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ABSTRACT

In this paper a probability model is introduced for sampling
data frequently encountered where some observations have not been clas-
sified into existing population categories and, therefore, are only
partially informative. By using this sampling model, which involves a
certain conditional probability appearing as an allocation parameter, the
problem of estimating various underlying population parameters is dis-
cussed in terms of identifiability, consistency, and unbiased estimation.
Several estimators related to constrained maximum likelihood estimation
and minimum average (weighted) bias estimation are defived and their

properties discussed.



1. Introduction

This paper is concerned with statistical inference in sampling
situations where a response actually belongs in one of a number of mutually
exclusive population categories, but, ﬁhen‘the sampling is performed,
other categories not included in the original set appear. Consider, for
example, the following typical marketing problem. We want to estimate,
by means of é two-brand preference study, the proportions of potential
product users who prefer Brand A, Brand B, or who have no preference. A
random sample of size n is chosen from the population and each sampled
indiﬁidual, after using the products, is asked to state whether he.prefers
A, B, or has no preference. The philosophical question raised by Odesky
[5] of permitting a "no preference" category as an easy way out for the
respondent is of no concern here. What is of concern is that new cate-
gories arise upon sampling. For example, some people are not at home
at the time of the interview or refuse to answer. The former often re-
sults in costly and frequently wasteful call-back procedures, while the
latter often occurs when income classifications are needed. A survey

of the brand preferences of 200 individuals might yield the following

data:
Number of
People
Brand A 79
Brand B 66
No preference 7
Not at home 28
Refusal 20
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The problem of analyzing such data for the purpose of statistical
inference~—particularly for estimation of the population proportions for
Brand A, Brand B, and "no preference'--is apparent.

A probability model describing,in general,brand preference
market surveys which involve I population categories and J new sampling
categories can be developed. Consider a random sample of size n drawn

from a multinomial population with I categories Kl’KZ”"’KI and cor-
I
responding probabilities P1sPysessPps with z pi=1. In the sample m,
i=1

observations fall in Ki’ i=1,2,...,1, and,for various reasons, J new
categories Ki,Ké,...,Kg arise with-mg observations in K?. These new
categories are called partially informative categories since an observa-

tion in K? actually belongs in one of the Ki’ but has not been classified
in its proper category. Denote by Aij the probability that a response,

observed in K?, actually belongs in K in other words, A,. = P(KiIK§).

ij
Furthermore, let p? be the probability that an obsérvation falls in Kg,
or p? = P(Kg).

In the brand preference example, there are I=3 population cate-
gories (Brand A, Brand B, and no preference). Upon sampling, J=2 new
sampling categories arise ("not-at-home" and "refusal-to-answer'"). Sche;
matically this situation may be represented by the diagram on page 3.
Thus the cell ﬁrbbabilities for the I+J=5 categories which actually occur
in the market survey explicitly display the allocation parameters Aij

related to the two partially informative sampling categories.

In general, if we let p = (pl’pZ""’PI)’ p* = (pf,pg,...,pﬁ),

A= (All’AIZ""’AIJ) and 6 = (p,p*,\), then the sampling model is given



Sampling
Population Categories (I=3) Categories (J=2)
: Not Refusal
Brand A Brand B No Preference at to
Home Answer
Py Py P3 Q11029102300 | Ay902990737)
) ) )
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Tm! Tmét 0 37 1=
i=1 * =14
where m = (ml,mz,...,ml) and m* = (mi,m?,..,,m?) are the data vectors of

classified and partially classified observations. Moreover, the para-

meters in (1.1) are subject to the following restrictions:

I J
A, A, .p¥<p.<1l, O<p*,A, .<1. (1.2)
121 J Z PJ Py P ij

J'l
The model is simply a multinomial distribution for the observed
sampling categories with the usual restriction that the sum of the cate-
In other words, if K is the
J

K%, then p, - z A..p%* is the
1 1 j=1 177

gory probabilities for the I+J cells be one.

event "partiélly informative," or K =
3

o &

probability of the event ”Ki and not K."
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This formulation of the general model is distinct from other
approaches which have been proposed for analyzing other kinds of data.

In particular it differs from multinomial sampling with misclassifica-
tion, as in Bryson [2] for example. It also differs from the assumption
of Draper, Hunter, and Tierney [3] that population categories themselves
include the new partially informative sample categories. This last
approach does not explicitly introduce allocation parameters for the non-
population catégories which occur through the sampling process. Finally,
it differs from a model of Blumenthal [1] for 'nested" kinds of sampling
data where the observed measurements are known to fall into certain pri-
mary categories but cannot be further subclassified into secondary
éategories.

