UNIVERSITY OF MICHIGAN LIBRARIES

MATHEMATICAL EXPRESSIONS FOR DROP SIZE DISTRIBUTIONS
IN SPRAYS

by
ROWLAND S. BEVANS

Massachusetts Institute of Technology

Prepared for the

Conference on Fuel Sprays

University of Michigan
Ann Arbor, Michigan
March 30-31, 1949

Sponsored by

The Air Materiel Command, USAF
and
The Engineering Research Institute
of the
University of Michigan



b,g,r N 6}/2, |
VHR @ yy¢



MATHEMATICAL EXPRESSIONS FOR DROP SIZE DISTRIBUTICNS
IN SPRAYS

by

Rowland 8. Bevans
Masgsachusetts Institute of Technology

Abstract

A number of mathematical expressions have been proposed

the particle size distributions of crushed solids and of
liquid drops in sprays. - The various mathematical forms of three
of the most common of these, the Nuklyams-Tanasawa, Rosin-
Rammler, and logarithmico-normal, are presented in order to compare
their utility for representing distributions in eprays. All
three of the expressions require the evaluation of two constants,
‘one a function of the mean drop size and the other a functlion of
the degree of varlation in drop size. The methods of plotting
distribution data to obtain straight lines for evaluating the
constants are described. All three equations are fitted to
Kolupaev's data on a pressure-atomized oil spray and all produce
distribution curves thet are in reasonable agreement with the data,
The closest agreement 1s produced by the Rosin-Rammler expresslon;
this expression 1s also eaaiér to use than the others in the
cumulative mass~fraction form since 1t is a relatively simple ex-—

ponential functlon whereas the others contaln incomplete Gamme
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functlions., Expressions for various types of mean drop size have
been derived from the three distribution expressions. Numerical
values of various mass-mean drop sizes calculated from the three
expressions are in close agreement with thoseéobtained by direct
integration of Kolupaev's data. Because of the extreme sensitivity
to the very esmall drops, the agreement 1is not very good for the
number means. In fact, the Rosin-Rammler equation is unsatisfac-—
tory for calculating number means since it predicts an infinite

number of infinitesimal drops unlese the constant q ie greater than

Se

I. Introduction

One of the important properties of liquid sprays is the
frequency of occurrence of the various si,es of droplets, or the
slze distribution in the spray. A number of mathematical expressions
of size distribution have been proposed and used both for liquid
sprays and for the simllar dilstributions of particlevsizes reéult—
ing from the crushing and grinding of solids. No criterion hss
been established for choosing the preferred distribution funetion
for any given avplication from among the ones proposed. It is the
purpose of thls peper to examine and compare critically the most
commonly used distrlbution functions and to determine whether a
basis exlsts for a cholce among them.

Ag is the case for any statistical distribution, there are
two common forme of expressing size distributions, One of them is

the cumulative form, in which the distribution 1s expressed as the
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fraction by weight or volume of the total drops ha#ing &

diemeter larger than a given dlameter. A typical distribution

is precented in this form in Fig. 1. The second is the differen-
tial form and expresses the relative frequency of occurrence of
drops of any given size. It 1s simply the derivative of the
cumulative form, The distribution of Fig. 1 is presented in the
differential form in Fig. 2. The area under the differential

curve represents the total quantity of liquld in the spray so that
the ratio of the area under any portlon of the curve to the total
erea represents the fraction of the spray in that particular drop-
slze range. Instead of expreesing the drop-size distribution in
terms of the mass of liquid, the distribution is sometimes expressed
in terms of the relative numbér of drops of each size. This number
distributlon is very simply related to the mass distribution by

the geometry and density of the drops.

It 1s expected that in sprays formed by a single atomizing
process, the number of particles per unit of size interval will have
a maximum value at one single size, and will decrease smoothly as
the size becomes smaller or larger, (see Fig. 2), This is the type
of curve for which & mathematicsl function 1s required.

The most satisfactory approach for obtalning & mathematical
exprescsion of any observed phenomencn is by derivation from basic
physical laws. This would be the logical method of obtalning a dis-
tribution function for drop sl zes if the mechanism of spray formation

were clearly understood and simple enough to be handled analytically.
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Unfortunately, the mechaniem is still incompletely described even
qualitatively,vso that derivatlon of a distribution function must
awalt further clarification of the theory. In the meantime,
mathematical expressions may be fitted empirically to experimental

data.

