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SUMMARY

The notion of alias-free sampling is generalized to apply to random
processes x(t) sampled at random times tn; sampling is said to be alias-free
relative to a family of spectra if any spectrum of the family can be recovered
by a linear operation on the correlation sequence {r(n)}, where

r(n) = E[x(tm n) x(tm)]. The actual sampling times tn need not be known to

+
effect recovery of the spectrum of x(t).

Alternative criteria for verifying alias-free sampling are developed.
It is then shown that any spectrum can be recovered if {tn} is a Poisson
peint process. A second example of alias-free sampling is provided for
spectra on a finite interval by periodic sampling in which samples are in-
dependently and randomly skipped (expunged), such that the average rate is
an arbitrarily small fraction of the Nyquist rate. A third example shows

that randomly jittered sampling at the Nyquist rate is alias-free.

Various open questions are discussed. These are related to the prac-

tical problem of estimating a spectrum from samples.



I. INTRODUCTION

When a wide-sense stationary random process x(t) is sampled at unit
intervals, the spectral density s of the sampling sequence {x(tn)} consists of
the sum of translated replicas of the spectral density S of x(t). This familiar

result
o0

s(w) = go) S(w-2m), -TSwsST , (1.1)
suggests that if S is unrestricted, s includes possible contributions from
translates of S having components that intrude on [-m, m]. The contributions
are called aliases; since the aliases are indistinguishable from one another
and from S{w), unequivocal determination of S from s is not possible at any
frequency w. Suppose, on the other hand, that S is known to be zero outside
[-w, w]. Then the spectral density of {X(tn)} becomes identical with S, so that
the spectral density of x(t) is unambiguoulsly and directly determined from

that of {x(tn)} . In such a case, sampling is said to be alias-free.!

Uniformly spaced samples, if taken at or above the Nyquist rate (wolm
samples per second for a signal bandwidth wp [11]) are not only alias-free,
but also permit error-free recovery of x(t) by a linear combination of the
samples. At any lower sampling rate, however, aliasing occurs and error-
free recovery of x(t) is precluded. Thus, the properties of uniform sampling

are simple and easily understood.

The relationships among alias-free sampling, error-free recovery
capability, and average sampling rate are considerably more complex for
randomly timed sampling, i.e., sampling at times tn such that {tn} is a dis-
crete parameter random process. For instance, Poisson sampling (independ-
ent sampling intervals with identical exponential probability densities) is in-
herently alias-free for non-bandlimited spectra, even at arbitrarily low
sampling rates [14], At the same time, Poisson sampling at less than the

Nyquist rate does not permit error-free recovery [1]. Nevertheless, certain

T'More precisely, the sampling is alias-free iff the translates by 2mn (n any
integer) of the support of the spectrum.of x(t) are all disjoint. See [10].



sampling patterns with average sampling rates below the Nyquist rate are
consistent with error-free recovery of x(t) [1]; here {X(tn)} need not even be
wide-sense stationary, so that nothing meaningful can be said concerning
possible implications on aliasing. The tenuous connection between error-free
recovery and aliasing is further clouded by requirements on our knowledge of
the random tn' For error-free recovery of x(t) from {x(tn)} we must always
know the precise sampling instants tn’ while much less is needed for the de-
termination of the spectrum of x(t). If the sampling is alias-free,? the spec-

trum of x(t) is uniquely specified as a linear combination of the r{n), where

r(n) = E[x(t yx(t )] (1.2)

