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Abstract

Many manufacturing systems often need to analyze whether there is sufficient capacity to perform
several technologically-different operations for their current set of production orders. To perform
such aggregate production planning, the concept of an “operation type” is introduced. A 0-1
mathematical programming model is developed to help determine how to configure a manufacturing
system to avoid excessive capacity over- and/or under-utilization. Also, several management
priorities, such as tooling cost, machine pooling, and flexibility issues, are considered. The model
is illustrated through a sample problem and sensitivity analyses is performed to analyze the effects

of unexpected changes in the capacity requirements and in the machine capacities.

Keywords: flexible manufacturing systems, production planning, mathematical programming,
sensitivity analysis



1. Introduction

It is indigenous to a manufacturing system to check whether there is enough capacity from
the system for the different operations demanded by the production requirements. Production
planning for the equipment that performs different operations in conventional manufacturing systems
is more straightforward than in flexible manufacturing systems. In some conventional systems, the
capacity available for production can be determined directly from the available capacities of the
different single-purpose machines, as they can usually perform only a small variety of operations.
(Conventional and manual systems may also contain general-purpose machine tools.) A system with
multi-purpose computer numerical control (CNC) machines provides additional opportunities to
increase system utilization through the machine flexibility, since each machine can be used for a
variety of operations. In this case, it is useful to know if there is enough capacity to perform all of
the technologically different operations. If there is enough capacity, then next, the altemative uses
of the machines for the different operations need to be analyzed. For example, in acombined system
with mixed types (single- and general-purpose) of machines, decisions concerning whether certain
operation types should be assigned to the single-purpose machines (or not) can be considered in
order to leave the CNCs free for more complex or special operations.

The paper provides an aggregate production planning model. Aggregation means that the similar
manufacturing operations, which require the same type of machines, are aggregated into operation
types. Applying the concept of “operation types”, the variety of the alternative uses of the production
capacity can be reduced and a systematic evaluation of capacity utilization and workload balance is
possible. Balancing the workload means that

~ operation types should be assigned to the machines in such a way that there is enough
capacity to perform all of the required operation types. That is, there is no overload of
machines.

—~ operation types should be assigned to the machines in such a way that enough workload can
be assigned to the machines to avoid idle time. That is, there is no underload of machines. If,
for example, a machine is tooled just for drilling, and there is hardly any requirement for this
operation type, then this machine is under-utilized, while perhaps there is a lack of capacity

from other operation types.



In case of balanced workload, both capacity over- and under-utilization of machines are avoided.

An easy-to-use mathematical model and graphical illustrations are provided to analyze the
capacity over- and under-utilization of the machines, as well as of the entire system. In addition to
balancing workload, tooling costs, machine pooling, and other flexibility-related management
considerations are part of the model as well.

Aggregation is a widely used tool in production planning. When some elements of a production
system are treated in an aggregate manner, simpler models can be applied for capacity, inventory,
and production planning. Obviously some information is lost by aggregation, but at a certain level
of decision-making, an aggregate treatment can be sufficient. When more detailed information is
required, then the aggregated concepts are disaggregated and/or a more detailed model is applied.
In traditional production planning models, products and/or facilities are aggregated (Thomas and
McClain, 1993). Products using the same setup of the production process are aggregated into product
families and/or products with similar resource consumption are aggregated into product types. When
a good production plan and capacity utilization is determined, a detailed production program can be
prepared, in which product types and/or families are disaggregated into products (see, for example,
Johnson and Montgomery, 1974 and Hax and Candea, 1984). Facility-level aggregation means that
several different resources of the production, such as machines, workforce, and materials are
considered as a single resource or facility (see, for example, Holt et al. 1960).

Special-purpose machines perform just a small set of technologically different operations. In this
case, aggregation of machines is approximately equivalent to the aggregation of operations. In case
of multi-purpose CNCs, machines and operations have to be treated separately, since the operation
manager decides on the set of operations a machine has to perform. This fact was recognized by
Niess (1980), who aggregated similar operations into “operation types”. Niess developed an
algorithm to determine a series of sets of orders for several production periods. The generated
production program provides balanced capacity utilization, that is, there is no excess capacity over-
and under-utilization. Niess applied this method for conventional production systems consisting of
several single- and multi-purpose machines.

