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Abstract

This paper develops a general equilibrium theory of asset prices which is
simple and yet does not require any estimation of the stochastic properties of
the market portfolio or aggregate consumption. We show that risk-return
equilibrium relationships can be presented in terms of conditional covariances
of asset returns with the next-period riskless rate. If capital markets satisfy
the minimum set of conditions that are necessary to produce the Intertemporal
Sharpe-Lintner model, the pricing model presented here will hold. The present
model, similar to the Sharpe-Lintner pricing equation, can be used to calculate
the required rate of return on a risky project, or to evaluate the performance
of a portfolio. Because the rate of return on the market portfolio does not
have to be observed, empirical tests or applications of the model will not be
subject to Roll's [13] criticism.
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*I have benefited from my conversation with H. Varian and the comments of two
anonymous referees. I am, of course, responsible for any remaining errors.-



A Multiperiod Asset Pricing Model With
Unobservable Market Portfolio

This paper develops a multiperiodygeneral equilibrium theory of asset
prices which is simple and yet does not require any estimation of the stochastic
properties of the market portfolio or aggregate consumption. We demonstrate
that the systematic risk of asset returns can be measured through their
conditional covariances witgithe nexf—period riskless rate of interest. The
theory is developed using the minimum set of assumptions that produce the
Intertemporal Sharpe-Lintner (ISL) model (see Constantinides [4]). Thus, there
is a direct relationship between the ISL model and the present model--the
present model holds if and only if the ISL model holds. However, our results do
not require any estimation of the stochastic properties of the market portfolio,
and it does not, therefore, give rise to the issue discussed in Roll [13].

Several research efforts have produced multiperiod asset pricing models
(e.g., Fama [7], Merton [12], Long [10], Rubinstein [16], Stapleton and
Subrahmanyam [18], Lucas [11], Breeden [2], Constantinides [4,5], Bhattacharya
[1], and Cox, Ingersoll, and Ross [5]). Some of these studies have presented
risk-return relationships that measure the riskiness of securities through
covariances of their returns with the return on the market portfolio (e.g.,
Merton [12], Long [10], Stapleton and Subrahmanyam [18], and Constantinides
[4,5]). On the other hand, other models use covariances of asset returns with
changes in aggregate consumption to present risk-return relationships.

The market portfolio and aggregate consumption are, however, not readily
observable, and thus, tests of asset pricing models have been rather
inconclusive. Thé market portfolio includes assets that their returns cannot be
observed, and hence the return on the true market portfolio has to be estimated

using the return on only a subset of assets. Aggregate consumption, on the



other hand, must include aggregate consumption expenditures on nondurable goods
as well as aggregate consumption flows derived from durable goods. Presently,
no data on the latter are available and this component of aggregate consumption
must, therefore, be estimated.

Before a formal discussion of the model is made, we present the maiﬁ
results of the paper along with the intuition behind it. Part I will then
present the assumptions and the definitions of the paper. Part II presents the
pricing equaticn, and Part III summarizes the paper.

This paper shows that the expected rates of return on risky securities
satisfy the following equilibrium relationship:

ER, (¢ iR (8, )]0 (1)

) = R.(8,) + 2(8,) Cov,[R, (¢

t+l t+l t+l

where ¢t is the state of the economy at t; ﬁi(¢ ) is one plus the one-period

t+l

rate of return on risky asset i over (t,t+l); Rf(¢t) is one plus the one-period
riskless rate of interest available at t; Et is the expectation operator
conditional on information avai;able at t; 7(¢t) is the market price of risk at
t for risky assets that have normally distributed returns over (t,t+l). Note,
the next-period riskless rate, which is not known at t, is used in the
covariance function that appears in equation (1).