Here E denotes the expectation with respect to both x(t) and {tn}, and the
overline indicates a complex conjugate. It should be observed that r is de-
duced from sample values without regard to the (random) times at which the
sampling was accomplished; the actual sample times need not be known. In-
deed, empirical measurement of the spectrum of x(t) can be based entirely

on the sequence of sample values alone,

In the next section, we shall define alias-free sampling for random
sequences {tn} of a certain type, relative to appropriately chosen families o
~of spectral distribution functions. As in the case of uniformly spaced samp-
ling, aliasing occurs if x(t) with different spectra (belonging to ) yield the
same correlation sequence {r(n)}, Starting from this definition, we develop
several criteria, each Qf which determines whether {tn} is alias-free rela-

tive to JZ

Three examples are studied in detail. The known result that Poisson
sampling is alias-free [14] is generalized to apply to arbitrary spectra (over
the entire real line) rather than the more limited class of spectral densities

belonging to L,. In the next example, we modify uniform sampling by random

2 At this point we do not concern ourselves with the exact meaning of "alias-
free' in this more general context, or with the possible dependence of the
right side of (1.2) on m.



independent deletion of samples, as may occur with burst jamming or spo-
radic equipment malfunction. This modification turns out to have the same
alias-free property as the uniform sampling from which it was derived. In-
deed, the sampling remains alias-free even though the error-free recovery
capability is lost when the average sampling rate is only a (small) fraction of
the Nyquist rate. The final example treats jittered sampling, in which initially
uniformly spaced samples are randomly perturbed. It is concluded that jitter

- fails to impair the alias-free character of uniform sampling at the Nyquist

rate.
II. CRITERIA FOR ALIAS-FREE SAMPLING

For uniformly spaced sampling, overlapping of spectral densities and
ambiguity in the spectral density S of x(t) as determined from the r(n) of (1.2)
coincide. More complex sampling patterns lead to sampling spectra that are
not mere replications of S, so that overlapping of replicas is no longer a
suitable criterion for determining whether S can be obtained.from the r(n).
Moreover, the spectrum of {x(tn)} is not easily obtained in terms of S,* which

suggests that the analysis should proceed in other terms.

Since the central question in applications is the recoverability of the
spectrum of x(t) from r(n), it makes sense to define alias-free sampling by
this capability, rather than by any spectral property of {x(tn)}. The definition
should, of course, be consisteﬁt with the ordinary notion of alias-free samp-
ling when the samples are uniformly spaced. In the latter case, as well as in
some involving random {tn}, the spectrum of x(t) can be recovered only when
it is known to belong to some subclass 'of spectra (e.g., spectra whose sup-
port is contained in [-m, w]). It is therefore necessary to specify the family
of spectra »£ with respect to which the alias-free property holds.

Before we give a precise definition to alias-free sampling in a general

> The second-order properties of {x(tn)}, a discrete parameter random pro-
cess, are quite different from those of Zx(t)6(t-t,), which is a modulation of
the signal by a delta function train whose impulses occur at random times
tn. The latter, which is often used as a sampling model, leads to spectra
calculated in [4] and [9].



context, we must introduce certain assumptions and notations. We take x(t)
to be a wide-sense stationary real stochastic process possessed of the spec-
tral distribution function G. The process x(t) is sampled at times tn, where
{tn} constitutes a stationary point process* (cf. [2] or [3]) independent of

x(t). It is supposed that the probability distributions of ( - tm) do not

tm+n
depend on m; this hypothesis is met by a wide variety of stationary point
processes, including those appearing in the examples of the next section. The

correlation function of the discrete parameter process {x(tn)} is denoted by

r(n) = Elx(t_ )% ], (2.1)

in which the expectation is taken over both x(t) and {tn} . Under the above
hypotheses, {x(tn)} is again wide-sense stationary, so that r depends only on
n.

Two random processes with respective spectra G; and G, are said to
have different spectra if there exists a continuous function f such that

0
g,f(w) dH(w) # 0 (2.2)
-00
where H = G; - G,. Thus, spectra are regarded as identical iff they differ
by at most a constant at all their points of continuity. We then have equival-
ence classes of spectra among whose class members we do not distinguish.
This identification is a natural one, since spectra identical in the above sense

correspond to the same correlation function and hence the same {r(n)}.

We can now formulate

Definition 2.1: The sampling sequence {tn} is alias-free relative to »f (a

family of spectra) if no two random processes with different spectra belong-

ing to & yield the same correlation sequence {r(n)lL .