The model formulation in the present paper, for example, enables
the marketing anaiyst to explicitly recognize that different patterns of
preference behavior might be associated with the different partially in-
formative categories, and that these distinctions can and should be
maintained whenever one desires to allocate these partially informative

responses back to the original cells. 'The distinct feature of the model

discussed in this paper is the explicit use of the conditional proba-

bility parameters, Aij’ which serve as basic allocation parameters from

partially informative categories back into the original population

categories.,

2. Binomial Model with Ome Partially Informative Category

In this paper we are concerned primarily with the estimation

of Py in the case when (1.1) corresponds to a binomial model with two
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informative categories, Kl and Kz, and a single partially informative

category, K§=K. For example, a brand preference study might involve

only two brands, lack a "no preference" category, and restrict sampling
to consumers who have a brand preference among the two products. In the

course of sampling, however, a single partially informative category

occurs such as "refusal to specify a preference,"'"can't be reached for

interview," or some other kind of nonresponse,
Consider (1.1) when there are two informative categories with
one partially informative category occurring in the sample, that is,

=1-A, and p*=po, m*=m0. Then the sampling model

when I=2, J=1, A i 3

1171 Aoy

for a binomial population in which one partially informative sampling

category occurs is simply

m m m

nl o C i) L ymmidp) B (2D)

fm,,m ; 0) = ———7 P
1’0 m im;im, ! To
where the parameter 6 = (pl,po,A) is restricted to the admissable para-
meter space given by
0= {(pysps2) [0<p_sp <1, Ap <Py <hp +(1-p )} (2.2)

3. Estimation of Constrained Maximum Likelihood under Identifiability
Conditions '

The sampling model (2.1) is unidentifiable with respect to
6 = (pl,po,k) since different values of 6 may correspond to the same
sampling density. In fact, of the three parameters, only P, is identifi-
able. One ccnéequence of this is that there is no consistent estimator
of py or of X. Furthermore, the maximum likelihood equations

5f/6pl =0, 6f/6po = 0, and 6£/6\ = 0 are not linearly independent, and
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there are infinitelymany solutions,‘é = (51, ﬁo,i).

In this section we assume certain a priori knowledge about the
parameters of (2.1) which leads to the model's identifiability, and the
constrained maximum likélihood estimators for p, are found. The four
followiné cases are considered:

1. When P, and A are known

2. When ) alone is known

3. When XA is unknown and X = Py

4., When A/ (1-1) = 6(pl/p2) with 6>0 known

When P, and A are known, the single maximum likelihood equation
for Py has a uniQue solution given by

131 = Ap, + (m /(my+m,)) (1-p ), (3.1)
provided not all observations are unclassified, namely, provided mo#n.
Noting that

P(K)) = P(KllK)P(K) + P(Kllk')P(fi), (3.2)
where K is the complement of K, or the union of the informative categories,
the maximum likelihood estimator of Py simply estimatés P(Klii) by
ml/(ml+m2). In this case p; is the uniformly minimum variance unbiased
estimator of Py-

In the case when A\ is known the maximum likelihood equations
yield the solutions

ﬁo = mo/n and ﬁl = (ml+xmo)/n. (3.3)
For these estimators, E(BO) =P, and E(;l) = Py In addition, ﬁo and ;1
are complete and sufficient statistics for Py and Py» and, consequently,

they are the uniformly minimum variance unbiased estimators of P, and P;-
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This estimator of Py weights the ébserved proportion of partially informa-
tive observations by A and allocates this fraction to the observed propor-
tion of classified observations in Kl.

The condition A = p; means that whether an observation belongs
to one population category or the other is independent of whether or not
it is a partially classified observation. In this case the maximum likeli-
hood estimators of P, and p, are

ﬁo = mO/n and 51 = m1/(m1+m2). (3.4)
Again, these estimators are the uniformly minimum variance unbiased
estimators of pé and Py

In the fourth case above, the ratio of the conditional category
probabilities is assumed to be proportional to the ratio of the uncondi-
tional category probabilities, and it is assumed that the proportionality
constant ¢ is known. The previous assumption, A = Py is equivalent to
§ = 1. In general, when § # 1, the maximum likelihood equations are
quadratics in 12 and the solutions to these equations lead to the

estimators

. o a-D6Ptom, (14e) 1
P, = mo/n and Py = 5a(1=8) R (3.5)

where A=m1+6m2+(l—6)n. For § between 0 and 1, the numerical values of
this estimator of p, are bounded by ml/n, the maximum likelihood estimator
of Py in a model with no partially informative categories, and ml/(ml+m2),