According to equation (1), the expected rate of return on asset i is equal
to the current riskless rate plus a risk premium, which is equal to the

riskiness of asset i, Covt[ﬁi(¢ )], multiplied by the market price of

)R (o

t+l t+l

risk, 7(¢t). In this model, the "interest-rate-based"” beta of asset i can be

calculated as follows:

Cov, [R; (8, )
Var t [R

t+l

g.(¢,.) =
1t
f(¢t+l)]



We can interpret equation (1) as follows. The fundamental result of the
ISL model is the mean-variance efficiency of the market portfolio; this paper
shows that when the market portfolio satisfies this condition, the equilibrium
relationship of equation (1) will be satisfied. 1In the ISL asset pricing model,
the systematic risk of securities is measured through covariances of asset
returns with the return on the market portfolio. If we can find a random
variable such that its intertemporal random behavior is totally caused by random
changes in the value of aggregate wealth, then, under certain conditions, the
market portfolio will no longer have to observed; instead, this random variable
can be used to measure the systematic risk of securities. This paper shows that
the riskless rate is indeed such a random variable.

When capital markets satisfy the conditions that are necessary to produce
the ISL model, all uncertainties about the next-period riskless rate are solely
caused by the random changes in the value of aggregate wealth--i.e., one plus
the riskless rate of interest is equal to the ratio of the current marginal
utility of wealth and the expected value of the next-period marginal utility of

[ ]
wealth (see eg. (10)); this ratio is random only because the value of aggregate
wealth is random.

We show that the conditional covariance of a risky asset with the next-
period riskless rate is proportional to the conditional covariance of the same
asset with the return on the market portfolio. Furthermore, the ratio of the
two conditional covariances is independent of the risky asset.® The riskless
rate of interest will, therefore, provide enough information about the
systematic risk of securities so that risk-return equilibrium relationships that
are in terms of covariances of asset returns with the return on the market
portfolio can be presented in terms of covariances of asset returns with the

next-period riskless rate.



The implications of the present model are rather significant. The model
can be applied to the same type of problems that the ISL model has been
traditionally applied to, while empirical estimation of the parameters of the
model will not be subject to Roll's criticism. The model, for instance, can be
used to calculate the present value of an uncertain income stream, or to measure

the cost of capital of a risky project.

I. Assumptions and Definitions
We employ the following notation: t = time subscript; ¢t = state of the

) = one plﬁs the rate of return on asset i=1,...,N,_ over

economy; Ri(¢ t

t+l

(t,t+1); Nt = number of investment opportunities available at t; Rf(¢t) = one
plus the riskless rate of return available at t; U(Cs,...,CT) = utility of

lifetime consumption; X,

T the percentage of wealth invested in asset i at t

after ¢t is observed (note, in
i

t = 1); W(¢t) = investor's wealth at t prior to
consumption at t.

We also make the following assumptions:

(A.1) Perfect Markets: Investment opportunities are traded in perfect
ﬁarkets, riskless borrowing and 1ending rates are equal, and short sales of all
assets are allowed. |

(A.2) Aggregation: The aggregation problem is solved, and hence,
equilibrium prices are determined as if investors were identical.?
Alternatively; we can construct a composite investor(see Constantinides[5]) and
use his/her utility of lifetime consumption to derive our results. Although in
this case we must assume that markets are complete.

(A.3) State independent utility: Each investor's utility of lifetime

consumption does not explicitly depend upon the state of the economy. Because,



with heterogeneous investors, aggregation requires additively separable utility
functions, we also assume that U(CS,...,CT) = g U(Ct,t).
t=s

(A.4) Rational expectations: Investors have rational expectations; i.e.,
when making optimal investment-consumption decisions, investors take all
available and relevant information (including the structure of the economy) into
account. In the context of proposition 1, this assumption implies that optimal
investments in financial securities are zero.

(A.5) Investment opportunities: At time t there are nt competitive value
maximizing firms that invest in real assets. The rate of return on equity of
firm i over (t,t+l), conditional on the state of the economy at t, ¢t' is

normally distributed with mean ﬁi(W(¢t),t) and standard deviation ai(W(¢t),t).

