilization of raw materials within the period. In many situations this ex-
cess material can be iﬁventoried for use in subsequent periods. Alternatively, it
is possible that unplanned intra-period events may result in an infeasible production

schedule unless resources are "borrowed" from future periods in the form of over-
time, specially ordered raw materials, etc. In this case, adjustments must be made
on the base plan in future periods unless the original future resource availabilities
can be stored.

The process of adjustment in both of these cases leads to a consideration
of recursive programming procedures. Recursive programming problems arise when the
resource availabilities in any period are functionally dependent upon the decisions
made in the previous period.* This results in interdependencies which alter the

sequence of optimal decisions through time. In the situation being considered here,

these dependencies arise because the process of adjustment to deviations from the
base intra-period plané'may result in the shifting of resources between periods.
It is important to note, héwever, that in these cases the resulting interdependencies
do not result in a significantly increased computations burden, for they can be con-
veniently handled by the post-optimality features of linear programming which were
utilized in the intra-period adjustment process.

To illustrate these ideas, suppose that the 434 units of unused raw material
resulting from an optimal adjustment to the engineering problem in Department 3 dis~

cussed earlier can be inventoried for use in the next period. If we assume that the

base intra-period planning problems are identical, the revised planning problem
for the next period is given by the initial tableau of Table A'with 8,434 units of

raw material rather than‘8,000 units.

*The reader might be interested in recursive programming applications to
the problem of capital acquisition over time which are developed by Spivey and
Godfrey (10).
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Instead of resolving the entire problem with this revised right hand
side, the new optimal program can immediatély be developed by observing that it
is obtained by adding the slack activity to the original optimal basic'program
at a level SL3 =-434. Hence, from the final tableau of the original problem

one can write the following equations for the new optimal program.

x' = xk - a 813 = 1,142 - (-1/28) (-434) = 1,126.5
y' =¥ -2 SL3 = 1143 - (-1/28) (-434) = 1,127.5
2' =z - a_,S13 = 1,143 - (6/28) (-434) = 1,233

The incremental contribution margin is obtained from the dual price of slack
activity 3 as (19/28) (434) = 294.5,

Here again, the optimal adjustment can be guided on a decentralized
basis by providing each department with information on the marginal rates of. sub-
stitution which prevail within the department and with data as to the extent of
resource adjustments which prevail between planning periods.

Summary and Extensions

The objective of this paper has been to show how the post-optimality
features of linear progrémming provide a method for guiding the optimal adjust-
ment to unplanned deviations affecting the firm's planning process. These features
allow a firm to dynamically update an intra-period base plan as new ipformation
becomes available. They also allow the firm to optimally allocate those resources
which can be shifted between periods to minimize the effects of intra-period
adjustments. Moreover, in both of these cases, the post-optimality features
utilize economic information which can be conveyed in individual departments so
that optimal adjustments.can be made adaptively on a decentralized basis.
Unfortunately, the extenf’of the information required to perform adjustments to
certain technological changes may limit the applicability of decentralized con-
trol in this class of situations. In the majority of situations,vhowever, the only
informational requirement is knowledge of the marginal rates of substitution between

the activities conducted by the department.
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The examples studied here assume that the intra-period planning models
are identical with no inter-period linking constraints. Non-identical models -
create no problem; the post-optimal adjustments are merely made on the final
tableaus for the appropriate periods. TInter-period linking of constraints can be
handled by treating the N period planning problem as a single, large linear
programming problem. Alterﬁatively, prices can be set on the linking constraints
thereby modifying the intra-period unit contribution margins to.account for the
effects of such constraints. This latter approach gives rise to the discomposi-
tion of the large problem into a sequence of intra-period problems lgee, for

instance Spivey & Thrall (9:pp 351-36417_



Appendix A

Sensitivity of Optimal Tableau to Changes
in Basic Activity Coefficients

Suppose we are given the following initial tableau for a linear

programming problem

b

0

8000

8000

8000

X

-2

SL1
0
1
0

0

SL2

0

0

1

0

SL3

0

0

0

1

Then it is well known [gﬁivey & Thrall (9), pp. 139-14;7 that the optimal basic

program for the problem can be attained by premultiplying the first column of

the initial tableau by the inverse of a matrix whose columns are the coefficients

of the optimal basic activities. 1In this case the matrix is:

5 1
1 5
1 1

with the following inverse‘;hich can be directly computed or found from the

final tableau*:

L

6/28

-1/28

-1/28

-1/28
6/28

-1/28

-1/28

-1/28

6/28

*Note that the elements of A-1

between activities for all departments.

-13~

are the marginal rates of substitution
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Suppose that the original problem is modifed by changing the coefficient
in row three, column two.of the initial tableau from 1 by a general value of g.
Then if we assume that © is constrained so that the optimal basic activities are
unchanged, the A matrix becomes:

5 01 1

A' = |1+6 5 1

1 15
L —
and we can write A' = A + UVt where
o -
0 1
U=1296 V= 0
0 0
- - L. d

Furthermore, the inverse of A' can be computed from the inverse of A

by using the following result jﬁho (6), p. 2g7:

-, =l t, -1
@yl ol U)EV AT)
l+vyavu

The revised optimal program for the linear programming problem can be
found by pre-multipljing the first column of the driginal tableau by (A')-l.
Equivalently, we can pre-multiply this column by

_ o lyatah
1 + vtAy

Q

and add this "perturbation vector" to the original optimal program (given in
Table A pf this paper). |

For the data of this problem Q is given by:
6 1 1]

0

AR FE
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and the perturbation vector is given by

) B
- 1 1| [8000 32,000
- 36 -6 =-6] {8000 = 9 -192,000
784(149) 784(1+40)
. -6 1 1] |8000 ' 32,000
_J e ——

For the change_autlined in tﬁ; text of the main paperie=—1/6. Hence

the perturbation vector becomes:

32,0051 | -8
-1 [-192,000| = | 48
5(784) N
32,000 -8
b -

Therefore, the revised optimal program is obtained by reducing the
outputs of departments 1 and 3 by 8 units and increasing fhe output of department
2 by 48 units with an iﬁcreﬁental contribution margin of 2(-8)v+ 3(48) + 4(-8) = 96,
This result is interesting and important, for it illustrates that the
optimal corporate adjustment for a technological advance achieved in Department
1 is for Departments 1 and 3 to reduce output. A sub-optimal adjustment is made
if department 1 utilizes its improved technological relationship to increase

output!
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Unfortunatelj, guiding the optimal departmental adjustménts to
technological improvements such as the one outlined here is a difficult problem.
This is true because the computation of the perturbation vector requires knowledge
of the marginal rates of substitution between activities in all departments
as well as knowledge of the technological change to which the firm is adapting.
Thus, adjustment must be made on a centralized basis or all marginal rates of
substitution must be communicated to all departments. This latter alternative
is likely to be infeasible in view of the massive information flow problem and

computational burden created in large-scale applications.
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