RESEARCH SUPPORT NOVEMBER 1997
UNIVERSITY OF MICHIGAN BUSINESS SCHOOL

HEURISTICS FOR MINIMIZING TOOL
SWITCHES ON A FLEXIBLE MACHINE

WORKING PAPER #9709-02R
BY

ALAIN HERTZ
GILBERT LAPORTE
MicHEL MITTAZ
KATHRYN E. STECKE



Heuristics for Minimizing'Tool Switches when
Scheduling Part Types on a Flexible Machine

by

Alain Hertz!
Gilbert Laporte?
Michel Mittaz®
Kathryn E. Stecke®

June, 1997
Revised: November, 1997

1 Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland.

2GERAD, Ecole des Hautes Etudes Commerciales, 3000, chemin de la Cdte-Sainte-Catherine,
Montréal, Canada H3T 2A7.

3School of Business Administration, University of Michigan, Ann Arbor, MI 48109-1234, USA.



Abstract
This article considers a tool loading problem whose objective is to minimize
the number of tool switches over time in order to process several parts on a
flexible machine. New heuristics are presented and compared. Some of these

are shown to be superior to existing methods.
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1 Introduction

We consider the following Tool Loading Problem (TLP) encountered in flexible man-
ufacturing. A series of n parts of different types, each requiring a particular set of
tools of different sizes are to be produced on a single flexible machine. The tools are
to be loaded in a magazine containing c slots. Each part type requires at most ¢
tools, but the total number of tools required for all part types typically exceeds ¢, so
that tool switches between part types are usually necessary. Each tool can be placed
in any slot of the magazine. Before processing a part, all tools required by that part
must be installed. Since the time required for tool switches can be significant relative
to processing time, it is desirable to limit the amount of time associated with tool
switches. The TLP consists of determining a sequence of parts and the corresponding
sets of tools loaded in the magazine at any time in order to minimize the completion
time of all parts.

Here we examine a TLP over time for a single flexible machine. The solution of
this problem is a first step in solving the more general flexible manufacturing problem
of selecting part types over time. Scheduling flexible manufacturing operations over
time typically involves selecting overlapping batches of part types. When the pro-
duction requirements of a part type are completed, its tools can be taken out of the
tool magazines and the tools for new part types entering can replace these (see Stecke
and Kim (1988, 1991)). It is ideal to sequence the processing of the different part
types so as to minimize reloading tools that had previously been taken out. The TLP
addressed here is a first step towards addressing the more general problem. Since the
processing time of each part is sequence independent, we are only concerned with the
time associated with tool switches. Some authors (e.g., Tang and Denardo (1988))
minimize the number of switching instants, i.e., the number of times at which one or
more tools must be changed in the magazine in order to process the next part. Alter-
natively, one can minimize the number of tool switches, i.e., the total number of tools
changes during the whole process (see, e.g., Bard (1988), Tang and Denardo (1988),
Kiran and Krason (1988), Oerlemans (1992), Gray, Seidmann and Stecke (1993),
Crama, Kolen, Oerlemans and Spieksma (1994), Follonier (1994), Sodhi, Askin and
Sen (1994), Hertz and Widmer (1996), and Avci and Akturk (1996)). This paper
deals with the latter objective.



As shown by Crama et al. (1994), the TLP is NP-hard by reduction from the
Matriz Permutation Problem (Garey and Johnson, 1979). However, once the part
sequence is known, optimally loading the tools in the magazine is easily accomplished
by application of a “Keep Tool Needed Soonest (KTNS)” policy (Bard (1988), and
Tang and Denardo (1988)). This policy states that when tool changes are necessary,
those tools which are required the soonest for an upcoming part should be the first
to be kept in the magazine.