In other words, returns on real assets can have nonstationary distribution

provided that the nonstationarity is only a function of aggregate wealth and
time. Hence, given W(¢t), returns on real assets over (t,t+l) cannot depend
upon ¢t. This situation can arise if, for example, production technology of
firm i is

Ki(¢

e+ = K00 [0, (W8, D) e, (£41) + u, (W(0), D) ],

where, Ki(¢t) is the amount of capital invested in production technology i
(note, Ki(¢t)>0 for all ¢t and i), ui(-) and oi(-) are deterministic functions

of W(¢t), and Ei(t+1) is a stationary normally distributed random variable.

There are also Nt—nt financial securities (e.g., bonds, options etc.) that
have zero net supply (firms issue only equities), and their returns can have
general nonstationary probability distributions.

Assumption A.5 of this paper is less restrictive than assumption A.4 of

Constantinides [4] because we allow returns on real assets to follow

nonstationary random processes.?



A representative investor will solve the following optimization problem:

T
_ max
IMBIidrs) =y e EL Zuc, v}
it’ 't t=s
Subject to
. Nt ~
Weey) = W) - ¢ 1 { Z0x, (Ri(6) - Ro(9, )] + Ro(9,_)}

i=1

The investor's wealth at the beginning of t, after the state of the
economy, ¢t, is revealed, is W(¢t); then, he/she chooses the optimal values of
Ct and xit' This optimization problem has been extensively discussed in the
literature (e.g., see Fama [7], Long [9] and [10], and Constantinides [4]);

thus, we have presented only the essential aspects of it.

II. An Interest-Rate-Based Asset Pricing Model
The first order conditions for the representative investor's expected

utility maximization problem are:

U'(Ctlt) - J'(W(¢t)y¢tlt) =0, (2a)
J' W) r0yst) - Re(8) ELI'(W(P, )06y, st+D)] = 0, (2b)
BT (W8, )00y, t41) Ry 1) - RG89 = 0, (2¢)

where i=l,...Nt, and U'(+) and J'(-) are, respectively, partial derivatives of
U(-) and J(+) with respect to Ct and W(¢t). Throughout the paper partial
derivatives will be denoted by primes. '

Equation (2a) represents the familiar "envelop" condition; equation (2b)
states that when optimal consumption-investment policies are followed, one plus
the expected rate of.decline in the marginal utility of wealth will be equal to
one plus the riskless rate of interest; equation (2c) is the most basic

equilibrium relationship among securities and it will play acrucial role in the




derivation of our results. In particular, using the definition of conditional
covariance, equation (2c) can be written as follows ( we use J'(¢t) to represent

I'W(6,)16,11)).

E.R. (.

tit e+l )1, (3)

- - ' -1 T D
) = Rf(¢t) [EtJ (¢,,,)] COVt[J (¢ ),Ri(¢

t+l t+l t+l

and equation (2b) can be solved for the equilibrium riskless rate.
J'(¢,)
Re(9,) = ————. (4)
1
B [3'(4,,,)]
We now present a proposition that is central to the results of this paper.

Proposition 1. Assume that conditions specified in A.1 through A.5 hold.

Then, the representative investor's derived utility of lifetime consumption will

be state independent.
Proof. See Fama [7] and Constantinides [4].

The basic result of Proposition 1 is that the representative investor's

derived utility of lifetime consumption depends only upon his/her current wealth
and time; i.e.,
T
J(W(¢_),s) =max {E_ Z U(C_,s)}.
s s S
t=s
Also note that following Fama [7] and Constantinides [4] the investor behaves as
if he/she maximizes

J(W(g,),t) = max{u(ct.t) + Etﬁ(ww ), t+1)}

t+l

subject to the wealth constraint.
Two important implications of the proposition are:
(1) J'(W(¢t),t), the current marginal utility of wealth is only a function

of current aggregate wealth and time.



(ii) Et[ﬁ'(W(¢t+l),¢t+l,t+l) = g(W(¢t),t);i.e., the conditional expected
value of the next-period marginal utility of wealth is a function of current
wealth and time.

We now present two properties of normally distributed random variables that
will prove to be important.

