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The results 1 am about to present come primarily from two research
projects in which I have participated. These results form the foundation
for my thesis research. Genetic algorithms are the brainchild of my thesis
committee chairman, Professor John H. Holland.

I would like to present a new, rather different approach to an old
problem. This problem is easy to state but difficult to solve. It is:
find the point at which a real-valued function takes its maximal value.

The function to be maximized is called the objective function and
its domain, D, is the search space. We will assume that the search space
is made up of n-tuples of real numbers. That is, the objective function
is a real-valued function of n real variables.

The usual approach to such a difficult problem is to make some sim-
plifying assumptions about the problem and hope that the solution obtained
will be easily extended to solve the original problem. In particular, if
the objective function is assumed to be differentiable or perhaps twice
differentiable, it is possible to use calculus-based methods to find the
op timum.

One such algorithm is the conjugate gradient method. (Actually,
there are many minor variations on the basic method so this is a class of
algorithms.) This method is essentially a modification of Newton's method.

The conjugate gradient method implicitly assumes that the objective
function is approximately quadrétic and works best, of course, on quad-
ratic objective functions. It also works well on other convex, unimodal
objective functions. 1In fact, it actually works reasonably well on most

differentiable, unimodal objective functions. But it fails miserably when



the objective function is not unimodal or not sufficiently smooth.

GConsider the following bi-modal objective function. (See figure 1.)
If the conjugate method is applied with a starting value larger than 7.5,
it will converge to the optimum. But if the starting point is less than
7.5, it will converge to the false peak.

There seems to be no easy way to "fix-up'" the conjugate gradient
method to handle multi-modal and non-differentiable objective functions.
So we need a different approach.

Instead of basing our search strategy on the geometry of quasi-
quadratic functions, let's make the simplifying assumption that the search
space contains regions of good objective function values and regions of
poor values. Let's represent the points in the search space as binary
strings and let's look for good bit patterns.

For the bi-modal objective function shown here, we may choose to
represent points in the interval from zero to sixteen by 12 bit binary
numbers with the binary point assumed to be between the 4th and 5th bits.
If we need more accuracy or a wider ra..> of values, we may use more bits
and/or a different code such as a "floating point' representation.

Maturally, we wish to concentrate our exploration efforts on the
good regicns of the search space. One class of simple algorithms which
does this is genetic algorithms.

A genetic algorithm maintains a ¢ lection (pupulation) of several
strings and explores the search space by generating successive populations
which are distributed differently in the search space. Hopefully, the dis-
tribution changes to as to cluster about the optimum as the lgorithm
proceeds.

The principal way of gonerating a “ew string is by crossover: two



strings are broken at a randomly chosen point, the final segments are
switched, and we have two new strings (figure 2).

The overall algorithm consists of choosing a random initial popula-
tion, and then generating successive populations using the following basic
cycle (see figure 3). FEach string is replicated in proportion to its func-
tion value to generate an intermediate population. Pairs of strings are
chosen at random from the intermediate population and combined using cross-
over to generate the new population. In addition, a small number of ran-
domly chosen bits in the new population are mutated (changed). This serves
as a source of variability and improves the search pattern of the algorithm.

To get some feeling for how a genetic algorithm explores the search
space, let's look at the following typical run (figure 4). The objective
function is the bi-modal objective function described earlier, and the
strings are 12 bit binary numbers with the binary point assumed to be be-
tween the 4th and 5th bits.

The initial population consists of random points spread throughout
the interval from O to 16. After one time through the basic cycle, the
points are beginning to cluster about the two peaks. After two more times
through the basic cycle, nearly all the points are near the true optimum.

Genetic algorithms can optimize a large class of objective functions.
My thesis research addresses the problem of describing that class of func-
tions. TFor the purposes of this talk. it is sufficient to say that genetic
algorithms work for a much larger class of functions than conjugate gradient
methods.

In comparing two optimizers, the traditional cost measure is the
number of times the objective function must be evaluated or sampled. Here

are some comparisons between genetic algorithms and conjugate gradient



methods (figures 5 and 6). The red curve represents the performance of

the conjugate gradient method; the green curve represents the performance

of the genetic algorithm--actually the average performance since the genetic
algorithm is stochastic and produces slightly different results for differ-
ent random number streams.

For unimodal objective functions, the conjugate gradient method very
rapidly converges to the optimum while the genetic algorithm takes much
longer. For a bi-modal objective, the conjugate gradient method converges
to the wrong peak for about one-half the starting points resulting in the
average performance shown by the solid red curve. The genetic algorithm
performs the same as on the unimodal functions. For a multi-modal objec—
tive function of many variables, the conjugate gradient method rarely finds
the true optimum. The genetic algorithm, on the other hand, rarely gets
trapped on a false peak.

If the objective function is contaminated by a small amount of random
noise, so that sampling the same point several times gives slightly differ-
ent function values, then the conjugat. iradient method behaves like random
search. Genetic algorithms are insensitive to small amounts of noise and
their performance is unchanged until the function values differ from the
optimal value by less than the noise level. Performance curves for discon-
tinuous objective functions are very similar to those for noisy objective
functions. Also, note that genetic algo ithms use less computational ef-
fort to generate each sample point. So comparisons based on CPU time would
be more favorable to genetic algorithms.

In conclusicn: If you know that the objective functi-n has special
properties which you can exploit, then use a special method like conjugate

gradient or whatever is appropriate. If vou .on't know of any special
pprop - any Sp



properties of the objective function, then you should use a method which

is more general like genetic algorithms.
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FIGURE 3

BASIC CYCLE
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FIGURE 4
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