the maximum likelihood estimator of Py when A = Py

4, Unbiased Estimation of Py without Identifiability Conditions

As previously discussed in Section 2, no consistent estimator

for Py exists in (2.1) without a priori identifiability conditioms.
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Besides consistency the question of unbiased estimation of Pq also arises.
Clearly, an unbiased estimator of py or of any polynomial of finite de-
gree in Py does not exist. This follows since the expected value of any
function of the data contains multinomial terms of nonier6 degree in A
and P, with nonzero coefficients. Nor can‘the ratios pl/p2 or p2/pl be
estimated without bias. Actually, there does not exist any unbiased
estimator for any function h(pl, po,k) of the three parameters p;, P,
and A which is partially differentiable in Py and for which dh/épl #0
when evaluated at A = 1 and P, = 1.

Alternately, since unbiased estimators for Py do not exist, omne
might consider families of estimators having given parametric forms for
their bias and seek an estimator whose variance achieves the Cramer-Rao
lower bound. Since the model (2.1) is unidentifiable, however, it can
be shown that the information matrix which appears in the expression
for the Cramer-Rao lower bound is singular, and that consequently mno

unique lower bound of the Cramer-Rao type exists.

5. Mean Square Error Comparisons of Two Estimators

In this section we consider the general problem of estimating
Py when no a priori knowledge of any form about the parameters is avail-
able. We proceed in this case by developing certain canonical estimators
for Py and comparing these estimators in terms of their mean square
errors, with particular attention on the bias componeﬁt of the mean
square error. In particular, we compare a so-called "natural" estimator
and an estimator selected as a canonical representative with respect to
a statistical optimality criterion from a family of potential estimators

Of pl-
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In many brand preference studies leading to (2.1) for the prob-
ability density of the data, a common procedure for estimating Py is to
ignore the m observations falling in K and to estimate Py by the "natural"
estiﬁator,

51 = m1/(m1+m2), when m _<n. (5.1)
For example, suppose that 20 respondents in a brand preference study
expressed preference for Brand A, 48 for Brand B, and 32 did not express
their preference. For these data, the estimated proportion of buyers in
the population preferring Brand A to Brand B would be 51 = 0.294 using
(5.1).

The estimator (5.1) is used widely since it would be the uni-
formly minimum variance unbiased estimator if the m observations belong-
ing to category K were ignored and the original fixed sample size n con-
sidered to be the reduced sample size n—mo=ml+m2.

'If the estimator (5.1) is expressed in the form,

p; = (1/n) (my+(m)/ (mym)))m ) . (5.2)
one finds this same estimator is also obtained when the m partially in-
formative observations in category K are allocated to-the categories Kl
and K2 in proportion to the sample proportions ml/ml+m2 and mz/ml+m2 ob-
served in these categories.

It is of interest to recall thét the estimator (5.1) or,
equivalently, (5.2), would be the constrained maximum likelihood estimator
of Py if it weré assumed that Py = A. In other wor&s, when the condi-
tional probability that an observation belongs in K1 given that it is

observed in K is the same as the unconditional probability that it
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belongs in Kl,‘constrained maximum likelihood estimation would yield
the estimator (5.1). This, of course, may be an unreasonable assumption
in many applications. Indeed, the marketing analyst who uses (5.1) is
assuming implicitly that whether a respondent prefers Brand A to Brand B
or Brand B to Brand A is independent of whether or not the respondent is.
willing to reveal his preference. Of coufse, under this assumption,
allocation of responses in the undecided catégory according to the propor-
tion of the respondents expressing a preference is clearly a reasonable
estimation procedure.
The expected value of 51 in (5.1) is

E(py) = (B;-kp )/ (1-p ) (5.3)
while its squared bias, denoted by B(ﬁl), is given by |

B, = [, (i=p))/ (1-p )17, (5.4)
The variance of ﬁl can be expressed as

. P, AP p,-Ap -
Var (p,) = (—i—_—p—ﬂ) a- i_p %) E((mpm) " m 4 20) . (5.5)
(o} (o}

Since the conditional expectation in (5.5) can only be represented as a
finite sum and can't be expressed explicitly in a closed form involving
pl,po,and A, we use an approximation for inverse binomial moments sug-
gested by Mendenhall and Lehman [4] to approximate Var (;1) by

A -A

po) (1- pl po
P, 1-p

1
1-po)—l

R A P1”
Var(Pl) - ( n ) ((n“'l) ( ) ( l"’ o )’ (5’6)
We observe for large n that Var(gl) approaches zero, but that B(Bl) does
not. Hence for large n it becomes more important to consider the bias

contribution to the mean square error of the "natural" estimator (5.1).
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Recalling, when A is known, that the minimum variance unbiased
estimator of Py is simply ﬁl = (m1 fxmo)/n suggests investigating es-
timators of the form,