II. Proposed Mathematical Expressions

This empirical procedure was used by Nuklyama and Tanasawa (6
in correlating thelr extenslve data on drop sizes in eprays formed

by alr atomization. They started wlth a general equation of the form
-obxq .
dN/ax = axPe , or in the maes-fraction form,

+3 =bx4
&’ = a'xp 5e

dx
where N 1s the number of drops in the spray which have diameters

larger than x, R is the mase fraction of drops larger than x, and

a, p, b, and q are constants., The value of the constant a depends
only on the size of the sample and will be discussed later. After
trying values of 0, 1, 2, and 3 for p, Nukiyama and Tanasawa found
that a value of 2 was always required for a good correlation, Similar-
ly, a value of 1 was usually required for q; although the value for
thle constant changed somewhat depending on atomizing conditions,

H. C. Lewis and colleagues (5) used the same equation with success

in correlating their own data on drop size distribution and also the
data on various types of spray clouds reported by several other
workers. This appears to be the only distribution function which has

been applied to experimentsl drop size studies 1n sprays in any work



reported in the literature,

S8ize distributions of solld particles resulting from
crushing and grinding operatlions have been studlied much more
frequently and carefully than the size distributions in liquid
sprays, and several satisfactory mathematical expressions have been
found. Some of these expressions are reviewed by Ausfin (1). Since
the size distribution curves for spray clouds and for crushed solids
are similar in shape, the distributlion functions developed for
solids should also have application to liquid sprays. Two of the
most common of these distribution expressions will be compared with
the one used by Nukiyama and Tanasawa.

A distribution function for solld particles was developed
by Rosin and Rammler (7) on the basis of emplirical rules for the
breaking of solids., It is & special form of the general equation
used by Nukiyama and Tanasawa in which the exponents p'and q are
related in such a way that integretion is readily accompiished. It
has the following form:

. q
-1 -bx
drR/dx = -quq e

Another commonly used distribution functlion for solid
particles is the logarithmico-normal distribution. Epstein (2)
has recently demonstrated that this distribution law will be
approached asymptotically in the crushing of solids if certailn
assuﬁptione are valid concerning the breaking process. In this case,
the distribution as a functlion of the logarithm of the particle sizé
follows the normal distribution law and may be expressed b& the
followlng equation:



N —-(log x =log Mg)a/a log? 6¢g

dR/GX = mcmmmmme e g
(2.3)xV2r log 6¢g

where Mg and 6 g are the geometrlc mean and the standard gecmetric
deviatlion according to the customary probability nomenclature.

In Table I, the three distribution functions sre listed
together with the generzl form of the Nukiyama-Tanasawa and Rosin-
Rammler functions., This general form contains three distribution
constants. The functlons are listed both in terms of R, the fractional
mass of drops heving dlemeters larger than x,and of N, the number of
drops per unit mess of total spray which have diameters larger than
X, and both 1n the integral or cumulative form and in the differential
form,

Each of the three recommended distributlion functions contains
two constants which determine the distribution. The third constant,
e or a', is merely a measure of the slze of the sample being con-
eidered. Since R and N have been defined on the basis of a unit
maés of liquid in the spray, a and a' must have definite values in
terme of the other constants; these values have been listed in
columns 6 and 7 of Table I,

Of the two distribution constante, q (or Sg) determines the
spread of particle sizes., A high velue of q (low value of &g) means
that a small fractionsal variation'of rarticle slze on either side of
the mean 1s sufficient to embrace a large fraction of the total

sample.



The other distribution constant, b or Mg, measuree the
average particle size. Expressions for b and Mg in terms of the
mass medlan particle slze, designated by Dm, are given 1n the last
column of the table and may be .substituted for b to give generali zed
forms of the equations. In the generalized form, the mass cumula-
tive distributlions are functions of a single constant and the
ratio of the drop size x to the medlan drop size Dy only. Generalized
equations can also be written in terms of the ratio of the drop
| slze x to any other type of mean drop size.