When each part requires exactly ¢ tools the TLP reduces to a Traveling Sales-
man Problem (TSP) with distances d(i, j), where
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and T is the set of tools required by part ¢. Since a TSP solution is a tour, not a path,
one can simply introduce a dummy job 0 with d(0,7) = d(5,0) = 0 for all j (e.g.,
Crama et al. (1994)). This procedure disregards the cost of loading the magazine
for the first part and of unloading it after the last part. Distances may of course be
defined differently if the situation warrants it. In general not all parts require ¢ tools,
but standard TSP algorithms can still be applied to provide a heuristic solution to
the problem, as suggested by Tang and Denardo (1988) and Crama et al. (1994),
for example. However, all known algorithms based on this approach are myopic in
the sense that they account for interactions of two parts at a time without a global
view of the entire solution. As we show in this paper, this can partly be remedied
by defining more adequate distances and by designing a more holistic TSP-based
heuristic. We elaborate on these two points in Sections 2 and 3, respectively. In
Section 4, we present computational results showing the relative efficiency of the
proposed approach. The conclusion follows in Section 5.

2 Distance definitions

We have considered several ways of defining a “tooling” distance between two parts.
Here we restrict our attention to the five most interesting definitions. The first two
distances are simply

di(i,j) = c - [TNT|



and

da(i,7) = LU T - [TNT).
Both are equivalent to d(i, j) when |T;| = ¢ for all i. These two distances are natural
in the sense that they take a larger value when part types ¢ and j have few tools
in common. The first is an upper bound on the number of tool switches between ¢
and j. The next distance

dy (i, §) = max {0, [T, UTy| — c}

used by Crama et al. (1994) represents a lower bound on the number of tool switches
between ¢ and j. This is stronger than the lower bound |T; UTj| - ¢ presented by Tang
and Denardo (1988) since it is never negative. Note that if j immediately follows i,
the value |T;\T;| (and not |T;}\T}| as suggested by Crama et al. 1994) is a valid upper
bound on the number of switches from 7 to j, but it is not symmetric.

The previous three distances consider only the interaction between two parts
and do not take into account the ¢ — |T;| tools present in the magazine when going
from ¢ to j nor those required by parts following 5. We will present two new distance
metrics that improve upon ds and d; by giving different weights to their terms. The
first of these distances improves on dj by subtracting a quantity smaller than c if the
tools required by i or j are not likely to be required before ¢ or after 7, and a larger
quantity if they are more likely to be required before 7 or after j. For this, we compute
A(4, 7) as the number of parts, apart from ¢ and j, requiring tool k € T; U T}, and
At 5) = kquin’ Ak(4,5). The larger the A(7, 5), the more likely it is that the tools of
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|T; U T}| are required for other parts. Observe that A(7, j) < (n — 2)|T; U T;|. Hence
we define

da(i, j) = max {0’ VT - [9 0 -g)(TT{)u T,-I]c}’

where 6 is a parameter in [0,1]. Thus dy subtracts from |T; U T} a quantity in [0, c],
which is larger if the tools of |T; U Tj| are frequently utilized.

In the same spirit, we introduce a variation of dy by defining
. c+1 . (n—-2)|T;UTy|
ds(i,7) = {—-‘“]TiUT‘-—T-'lT- i-o5l
s(bd) ( o TVl = T ’l) {max{A(i,j),O.S}
The factor (c +1)/c can vary between 1 and 2. It gives a larger weight to |T; U T}| if

the size of the magazine is small, i.e., if more tool changes are probable. The second
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bracketed factor is similar to that used in dy. It is always at least equal to 1 and
becomes larger if the tools of |T; U Tj| are seldom utilized. The value 0.5 is used to

avoid dividing by 0 when A(4, j) = 0.

3 Algorithms

A natural decomposition strategy for the TLP is to first solve the associated TSP
using one of the distances defined in Section 2, and then determine an optimal tool
sequence using a KTNS policy. Crama et al. have applied this approach. They obtain
the best heuristic results using the Golden and Stewart (1985) Farthest Insertion (Fr)
heuristic with all possible starting parts, combined with d3. In heuristic FI, a tour is
gradually constructed as follows:

3.1 FI heuristic

Step 1. Consider a starting part ¢ and a part j furthest from ¢. Construct the

current tour (3, 7, 7).