Assume that, conditional on y, random variables x and z have a bivariate
normal probability distribution. Also assume that h(x) is a continuous real

function with a continuous first derivative such that Ey[lh'(i)[]<m.

Lemma 1.

Covy[h(x),z] = Ey[h (x)]Covy[x,z]. (5)

Proof. Please see Stein[19] and Rubinstein[16].

Lemma 2.
0 5 5 o' Lo
;; Y[h(X)] =u Ey[h (x)] + —;— Ey[h (x)(x - w1, (6)

where, conditional on vy, §~N(u,02) and u' and o' are, respectively, partial
derivatives of u and ¢ with respect to y. Because y and x may not be bivariate
normal random variables both u and o may be functions of y.

Proof. See the Appendix.

Because the aggregation problem is solved (see assumption (A.2)),

equilibrium prices are set as if investors were identical; the representative

investor's wealth, therefore, includes only real assets (i.e., no financial
securities are held by identical investors). Since, conditional on the state of
the economy at t, returns on real assets and thus the ne§t-period level of
aggregate wealth are normally distributed, we can apply iemma 1 to the
conditional covariance between the marginal utility of wealth and the return on

real asset i;* the result is:



Cov, [3' (W(y,;) t+1), R, (8,,1)] = B 13" Icov [iiCs,, ), &, (6, )]

t+l

Substituting the above expression into equation (3) we have:

EtRi(

$ea1) = Re(O) + @) Cov,[RGs,, )y Ri(o, D] (D)

where, A(¢,) —Et[i"(w(¢ >,t+1>]/Et[3'<w<¢ ) t+1)].

t+l t+l

Equation (7) is, of course, the multiperiod version of the SL model. As was
discussed before, the main difficulty in any empirical testing of equation (7)
is that the market portfolio, W(¢t+l), is not observable. The objective of this
paper is to represent the last term on the right hand side of equation (7) in
terms of observable economic variables (e.g., the riskless rate of interest).

The equilibrium level of the one-period riskless rate was presented in
equation (4). Here, we discuss that equation and the determinants of the
riskless rate of interest in more details.

One plus the riskless rate of interest is

J'(W(g.),t)

Re(4,)
E 3" (W(g,, ) st+1)]

(8)

R (W(6,,t),

where the results of proposition 1 are used to obtain the last line of the above
expression. Hence, the current riskless rate of interest is a function of
current wealth and time. The next-period riskless rate, which, given all
available information at t, is a random variable can, therefore, be stated as

follows:
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J'(W(g, ), t+l)

t+1
[3'(W(e

R.(¢,..)
f e+l ~
£ )t42)]

t+1l t+2 (9)

In other words, the next-period riskless rate is not known at t only because the
next-period value of aggregate wealth is not known. In this economy, random

variations in the value of aggregate wealth represent the aggregate risk.

Furthermore, random behavior of other endogenous aggregate economic variables

(e.g., the riskless rate, returns on long-term default-free bonds, and the
market price of risk) are also driven by the random behavior of aggregate
wealth.

If we can apply the results of lemma 1 to the conditional covariance of the
next-period riskless rate with the return on real asset i, we will be able to
show that this covariance is proportional to the conditional covariance of the

same asset with aggregate wealth. That is to say,.

Cov, [R (W(8, )., (8,101 = B[R, (W(a,, ) ]Cov, [R(o, )R, (6, )] (10)

t+l t+l t+l t+l t+l

We know from lemma 1 that the above expression is correct if

Et[lif'(W(¢ )|1<=. Using the expression for R.(-) and the results of lemma 2,

t+1

we have (dependence on W(¢, ..) is suppressed):

t+l
aRf(t+1) }
oW(t+1)
o(t+Ll)u' (t+1) - o' (t+1)u(t+l) o' (t+l)
Rf(t+l) B(t+l) + ——D(t+l) - A(t+l) ’
o(t+l) o