Many of the expressions in Table I involve Gamma functions,
For those readers who are not familiar with this type of function,

the complete Gamma function is defined as follows:
-1 —x
rYn)= x e dx = (n-1)!
o

Tables of complete Gamma functions are avsilable for use when n 1s
not an integer. The incomplete Gamma function is defined as

n=l =x

r:h)= ;f. x e dx

Tables have also been qulished for incomplete Gamma functions but
since an additional variable has been introduced, the tables are
much more extensive than those required for complete Gamma functions
and are not as extensively svallable., Incomplete Gemma functions
can always be evaluated by graphical integration if the tables are
not available,

The number of drops, N and the mass fraction, R are deflned

in such a way that they are at a maximum at X = O and are equal to



zero at x = «vv . This causes the constants a and a' to have
negative signs., In addition, the cumulative distribution functions
consist of the difference between two terms when they contain

Gamma functlons because the Gamma function 1is the integral from

zero to x instead of from infinity to x.

III. Choice of Experimental Data for Compering Equations

- One way of comparing the three distribution equations ie
to apply them all to the same experimental data on drop size dis-
tribution of a spray. For such a comparison, 1t 1s important to
select data which are based on a truly representative sample of
a spray, which are accurate with respect to measurement of particle
slzes end numbers, and which cover the size range of the spray as
completely as possible, The experimental results that hsove been
found to come neasrest to satisfying these requirements are those
obtained by Kolupaev (4) on the spray from a lQ-géllon per hour
swirl-type pressure-atomizing nozzle. He sempled a spray of
Bunker C fuel oil which had been heated to 224°F (viscosity =
0.216 cm.?per sec.) and atomized with a pressure drop of 140 psi.
The method used was to expose sooted slides for a standard time
1ntérva1 to various portions of the spray and then to measure and
count the drop traces under a microscope., The positions of
sampling in the spray were chosen so that an aversge distribution
for the entlire spray could be obtained by sultable weighting of
sampleé. Thousands of drops were counted to determine a single
distribution curve. Checks of. the counting technique were made
by weighing the oil collected on some of the slides and comparing

with the weight predicted from the count and by using 2 special



device to produce drops of a known size.

IV. Determination of Equation Constants from Experimental Data

The most convenlient way to evaluate the constants of an
equation from experimental dafta 1s to rearrange the equation to a
form whereby the datza may be plotted to produce a straight line.
This can only be done if no more than two constants are to be
evaluated, which is the case with the three distributions under
consideration. In fact, evéluation of more than two constants from
experimentsl data 1s so difficult that dietribution functions con-
taining more than two constants are almost never used, Nukiyama
and Tanasawa started with a distribution function containing three
constants but they established a velue for one of them which was
not changed in further applications of the function;

To evaluate the constants of the Nukliyama-Tanasawa equation, -

it can be converted to the following form:

q
1 dar bx
log| == = log a! = ———-

x% ax 2.3
or ' - q
1 an bx
log[ =~ =- = log & = —=———=
x2 dx ‘ 2.3

By plotting log (EE ilj-) against x2 a straight line should be obtailned
x° dx

having a slope of b/2.3. Generally a value of 1 is satisfactory}

for é but for some distributicns, values less than 1, e.g., 1/2,

1/6, 1/4, eté., are required, The proper value may quickly be

determined by trial and error. An example of this‘technique is

cshown in Fig. 3 where it 1s applied to experimental data obtained



by Kolupaev.
The constants for the Rosin-Rammler distribution ex-—
pression can be obtained by taking logarithms twice of the cumula-

tlve mass fraction form of the equation
log (log 1/R) = log b/2.3 + q log x

If log (log 1/R) is plotted against log x, (loglog vs. log paper
commercially)
can be obtained/ the points should fall on a straight line of
slope q. The value of log b/2.3 18'equai to log (log 1/R) at
the point on the line where x equals one. An example of this type
of plot for Kolupaev'svdata is shown in Fig. 4. A curved line
has been drawn through the points to indicate the actual distribu—
tion . in addltion to the straight dotted line which 1e the best
stralght line as evaluated by eye through the points from a
residue R of 0.0l which 1s larger than size x, to R = 0,80, This
method of plotting magnifies the ends of the distribution greatly,
so that the dlscrepancy between the straight line and the actual
points 1is really‘not as bad as 1t appears, as will be seen later.
In fitting a straight.line to the dats, matching along the central
portion of the curve 1s moet essential, eince that portion repre—
sents nearly all of the mass of the spray., The range from 1 per
cent tc 80 per cent was chosen for matching in this case because
the completion of a combustion process is generally limited by the
largest drops present and 1t was believed to be most important to
have the greatest accurscy in the fractional distribution of the
large drops. In other applications it might be more important to
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obtain greatest accuracy 1n fractional distribution over other
ranges of the curve,