- Whether a given {tn} is alias-free relative to J is seen to depend on

*Stationary point processes are characterized as follows: the multivariate
distribution of numbers of points in any finite set of intervals is invariant
under translation. This definition does not require that the intervals be-
tween points be either independent or identically distributed.



the relation between G and {r(n)}. The desired expression is obtained from
(2.1), in which we may take the expectation successively with respect to x(t)
and {tn} because of the independence of the two processes. The expectation
on x(t) is most conveniently written in terms of its spectral representation,

viz.

0
) x = 2—1~§ exp it e ~tm)]}dG(w) (2.3)
=00

If the expectation on {tn} is now applied to (2. 3), integration with respect to
dG and the probability measure on {tn} can be interchanged because G is a

finite measure and exp[iw(t - tm)] is bounded. There results

m+n

00

r(n) = 51; S\fz(im) dG{w) (2.4)

=00
for the relationship between G and {r’(n)} . The f;"; appearing in (2. 4) are well
known in the theory of stationary point processes ([3], Section VII), and have
been calculated for a number of the more interesting and important random

point processes. By definition

0
% . - _: _ - -iwu
£ (1) E{exp[ folt tm)]} ye dF _(u) (2.5)
=00
in which Frl is the probability distribution function for n successive sampling
intervals (cf. [3], Sections VI and VII). Note that the difference in sign of the
exponential in (2.3) and (2.5) is irrelevant because of the character of G for a

real stochastic process.

For each possible set of {tn} statistics, the mapping G - {r(n)} is a
linear bounded transformation. ‘An inverse exists in the sense that G can be
inferred from {r(n)} iff this transformation is one-one. Thus, Definition 2.1
identifies the spectral recovery capability with the alias-free property.

There is complete consistency with uniformly spaced sampling (unit period),



since tn - tn =1 implies f:(iw) = e‘l"’n, so that the closure of trigonometric

+1
polynomials implies the uniqueness of the (Fourier coefficients) r(n) if the

support of G is' contained in (-m, 7).

The alias-free property of Definition 2.1 can be rephrased slightly as
follows. Let 7\% be the family of measures induced by functions H of the
form H = G; - G,, where G, and G, are any spectra belonging to 4. In

particular, the null measure is in '@ , and we have

Theorem 2.1: The sampling sequence {tn} is alias-free relative to »J iff

with H € g,

0
g f;’;(iw) dH(w) = 0 for all n implies H = 0, % (2.6)
-00
The alias-free criterion of Theorem 2.1 above is of particular interest
because 7;@( is a Banach space in most applications. As one possibility, @
may consist of all spectra supported on an interval I (which might be the en-
tire real axis); then ‘%/ becomes the Banach space of functions of bounded
variation constant on the complement of I. Now C(I), the space of continu-
ous functions defined on I and equipped with the usual sup norm, is the dual
of this @ Further, frl € C(I) for each n. Hence, (2.6) is satisfied in this
case iff {fn} is closed in C(I) (cf. [5], Chapter XI).

Alternatively, » could be the class of absolutely continuous specira
supported on I, with derivatives S € Lp(I), 1 =p <. Then (2.6) is satisfied
if each f;’;e Lq(I), where q = EF_)— ; this follows because Lq(f[) is the Banach

space dual of Lp(I), More generally, we have

Corollary 2.1: Let 47, be a Banach space with dual 73¥ , and assume that

each fn € @ . Then {tn} is alias-free relative to & iff {fn} is closed in

. Since closure and completeness are equivalent in a Banach space (cf.

[5], Chapter XI), we may rephrase Corollary 2.1 to read:

¥A more restrictive version of (2.6) was obtained under less general condi-
tions by Shapiro and Silverman [4].