Step 2. For each part & not on the tour, compute the shortest distance §(k) between
k and all parts on the tour. Select part k* maximizing §(k) and insert this part
between two consecutive parts on the tour in order to minimize the extra length of
the tour. Repeaﬁ this step until all parts are on the tour.

3.2 GENI heuristic

A better construction heuristic is GENI, proposed by Gendreau, Hertz and Laporte
(1992). This algorithm can be summarized as follows. Starting from three arbitrary
parts, GENI inserts at each step a part k¥ not yet on the current tour, between two
parts 7 and j already on the tour and among the p closest neighbors of k. GENI is
more than a standard insertion procedure as each insertion is executed simultaneously
with a local reoptimization of the tour. Its complexity is O(np* +n?), where n is the
number of parts.



A postoptimization phase, called US was developed, based on these generalized
insertions. In US, each part is in turn removed from the tour using the reverse GENI
operation, and the part is then reinserted in the tour using GENI. The procedure
ends when no further improvement can be obtained by removing and reinserting any
part. The complexity of GENIUS cannot be determined is terms of n and p as it can be
applied as long as the objective function improves. The GENIUS heuristic (Gendreau et
al. 1992) consists of executing US after GENI. On randomly generated TSP instances
and on problems described in the literature, GENIUS has produced highly competitive
results. Computation time and solution quality both increase with p. In practice
selecting p in the range [3,7] produce good results.

3.3 Heuristics based on the TLP objective

In both FI and GENI, it is necessary to select at each step a part to be inserted
in the current tour and its best position in the tour. The determination of the
best insertion can be based on one of the distance functions defined in Section 2.
We propose an improvement by which the TLP objective is used directly: for each
tentative insertion, compute the number of tool switches using a KTNS policy, and
perform the insertion yielding the smallest number of tool switches. This principle
can be applied to any construction or improvement heuristic. Note that the distance
criterion is still used to determine which part to insert in FI and to compute the
neighbourhoods in GENI. We point out that Crama et al. (1994) have applied a
similar idea within the framework of a Nearest Neighbour (NN) heuristic: parts are
sequentially added in the last position of the tour according to the TLP objective.
They have also developed a 2-opt improvement procedure based on the number of
tool switches.

4 Computational results

We now describe the results of extensive tests performed to assess the performance
of several algorithms, using the five distances described in Section 2 and data sets
possessing different characteristics.



4.1

Data sets

We have produced sixteen types of problem instances as in Crama et al. (1994). Each

instance type is characterized by the vector of parameters (n, m, min, max, c), where

n =
m =
min =
max =

number of parts;

number of tools;

lower bound on the number of tools required for any part;
upper bound on the number of tools required for any part;
tool magazine capacity.

The various instance types generated are described in Table 1. For each type, ten

instances were randomly generated as in Crama et al., resulting in a total of 160

instances.

Table 1: Instance types

n m min max c

" 10 10 2 4 4,5, 6,7
15 20 2 6 6, 8,10,12
30 40 5 15 15,17,20,25
40 60 7 20 20,22,25,30

4.2 Algorithms

We have first tested the following four basic heuristics.

FIl:

F12:

Successively apply FI using each part as a starting point. Select the shortest
tour and apply KTNS to it.

Successively apply FI using each part as a starting point and apply KTNS
to each of the n tours. Select the solution with the least number of tool
switches.



GENL: Apply the GENI heuristic followed by KTNS. In our implementation, we
use a neighborhood size p = 6 in GENL

GENIUS: Apply GENIUS (with p = 6), followed by KTNS.

In the next five heuristics, the TLP objective is used at each step to guide the
search as explained in Section 3.3.

FI*: Successively apply FI by considering each part as a starting point and using
the TLP objective to determine the best insertion. Select the best overall

solution.

GENI*:  Apply GENI (with p = 6) using the TLP objective to determine the best
insertion.