The constants for the logarithmico-normal distribution
function can best be detenmineé by using'logarithmic probablility
graph paper, which 1is commercially availlable, The integration of
‘the equation has alresdy been performed in preparing this paper
and the coordinates of the abscissa have been adjusted accordingly.
it 1s merely necessary to plot particle size on the logarithmic
scale against either R or N/Ni,i,7 on the probability scale to ob-
tain a straight line. In this case, the forms of the equations for
both R and N are the same except that of course the constant Mg
has diffefent values., From the straight line, the constant Mg'
may be obtained as the value of x at R = 0.50. The constant Oy 1s
equal to the value of x at R = 0,8413 divided by x at R = 0,50 or
X at R = 0,50 divided by x at R = 0,15687, Kolupaev's data are also
used to 1llustrate this method in Fig. 5. Here again two lines
are drawn on the plot, the curved line following the actual data
and the straight line being the best fit from R = 0.0l to
R = 0,80, As 1in the case of the Rosin-Rammler plot, the ends of
the distribution are greatly magnified by thie method of plotting
so that the agreement between the experimental results and the
stralght line 1s actually much better than it appears.

Y. Comparison of the Distribution Functlons

In choosing the mathematlcal expression of size distribu-

tion to be used for any given situation, the first criterion should
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naturally be how well the expression can fit the experimental
data. None of the distribution functions discussed here
can express‘exactly an actual spray distribution since they &sll
predict the existence of droplets of all sizes from zero to
infinity, whereas in any actual spray claud it 1s obvious that
there 1s a finite upper limit in particle size., All of the equa-
tions, however, predict that the frequency of occurrence of par-
ticles approaches zero very rapidly as the particle size is 1in-
creased beyond the size of greatest probability, and the error
introduced in the prediction of oversize particles is insignifi-
cant, The use of a.functién which takes cognlizance of the limit-
ing drop size is not warranted since it i1s much more unwieldy
than these relstively simple equations and will not increase the
accuracy appreclably.

A bomparison of how well the three distribution functions
it the‘data of Kolupaev has been made using the following equations
obtained from Figs. 3, 4, and 5.

ar . =21 .2x

Nukiyama and Tanasawa = = -8,1 x 10 x% e

dar 1.63 —18.2x2'63
Rosin and Rammler =—— = - 47,9 x ' e

dx .

_(logx + 0.56)°
Logarithmico-Normal AR/AX = = =—=— e
, x

Values of dR/dx as calculated from these equations have been plotted

versus X in Flg. 6 together with a smoothed curve representing the



actual data points., Quite striking is the discrepancy between
the maximums of the logarithmico-normal and Nukiyama-Tanasawa
curves and the maximum of the experimental curve, This would not
have been expected from a casuél glance at the straight-line
correlations of Filgs, 3 and 5 because it occurs in an insensitive
region of the correlation and becauée'the percentage difference is
not very great. The Rosin-Rammler distribution,on the other hand,
comes just about as close to fitting the experimental curve in the
small drop size region as the other two distribution functions
even though from a casual examination of Fig. 4 i1t would appear
to be greatly in error in this region.i In the large drop size
reglon, the Rosin-Rammler curve does a remarkably good job of
matching the experimental distribution. Although the Rosln-
Rammler distribution is somewhat superior to the other two in fit-
ting the experimental data of Fig. 6, all of the expressions
produce curves that are acceptably close to the experimental curve,
and they would have to be tested with a number of other sets of
data before the superiority of any one could definitely be established.
It 1s possible that there might be a greater difference be-
tween the three distribution expreseions if they were applied to
spraye formed by methods other than a swirl-type pressure atomizing
nozzle. A comparison has been made using Houghton's (3) data on
an air-atomized water spray. These dafa were correlated by Lewis (5)
et al (5) using the Nukiyama-Tanasawa function. The three curves
together with the experimental points are presented 1h Fig. 7.