(11)

where



11

At#1) = -[3' " (B+D)] [3' (D],

B(t+1) = =B, [§'"(t+2)] B, [3' ()],
D(t+1) = -E,,, [3' ' (ts2)W(t+2)] B, [3" (+2)] 7Y,
u(t+l) = E [0, )],

o(t+l) = Var, . [W(e, )],

0'(t+l) and p'(t+l) = partial derivatives of o(t+l) and u(t+l) with respect to

W(d’t+1)'
If the expression on the right hand side of equation (11) is denoted by &(¢t+l),
then we require that

E [la(s, ) [1< (12)
This requirement does not appear to be very restrictive; for example, if ﬁ(¢t+l)

and W(¢t+2) are independent, then a(¢t+l) will be equal to -Rf(¢t+l)A(t+l), or

if W(¢, .) and W(¢, . .) are bivariate normal random variables, then

t+l t+2

Cov[W(e, ..),W(o, )]
) t+l t¥2 " B(t+1) - A(t+1) | .

Var[W(¢, ;)]

&(¢t+l) = §(¢t+1

In both instances the requirement is satisfied if the representative investor's
degree of risk aversion is bounded. We will assume that equation (12) is
satisfied and denote this assumption by A.6.

Proposition 2. Assume that the conditions specified in A.1l through A.6 are
satisfied. Then the following relationship will hold for all assets that,

conditional on W(¢t), have normally distributed returns.

ER, (8,,) = R(8) + 7(8) Cov [R (8, )R (o D], (13)
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where 7(¢,) is defined as A(9,){E, [a(¢ Y37t

t+l
Proof. From equation (10) we can solve for the conditional covariance of
W(e

) and R, (¢ ); substituting the results into equation (7), the above

t+l t+l

expression will be obtained.

In the above equilibrium relationship, the market price of risk is denoted
by 7(¢t); to test this relationship empirically we do not, however, have to know
7(¢t)' Similar to the approach often employed to present the ISL in a
testable form, we can write equation (13) for another risky asset or a portfolio

of real assets and thereby eliminate 7(¢t). That is to say, we can write

Covt[R (¢t+l

Covt[Rp(qb

)]
{E R (¢

ER; (¢ ¥ t+1

) =R.(¢,) - ) = R.(¢.)} (14)
t+1 R £ 7t
t+1)'Rf(¢

The reader should note that though ﬁi(¢

t+l

t+l) is, by assumption, normally

= \
distributed, Rf(¢ ) is certainly not. Because for a risk averse investor the

t+l
marginal utility of wealth is not negative, and hence, form equation (9) we can

see that ﬁf(¢ )>0, which indicates that the riskless rate cannot be normally

t+l
distributed.

If the one-period riskless rate is for soﬁe reason unobservable, then
another equilibrium relationship in terms of covariances of asset returns with
prices of long-term default-free bonds can be employed. For example, the
current equilibrium price of a bond that will pay one dollar upon maturity, T,
is

Et[J'(W(¢T),T)]

14

F(¢yrtsT)
J'(W(9,) )
(15)

F(W(¢t),t:T)-
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Note that the next-period price of the bond will depend upon the next-
period value of aggregate wealth; hence, we can use conditional covariances of
asset returns with prices of long-term bonds to present a risk-return
equilibrium relationship similar to the one stated in equation (14). There is,
however, one major difficulty in using the "bond-based" measure of risk to test

or apply the model: theoretically we know that bond prices follow nonstationary

random processes.® Thus, empirical tests of the bond-based model are likely to
be as complex as tests of the ISL model. The interest-rate-based model
presented in section II, on the other hand, may avoid this problem for at least

theoretically there is no reason to believe that the riskless rate follows a

nonstationary random processes. However, whether the riskless rate of interest
actually follows a stationary random process is an empirical question (one can,
of course, build models that would generate a specific type of behavior by the
riskless rate of interest(e.g., Cox, Ingersoll, and Ross[6] and Breeden[3]).