GENIUS*: Apply GENIUS (with p = 6) using the TLP objective to determine the best
insertion.

NN*: Apply the Nearest Neighbour heuristic (called “Greedy” in Crama et al.
1994) using the TLP objective to select the next part to be added to the
current partial solution.

2-opt*:  Apply the 2-opt interchange mechanism using the TLP objective.

4.3 Tests

We have run the nine algorithms just described, all programmed in Pascal, on each
of the 160 instances generated. For each of the first seven algorithms we successively
used the five distances described in Section 2. For NN* and 2-opt*, there is no distance
involved. Preliminary tests were performed to determine the best value of 6 in ds.
The value § = 0.25 seems to be the best and it was used in all subsequent tests.

Computational results are summarized in Table 2. For each algorithm/distance
combination, we report two average statistics over the 160 instances:

%: deviation, in percent, of the value of the TLP objective function (number
of tool setups, equal to ¢ plus the number of tool changes) over the best

known value;



Sec: computation time in seconds on an SG Indigo machine (100 MHz, IP20

Processor).

Table 2: Comparison of several algorithms and distances

Distance

dy da dy dy ds None

Algorithm | % Sec % Sec % Sec % Sec % Sec %  Sec

FI1 15.8 4.1]12.2 4.4 | 259 3.9 | 124 4.3 | 13.1 4.5 - -
FI2 8.5 5.0 6.5 5.2 | 17.0 4.5 5.9 5.1 5.7 5.4 - -
GEN1 10.9 0.5 | 11.6 0.6 | 25.6 0.3 | 12.3 051104 0.6 - -
GENIUS 10.3 2.8 | 10.7 2.71253 1.7 9.5 2.6 8.7 3.8 - -
F1* 7.7 437.1 3.9 455.9 4.5 460.6 3.1 462.0 3.8 454.4 - -
GENI* 3.7 187.4 4.3 195.1 6.9 189.4 6.9 187.0 4.4 190.5 - -
GENIUS* 1.0 1002.7 0.9 1206.1 2.8 12104 2.6 1168.0 1.3 1083.2 - -
NN* - - - - - - - - - - 54 2212
2-opt* - - - - - - - - - - 7.8 1244

These results indicate that there are clearly three classes of algorithms. The
first four methods, F11, FI2, GENI, and GENIUS, are fast, but not the best in terms of
solution quality. The three algorithms FI¥, GENI*, and GENIUS* are much slower, but
produce better solutions. The two algorithms NN* and 2-opt* are both dominated
by other strategies. Among the first four algorithms, FIl is dominated by GENI,
and GENIUS for all five distance functions. The fastest algorithm is GENI, and the
best in terms of solution value is F12. Of all distance functions, d3 is clearly the
least interesting and ds is usually better than d;, d» and dy4. It is interesting to
note that Crama et al. used the FIl/d3 combination in their tests. Within this
class of algorithms, FI2/d;, dy and ds, and GENI/d,, d;, d4 and ds are worthwhile
combinations. Some algorithms of the second group are dominated by F12/dy and d;.
Otherwise, if solution quality is of prime concern, GENIUS* with d; or d; is probably
the best choice.

In order to compare the behavior of the various problem types, we report in
Table 3 the % value corresponding to the best version of each algorithm/distance
combination for each problem type. It can be seen from this table that running time
is directly related to problem size (m and n) and is almost always independent from



the remaining parameters (except for 2-opt*¥ when n = 30). Problem difficulty is
directly affected by the value of c. Large values of this parameter tend to produce
solutions containing fewer tool switches and, in this case, it is likely that several

heuristics generate optimal or near-optimal solutions.