Since the experimental'points are so scattered, this figure
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merely indicates the general agreement among the three distribu-
tion functlons.

It is noteworthy thet the Rosin-Ramnkr distribution pre-
dicts too large an amounf of very small drops and the logarithmico-
normal too small an amount, in both Figs. 6 and 74 These appear
to be general characteristics of these distribution functions.

Another basgis for choosing among the three functions 1is
the type of &ta with which they are to be used. If the data are
obtained in such a menner that the total quantity of liquid is not
known but only the number or mass of drops in certain slze ranges,
the Nuklyeama-Tanasawa function can stlll be used in a stralght-
forward manner. Values proportional to AN/Ax or AR/Ax can be used
without ever knowilng the proportionallty constant until the con-
_stants of the equation have been established, This is often the
case when samples of & spray are colleéted on slides, and drops of
various size ranges are counted, since 1t is difficult to get
accurate counts of the very small and very large drops. On the
other hand, 1f the spray 1s sampled by a method such as freezing
and sieving the drops, 1t 1s quite easy to get the total quantity
of material and the fraction of materlial that does not pass through
scereens of various slzes, For these data, it 1s more straight-
forward to use the Rosin-Rammler or logarithmico-normal functions.
Actually, these differences in technique are not very important,
since the Rosin-Rammler or logarithmico-normsl distribution can

be obtalned by a trial =nd error process of guessing the total
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quantity of liquid if it is not known, and the Nuklyama-
Tanasawa function can a2lweys be established by taking slopes
of a cumulative fraction curve.

There is one important advantage to using the Rosin-
Rammler distribution function, if the cumulative mass fraction
form is required. Both of the other distribution functions
contain incomplete Gamma functions when written in this form as
seen in Table I, whereszs the Rosin-Rammler function in this form

is 3 relatively simple exponential,

VI. Mean Drop Sizes
Mean drop sizes are sometimes used to charecterize a
spray. There are an infinite number of means which may be cal-

culated by the following formuls: . _ nlm

mean drop size =| %2 ——

N
f Xm 8N
o 1
1. __ n-m
J//’ <27 ar
/o
1 .
x®=s gr
A ,

Only a few means are of any practical value, however,

or =

Median drop slzes are also occasionally used. Median
silzes are defined as the size which divides the spray into two
halves by number, Weight, surface area or other property. The
only median drop size commonly used ls the mass median znd the

chief justification for its use 1s that it has very nearly the scme



value as the mass mean, The latter mean 1s the dlameter obtained
by giving to each particle diameter a welghting factor proportional
to the mass of the particle; 1t 1s one of the more important types
of means (see Table II).

Mean and medlan drop sizes may be calculated from the
distribution functions. The resultant expressions for the mass
median and four types of means are listed in Table 2., These means
may all be calculated readily from any of the distribution functions
wlth the exception of the mass median from the Nukiyama-Tsnssawa
equation. For this calculation either the use of tables of
incomplete @amma functions or a graphicsl integration is required
to determine K as a function of q. After this relationship has
been established, however, the median drbp slze may be calcplated
as easlly from this equation as from the others.

It 18 of interest to note that the ratios of the various
types of means as calculated from any one of the distribution
expresslons are functlons of the exponent q, orég, only.

therical values of the various means as calculated from
Kolupaev's data are also listed in Table II together with the means
obtained by direct integration of the data., For 2ll of the means
except the two types of number-means, the numerical values are in
very close agreement, with no one function 5éing consistently the
beste.

The numerical values of the number means as calculated
from the three equatlons and as determined directly from thé data

differ quite widely. These means are very sensitive to the number



of very small drops present since these small drops represent

by far the greatest fraction of the total number of drops even
thoughvthey are 2 small fraction of the total mass. As would

be expected, therefore, the Nuklyama-Tanasawas equa tion does the
best Job of predicting the number means. The Rosin-Rammler
equation is of no value for predlcting number means unless q 1s
greater than & since it predlcté an infinite number of infinitesi-
mal drops for zll velues of q less than 3., The number means are
included in Table 2 principally to demonstrate how sensitive they
are to the very sﬁall drops. Since these smsll drops represent
such a small fraction of the total liquid in the spray, they are
unimportant for most considerations. Consequently, number means
are rarely used,

VII. Conclusions

l. The Nuklyama-Tanasawa, Rosin-Rammler, and logarithmico-
normal distributlon expressions all fitted the experimental size
dlstribution data for an oil spray in an acceptable manner, The‘
Rosin-Rammler distribution was somewhat superior to the others in

fitting this data.