In contrast to the consumption-based and the arbitrage pricing models, the
interest-rate-base model is a direct result of the mean-variance efficiency of
the market portfolio., Hence, from a theoretical view, both the ISL model and
the interest-rate-based model can be criticized on the same grounds (e.g., their
rather strict common assumptions). The interest-based model should, therefore,
be viewed as an attempt to introduce some new insights into the ISL model and to

present an alternative equilibrium relationship that can be tested empirically.

III. Conclusion

This paper develops a multiperiod asset pricing model that does not require
any estimation of the stochastic properties of the market portfolio or aggregate
consumption. The results are developed using the framework set forth by Fama

[7] and Constantinides [4], and consequently will hold in capital markets that
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satisfy the minimum set conditions that produce the multiperiod SL asset pricing
model.
We demonstrate that intertemporal random changes in the riskless rate can

be used to measure the nondiversifiable risk of securities. 1In particular,

because the "market-portfolio-based" beta of a risky asset is proportional to
the "interest-rate-based" beta of the same asset, we can present risk-return

equilibrium relationships that do not depend on covariances of asset returns

with the return on the market portfolio.

As is the Sharpe-Lintner model, the pricing model of this paper is
expressed in real terms. Observed data on asset returns are, on the other hand,
expressed in nominal terms. Hence, an interesting extension of our results
paper could be to relax the assumption that prices of consumption goods are

nonrandom, ¢
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Appendix

Proof of Lemma 2. First consider the following property of conditional

normal random variables.

o] i X - u(y)]
E [h'(x)] = E [h(R) ——=1].
y y o)

Equation (Al) is obtained by applying lemma 1 to Covy[h(i),ﬁ]. Now we prove

lemma 2. Let

2
2.-2 [x - u(y)]
£(xjy) = [270(y)"] © exp{ - ———_—___5_—}'
20(y)"
Then,
0 4o Af (%;Y)
—E_[h(x)] = [h(x)——dx
oy Y -0 oy
+oo
= [h(x)0(x,y)f(x;y)dx,
where

Q(x,y) =

o' (¥) { [x-u(y) ]2 } 2 ) [x - u(y)]
-1 +

o(y) o(y)2 a(y)2

(A1)

(A2)

Lemma 2 is proved by taking the expectation of the above expression and applying

equation (Al) to the result.
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Notes

1Similar results are also discussed in Kazemi [8].

2Assume that investor i maximizes Ui(co)+piE Vi(cl)’ where

0
] Tt 1 1

-Ui(CO)/Ui (C0)=Ai+BiC0 and -Vi(cl)/vi (Cl)fAi+BiCl.

the following conditions for aggregation: (i)All individuals are homogeneous;

(ii)All individuals have the same beliefs, Pi=P1 and Bi=B¢0; (iii)all

Rubinstein[15] presents

individuals have the same beliefs and Bi=B=0; (iv)All individuals have the same
beliefs and resources, Ai=A=0, and Bi=B=l; (v)Markets are complete and Bi=B=0;
(vi)Markets are complete, all individuals have the same resources, pi=p, Ai=A=0'
and Bi=B=l. Because returns on real assets are normally distributed, the

utility of the representative investor must be defined for normally distributed
wealth. For further discussion of these conditions see Constantinides [4],
footnote 8.

3[3] assumes that real asset returns have stationary joint probability
distributions which belong to the family of two-fund separating distributions
(e.g., see Ross [14]). [5] allows nonstationary returns on real assets.

+To apply lemma 1 to Covt[ﬁ'(W(¢t+l),t+l), ﬁi(¢ )], we must restrict the

t+l
utility function of the representative investor to the class where
EtIJ"(W(¢t+l),t+l)|<m. Because the utility function is assumed to be concave

(i.e., J"(W(¢t+l),t+1)<0), the actual restriction is E, J''"(W(¢, . .),t+1l)>-,

t t+l

®
5This is due to the fact that any stochastic process representing bond prices
must satisfy the boundary condition F(¢T,T,T)=1.

sAs discussed in Fama[7] and Constantinides[4], once this assumption is
relaxed, the indirect utility function of the representative investor becomes
state dependent.
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