ﬁl(a) = (m; +am )/n, | . ' (5.7)
where a is chosen to satisfy a statistical criterion for optimality re-
lated to the variance and_bias of ﬁ(a) in (5.7). Since E(ﬁl(a)) =
Py + po(a—k), the squared bias of ﬁl(a) is

B(py () = p, (a1 (5.8)
The variance of ﬁl(a) is given by

Var(ﬁl(a)) =‘% [azpo(l—po) - 2ap_(py-Ap) + (p=Ap.) (Py*Ap )1,

(5.9)
while its mean square error is‘MSE(ﬁl(a)) = B(ﬁl(a)) + Var(ﬁl(a)).

One criterion for choosing a, which leads to a canonical re-
presentative frpm this family of estimators, is to minimize an average
weighted mean square error criterion over the admissable parameter
space O given by (2.2). In other words, if w(8) is some weighting func-
tion defined over the admissable pérameter space, then a is to be»chosen
to satisfy,

1-(1-\)p

11
0 PN
é é Aé MSE(pl(a))w(pl,po,k)dpldpodk. (5.10)

min
a
o

Assuming w(6) is continuous with continuous partial derivatives
over 0, one may differentiate with respect to a under the integral appear-
ing in (5.10). Now MSE (ﬁl(a)) is a quadratic in a of the form
o a2 + Ba + vy, whose coefficients a, B, and y depend on 6. If we use

(5.8) and (5.9) these coefficients are found to be a(8) = pg + P,
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(1 - p,)/n, B(8) = =20, + b, (p, = Ap_)/n), and v(8) = A%p> +

(pl - Apo)(po + Xpo)/n. Thus, the value a* of a which minimizes this

average weighted mean square error criterion is given by

a* = [B(0)w(6)do/2 /' a(B)w(e)ds. (5.11)
¢S] 0

Applying the criterion in (5.10) to the special case in which
the weightingvfunction w(®) = 1 is chosen leads to the stationary value
a* = 0.5 as the minimizing value, and the corresponding canonical estimator
in the family (5.7) is

ﬁf = () + 0.5m )/n = p(0.5). (5.12)

This equal allocation of the responses in one partially in-
formative sampling category to the two population categories is of sbecial
interest in brand preference analysis, and it has been discussed in
Odesky [5] without quantitative statistical justificationm,

Using the data previously discussed in which 20 respondents
from a sample of n = 100 reported a preference for Brand A, 48 for
Brand B, and 32 did not_reveal their preferences, the population propor-
tion 121 preferring Brand A to Brand B would be estimated by ﬁl = 0,360
using (5.12) rather than by ﬁl = 0,294 when the "natural" estimator

(5.1) is used.

6. Squared Bias Comparisons of 51 and ﬁl(a*)

Since for large n, Var(ﬁl) and Var(ﬁl(a*)) for a*=0.5 both
approach zero while their biases do not, we compare the squared biases

B(ﬁl) and B(ﬁl(a*)) of these two estimators. Thus we define R(a,pl,po,x)
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as the ratio of the squared bias of'ﬁi(a) to the squared bias of ﬁl’ namely,
R(a,p15Pgs0) = B, (@)/B(B;) = (-a)’(1-p )%/ (). (6.1)

Figures 1-5 give the contour R=1 of R(a*,pl,po,l) for a*=0.5
and Py = 0.2,0.4,0.5,0.6, and 0.8 in the admissable (po;x)— parameter-
space. It is interesting to note that in each of these figures, the
proportion of the admissable (pl,A)— parameter space in which the
squared bias of the estimator ﬁl(a*) for a*<0.5 is smaller than the
squared bias of the "natural estimator" (namely, where R<l) is greater
than the proportion of the admissable region where the 'natural" estimator
ﬁl is preferred to ﬁl(a*) for a* = .05 in terms of its squared bias
(namely, where R>1).

In fact, for any value of Py let A(pl) denote the percentage
of the area in the admissable (po,k)* parameter space where the estimator
ﬁl(a*) for a* = 0.5 is preferred to ﬁl on the basis of smaller squared
bias. Figure 6 gives a graph of A(pl). Thus, in terms of smaller squared
bias, one finds that the "canonical" linear estimator ﬁl(a*) is more
frequently preferred in terms of smaller squared bias than the "natural"

estimator for values of Py between 0.19 and 0.81.
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R<1

Figure 3: R(.5,.5,po,k)
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