2. To use any of the three distribution functions, it is
necessary to evaluate two constants, one of which 1s a funection
of the mean drop egize and the other a functlon of the degree of
variation in drop size, The constants for any of the expressions
mey be evaluated from experimental distribution data by plotting the
data in a suitable msnner to obtaln a straight line.
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3, In the cumulative mass fractlion form, the Rosin-
Rammler function is much easier to use than the other two since
it is 2 rébtively simple exponential function whereas the others

contaln incomplete Gamma functions,

4, Mean drop slzes mey be calculated readlly from any

of the three distribution expressions.

5, There was very close agreement between the numerical
values calculated for the mean &rop sl zes of practical interest by
the three distribution expresesions and the values determined by
direct integreation of what aré believed to be reliable experimental
data on distribution.

6. The ratios of the various means as determined by any
of the three distribution functlons are dependent only on the

exponent q or 6¢g.

7. Because of the sensitivity to very small drops, the
calculated numerical values of the number-mean drop slzes varied
wlidely. The Rosin-Rammler equatlon predlcts number means of zero
for velues of q less than 3 since unless q 1s greater than this the
equation predicts an infinite number of infinitesimal drops.
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NOMENCLATURE

constant, a measure of the size of the sample.
constant, a measure of the size of the sample.
constaht, a measure of the meen drop size.

mass medlan drop dlameter

constant, defined in Tables 1 and 2

constant, geometric mean for number distribution
constant, geometric mean for mass distribution.

number of drops having dlameters larger than x per unlt total
liquid mass in spray.

constant

constant, a measure of the degree of variation of drop slzes.
fractional mass of drops having diameters larger than X.

drop diameter.

constant, geometric standard devietlon, a measure of the
degree of varlation of drop sizes.

density of liquid
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TABIE 2
EXPRESSIONS FOR MEAN DROP SIZES

MASS MEDIAN MASS MEAN SURFACE-TO-VOLUME MEAN NUMBER MEAN VOLUME-NUMBER MEAN
Kolupaev Kolupaev Kolupaev Kolupaev Kolupaev
Date Data Date Data
mm m mn mm

A
i
g 15
o
&
R
NG
G-

DEFINITION xg = 0.5
Hd_ﬁgg» Op = _”mm. :mV 0.236
vhere

K is defined by: 0-289 ﬁ. V 0.283 b3
6> 1

=

1
0.1k2 %E 3 0.18%

=
&

<
py
SL

=}

1
ROSIN- 1 I _lﬁp.lm. 112
2.3 log 2 ) b= b\ .
RAMOER _“|v|.u_h C 0wt _m.wg 0.29% Q_Np-mv 0.229 L 0 L —nAwmm 0
T 1 (%)
LOGARTTEMICA- 2 s
i -\ 2 Mg 5.3 1ogq;) -3(2.3 - logfip)
NomMaL Mg 0.275 zm.mm.mmpomq 0.29% NG TAE Mgre ———E 0.201 Mgre = — &  0.226
s .
DIRECT
INTEGRATION OF .
KOLUPAEV'S DATA 0.280 0.292 0.239 0.121 0,177

__22_.
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FIGURES

Cumulative or Integral Size Distribution Curve,
Frequency or Dif ferential Size Distribution Curve.

Nukiyama—-Tanasawa Correlation of Kolupaev's Data on
Size Distribution in an 01l Spray.

Rosin-Rammler Correlation of Kolupaev's Data on
Size Distribution in an Oil Spray.

Logarithmico-Normel Correlation of Kolupaev's Data
on Size Distribution in an O1l Spray.

Comparison of the Mass Frequency Curves of the
Nukiyama-Tanasawe, Rosin-Rammler, and Logarithmico-
Normal Distribution Functions with the Mass Frequency
Curve from Kolupasev's Actual Data.

Comparison of the Mass Frequency Curves of the
Nukiyama-Tanasawa, Rosin-Rammler, and Logarithmico-
Normal Distribution Functions for Houghton's Dats on
Air-Atomized Water Sprays.
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