Corollary 2.2: Under the hypotheses of Corollary 2.1, {tn} is alias-free

with respect to oA iff every g € @ can be approximated as closely as desired

(in @ norm) by finite linear combinations of the fn )

We use Corollary 2.2 to show again that alias-free sampling allows re-
covery of G by linear combinations of the r(n). We take only the case where
o is the class of all spectra, so that alias-free sampling requires that any

continuous function can be uniformly approximated by linear combinations of

£ . Now let
1 w < Wo
glw) = (2.7)
0 w ; Wo
N
Then there is a bounded sequence E kak that converges to g everywhere
except at wg. If wg is a continuity pomt of G, there follows
N o0
lim {E c r(n)} = lim Ec 1w ) dG(w Sg(oo dG(w) = Glwg) .
N—oo 1 nN N—oo ¢,

(2.8)

Similar arguments are applicable to other Banach spaces, and in particular

to the Lp(I) mentioned earlier.

The final result of this section is yet another criterion for alias-free
sampling. We assume this time that tn+m - tm has a probability density fnu
A substitution of (2.5) in (2.6), followed by an application of Fubini's theorem,

yields

Corollary 2.3: Let D be the difference of two correlation functions corre-

sponding to spectra belonging to . Then {tn} is alias-free relative to & iff

0
S‘fn(u) D(u)du = 0 for all n implies D = 0. (2.9)
o .
Use will be made of (2.9) in proving that Poisson sampling is alias-free for

all spectra,



III. EXAMPLES OF ALIAS-FREE SAMPLING

Spectra possibly occupying the entire real axis cannot be constructed
from {r(n)} when {tn} represents uniformly spaced samples, even at arbi-
trarily high sampling rates. Nevertheless, alias-free sampling is possible
when the average sampling rate is as small as desired, assuming that the
structure of {tn} is '"sufficiently random, " i.e., if {tn} is a Poisson point
process. For random processes with spectral densities belonging to L,, this
result was discovered by Shapiro and Silverman [14], For our first example,
we give another proof of this alias-free property; our verification shows that

the sampling is actually alias-free for all spectra.

In a Poisson sampling sequence {tn}, the numbers of points in disjoint
intervals are mutually independent. The probability that there are n samples

in any interval of length x is

p(n, x) = (ﬁX)ne_ﬁx/n! (3. 1)
from which

1 (%) - 8 e P n - 1) (3. 2)

as is shown in Section 4. 1 of [2]. In (3. 1) and (3. 2) above the parameter B
represents the average number of samples per unit time. It will be shown
that Poisson sampling is alias-free relative to the class of all spectra for any
B > 0.

Corollary 2.3 will be applied to show that Poisson sampling is alias-
free relative to the family of all spectra. Each D (in the notation of the corol-
lary) is an even uniformly continuous bounded function for this family. We

then define
1

V(t) = D(tye 2Ptu(y) (3.3)
where U is the unit step function. Now V € L, (0, cq), as is
. n-1 -—lﬁt
gn(t) = B(pt) e 2NUM)/(n-1! . (3. 4)

Furthermore, the g, are Laguerre polynomials (modulo irrelevant multipli-

cative constants), and



£ (DY) = g (1) V(Y (3. 5)
for eachn =0,1,2,... Thus the sampling sequence is alias-free if
o0
ggn(t) V(t)dt =0 forn =0,1,2,.. implies D = 0; (3. 6)
0

this follows from (2.9). To demonstrate (3. 6), we use the fact that the La-
guerre polynomials are closed in L;(0, ). This means that V(t) = 0 almost
everywhere in [0, ©) whenever the integral in (3. 6) is zero for every n. But
if V(t) is zero almost everywhere in [0, ), so is D(t). Finally, the sym-

metry and continuity of D require that D is identically zero.