Table 3: Comparisons of several algorithms on various types of problem

pIl(d2) Fi2(ds) | Geni(ds) | cemus(ds) Pi*(dy) GENI®(dy )} | GENIUS®(d3) NN® 2-opt*

(n,m,min,max,c) | % Sec| % Sec| % Sec| % Sec| % See | % Sec | % Sec % Sece | % Sec

(10,10,2,4,4) 96 0348 04| 8.0 01| 7.2 0.7 {24 3.0]2.4 6.1]|0.8 340 0.8 1.2} 8.8 0.5
(10,10,2,4,5) 65 03)28 04| 83 0.1]| 65 0.6 3.7 32911.9 6.2 0.0 34.1] 1.8 1.5) 7.4 0.5
(10,10,2,4,6) 49 0.2|1.0 04| 49 0.1 3.0 06 |2.0 29|20 6.2 (0.0 33.1| 2.0 1.5| 4.0 0.4
(10,10,2,4,7) 00 03(00 04| 10 61| 00 06 |00 2.810.0 6.110.0 33.7| 0.0 LS| 0.0 0.4
(15,20,2,6,6) 18.4 0.7{74 10108 0.2] 9.7 14 |1.9 15.2|4.1 26111 1189 6.7 7.8 1L5 34
(15,20,2,6,8) 145 0.7]16.4 1.0] 95 0.2} 9.1 1.2 |4.1 15.2 (5.0 23.8{0.4 121.1| 45 7.8| 86 2.6
(15,20,2,6,10) 121 0.7{3.5 10| 86 0.2| 6.6 1.2 |40 15.3]2.% 25100 113.7] 2.5 8.2] 71 2.5
{15,20,2,6,12) 68 0.7]05 1.0 36 02| 26 12 |26 15.3|1.86 25300 1106 0.0 83| 0.5 24
(30,40,5,15,15) 14.1 4.8]8.0 6.2|11.6 0.8]| 9.5 4.7 |22 325.8|4.9 183.4{1.3 1004.4|10.0 1589 | 9.7 91.2
(30,40,5,15,17) 166 4.8]0.0 6.2(/150 0.8(13.3 4.7 |27 326554 208.5{1.0 1084.5|10.6 158.9[104 83.6
(30,40,5,15,20) 189 4.8(96 6.2}17.0 0.8]15.0 4.8 {5.3 326.2{6.9 192.9{2.4 11202 9.1 183.6|12.7 68.6
(30,40,5,15,25) 18.1 4.3|8.8 6.2{17.0 0.8|151 4.7 |50 324.7|56 191,213 950.0| 6.3 160.8 [10.4 49.1
(40,60,7,20,20) 12.5 109]6.1 14.1]|10.4 1.4) 7.7 85 |2.2 1450.2|2.8 $09.3}1.2 2947.9| 9.1 670.1| 8.3 461.8
(40,80,7,20.22) 14.0 10.9|7.4 14.4[12.0 1.4]| 9.8 8.4 |25 1579.1|4.1 520.1 1.7 2039.1) 7.9 690.7| 8.3 457.0
(40,60,7,20,25) 15.3 15.0|7.9 14.1[13.2 1.4]|11.4 8.5 [3.5 14854 (4.5 533.9|1.4 2002.5! 8.1 717.2| 8.1 459.6
(40,60,7,20,30) 17.4 10.9{85 140|158 1.4|13.6 8.4 |52 1493.1|6.0 534.9)10.8 2495.4| 7.4 763.0| 8.7 306.6
Average 12.2 4.41{57 544|104 0.6 87 3.8 [3.1 '462.0(3.7 187.4{0.9 1002.7| 5.4 221.2| 7.8 1244

5 Conclusion

We have proposed several new families of heuristics for a difficult tool loading prob-
lem arising in flexible manufacturing. With respect to previous algorithms, we have
introduced two new distance functions to guide the search, we have considered the
use of generalized insertion methods (GENI and GENIUS), and we have developed new
families of methods driven by the TLP objective. Tests performed on several sets
of generated instances indicate that some of the proposed strategies yield very fast
algorithms, or solution values that rank among the best available. In a given indus-
trial context, the choice of the most appropriate method should depend on whether
computation time or solution quality is the determinant factor.
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