In the remaining two examples, we examine variants of uniform samp-
ling. For convenience and without loss of generality we assume unity spac-
ing of samples prior to modification of the sampling train. As has been noted
earlier, such uniformly spaced samples permit alias-free sampling relative
to spectral densities belonging to Lp(—w, m), p> 1. If the larger class of all
(possibly non-absolutely continuous) spectra on an interval is to be considered,
we must take the (slightly) smaller interval [-m, m-a], > 0, in order to
maintain the alias-free property. It would be expected that timing errors or
missing samples would restrict such an interval further, or possibly preclude
alias-free sampling entirely, but this is not the case. In fact, the alias-free
property remains exactly as it was for uniform sampling, even though the

timing anomalies are known only in a statistical sense.

We study first uniform sampling that has been subjected to random
skipping or deletion of samples. It is supposed that each sample has proba-
bility q of being lost, and that these skips occur independently. The average
rate of sampling is then reduced to 1 - q per period, which is below the
Nyquist rate, Nevertheless, the alias-free property is the same as that of

uniform (unit period) sampling for any q < 1.

It has been shown elsewhere (see [3], equation 7.16) that
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-iw

f;‘;(m) = [(1-q)e’i"°/(1-qe e

n=0,12,.. (3.7)
for the sampling sequence in question. To prove that skip sampling is alias-
free relative to all spectra supported on [-m, 7 - o] we utilize Corollary 2.2,
That is, we show that any continuous function on [-m, 7 - «] can be uniformly
approximated by linear combinations of the {f } But, since it is already
known that {e } k=0, +1, £2,... is closed in C(-m, 7 - a) (ef. [15],

p. 414), we need only demonstrate that {f } can approximate uniformly any
one of the e thh on this interval. For this purpose, replace the family {fn} by

an equivalent family {hn}a

h(z) =(z-q9 , n=012.. (3.8)

each h coincides up to a constant with the corresponding f on the curve E

descrlbed by z = el)\, -TSAST - a.

The approximation problem has now been reduced to the following: On
E, approximate uniformly to zk (any integer k) by linear combinations hn'
To show that these rational functions hn can indeed effect the desired approxi-
mation, we take D to be a domain (in the complex plane) containing E but ex-
cluding both the origin and q, and such that the complement of the closure of
D is connected. Now each zk is regular in D, and can be uniformly approxi-
mated on E by rational functions having their only pole at q, i.e., by the hn‘
The asserted approximation by these rationals is an immediate consequence
of Runge's theorem ([13], p. 174-177). This completes the verification for the

second example.

The final example concerns jittered sampling, in which each sampling
time is randomly perturbed from a uniformly spaced position. These ran-
dom perturbations modify the sampling sequence so that none of the tn is pre-
cisely known. In spite of these random sampling errors, however, the
sampling sequence remains alias free respective to all spectra supported on
[-m, 7™ - a], @ >0. In other words, the introduction of jitter entails no deteri-

oration of alias-free characteristics as-compared with the original uniform
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sampling. Further, successful recovery of the spectrum of x(t) requires
knowledge only of the jitter statistics, and not of the jitter component on any

of the t .
n

We assume that jitter translates the n'th sampling point by an amount
u and that the u are pairwise independent and identically distributed. Then

{tn} is a stationary point process with

- = + - °
tn+m tm n (un+m um) : (3.9)
this implies f; = 1 and
2 -i
Pliw) = |y(io)] e W a4l 42,... (3.10)

in which y denotes the characteristic function of any w (compare [3], equa-
tion 7.18). In order that the sampling indices not be permuted from the uni-
formly spaced (unperturbed) samples, u, can be distributed only over some
unit interval. But also, any stationary point process can be translated as
desired without changing its interval statistics. We may therefore suppose
that -4 < u < 1 with probability one. The latter hypothesis assures the
y(iw) is bounded away from zerc on [-m, v]. Since y is continuous, we need
only show that y(iw) # 0 for lml = w. For this purpose, we observe that the
real part of y is

+4 -

Re [y(iw)] = g 1cos (wx) dF(x) (3.11)

2

where F is the probability distribution function for u But cos (wx) =2 0 for
lw| =7 and |x| £ 1, with equality at |o| =m, x = -4. Then Re[y(iw)]> 0
1

for w € [-m, ] unless F has (only) a unit jump at x = -+, In the latter case,

however, Iy(iw)l =1 for all w. Hence the result is as claimed.

Corollary 2.2 will be used to demonstrate that the jitter process {tn} is
alias-free relative to all spectra with support in [-m,® - «]. If h€ C(-m, w),

there must exist coefficients a,n such that h is uniformly approached on
N T

[-m, m - «] by the partial surns § a Now the approximation error is

nN fn -
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bounded at w by

N . 2
Yl -1 2 ™ - o) gl Il | (3.12

N_#o

We choose (for all N)

i
[ h(w)|ylio) | do
2y T S , (3.13)
f Iy(iw)l-zdw
=T

and let & N be the coefficient of e % of the N'th partial Cesaro mean for the
. -iwk i ‘ -
Fourier expansion Z)bke e of the function [h({w) - aoN] Iy(lw)l z' But since

be = 0 (because of our choice of a ) the sum appearing in (3.12) is actually

oN

-2
the Cesaro mean for the (continuous) function [h(w) - aoN] iy( iw)l . The con-
vergence property of Cesaro means ([7], p. 18) then insures that the expres-

sion (3.12) approaches zero uniformly cn[-w, -o] ag N approaches infinity.

It can also be shown that if h € Lq(—w, m), q > 1, the convergence of
(3.12) to zero holds in Lq(—-n", m). Thus, if S is the class of spectra which
are absolutely continuous with derivatives belonging to Lp( -m,m), p> 1, then
the jittered sampling is alias-free relative to )j Likewise, the skip samp-

ling of the last example is alias-free relative to the same class.
IV. CONCLUDING REMARKS

Although it has been possible to deduce some results related to the re-
covery of the spectrum of a random process from samples taken at random
times, much remains unknown. In particular, there are explicit properties
applicable to uniformly spaced samples for which there is no random samp-
ling counterpart. Suppose, for instance, that an x(t) with spectrum supported
on [-m 7 -] is sampled at the Nyquist rate. The spectrum can then be re-
covered from {r(n)} through the Cesaro means derived from the (formal)
Fourier series Z‘,r’(n)e_iwn (cf. [7], pp. 17-20). The analogous formula for
the (more general) case of random sampling is given by (2.8), but practical

means of determining the C N are lacking. Hence, a constructive method
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for obtaining the spectrum remains to be found.

Of interest from a more theoretical viewpoint is the characterization of
{r(n)} in terms of {fr:} and xg Conversely, given a class of {r(n)} and an
{fn}, what is the corresponding family )!? For spectra supported on
[-m, 7] and sampling at the Nyquist rate, it is known that there is a Fourier
transform relation between all non-negative definite sequences {I“(n)} and
these spectra (cf. [12], pp. 116-118). More general sampling sequences lead
only to the (obvious) result that {1r°(n)‘jL must be non-negative definite. Again,
Nyquist rate sampling yields inferences on yg from the behavior in L. (-w, m),
1Sp<w(see[ 7], p. 23), of the Cesaro means of Zr(n)e“iwn, wherias such

conditions need not be significant with random sampling.

Since {r(n)} must be obtained from the samples themselves, each term
is subject to random error in any practical scheme utilizing only a finite
number of samples. Not even an estimate of r(n) will be available for those
indices which exceed the number of samples used. The accuracy with which
the spectrum can be obtained is therefore affected by the influence variaticn
in {r(n)} has on our estimate of the spectrum. This sensitivity to errors in
{r(n)} is again unknown, but we may conjecture that when the sampling is at
less than the Nyquist rate the calculated spectrum varies discontinuously with
changes in the r(n) 5 Although we have no analytical basis for this conjecture,
a recent result of Landau [8] is suggestive; he asserts an analogous property

pertaining to error-free recovery of x(t) from samples taken at less than the

Nyquist rate (cf. [1]).

®In other words, the linear transformation taking {r(n)} into the spectrum
is an unbounded transformation.
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