To solve the FMS production planning problems, Stecke (1983) proposed a nonlinear integer

production planning model. The size of this model, however, can preclude frequent application,
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especially for a large FMS. Stecke (1986) also proposed a hierarchical approach to the different
planning issues. A hierarchical approach was also proposed by Van Looveren et al. (1986) and
Jaikumar and Van Wassenhove (1989) to handle the increased complexity of FMS production
planning. Stecke and Kim (1991) suggest an aggregate approach to sequence the production of orders
for different types of parts to balance the workload for the various machine types.

Production planning of an FMS in an MRP environment was presented in Mazzola (1989). In
this case, part type selection is determined by the MRP system in the rough cut capacity planning
phase. For the selected part types, first grouping and loading of machines is solved, then detailed
scheduling is made. Since part type selection is solved independently of the grouping and loading
problem, the complexity of the model is somewhat reduced, but still the solution of real case size
models requires efficient heuristics.

The complexity of the FMS production planning problems implies that aggregation could be an
appropriate approach. The technological characteristics of these systems, however, require
modification of traditional aggregation concepts. The capability to perform a large number of
technologically different operations gan cause difficulties in production planning as well as benefits
for operation. The main contribution of this paper is to show how the increased complexity of FMS
production planning problems can be addressed by aggregating operations into operation types. Then
the aggregation concept applied for conventional systems can be extended for FMSs. The resulting
models help to attain better capacity utilization, higher throughput, and ultimately more efficient
operation,

The paper is organized as follows. In section 2, the concepts of operation type and ideal available
capacity range are introduced and the basic definitions and notation used in this paper are explained
and illustrated with tﬂe help of a sample problem. Section 3 presents a 0-1 mathematical
programming model for allocating operation types to machines while considering workload balance
and some typical management priorities. Section 4 illustrates the application of the model to a
sample problem, and demonstrates that balanced workload can be achieved with different setup
configurations. Section 5 demonstrates how sensitivity analyses can be performed to analyze the
consequences of changes in capacity requirements and machine capacities. Finally, section 6

provides some general conclusions.



2. Basic Definitions and Concepts
Definitions and concepts required for the development of our production planning approach are
described and illustrated in this section. The necessary subscripts and the parameters are summarized
in Table 1.

A flexible manufacturing system (FMS) is a collection of machines, linked together by an
automated materials handling system and directed by a central computer. An order (for a single part
type) consists of r; parts of type i. Each part type has a finite number of operations. An operation, o,
is a machine visit, and is defined by its processing time on a given machine and by the set of cutting

tools required. The number of cutting tools required for each operation j, for a particular order i, no;,

are determined by the production requirements demanded by the orders, and by the tool lives of the
required tools of the different types and by the processing times of each operation. A machine visit
requires a pallet, a fixture, and whatever is on the fixture. This is usually a single part, but may also
be multiple parts of the same type or multiple parts of several types, in one or more mounts. Each
part type may have a (partial) precedence.

An gperation type, ot,, is a fundamental type of manufacturing process. For example, possible
operation types can be milling, tapping, boring, drilling, or turning. The operation type(s) which can
be assigned to a machine is (are) determined by the machine's processing capability. For example,
a horizontal milling machine cannot perform vertical operations without refixturing the part. An

operation type set, S,, consists of a single or multiple operation type(s). For our purposes here, an

operation (requiring a set of cutting tools) belonging to one operation type is indivisible. Consecutive
operations may (or not) be assigned to the same machine. For each operation type (e.g., horizontal
milling), there is a maximum number of fools (i.e., 210 tool types) that cover all operations that are
members of that particular operation type. In any particular period over the short term planning
horizon (i.e., one month, a couple of weeks), there is a set of required orders (i.e., 10-15 orders/shift).
The operations of these orders of a particular operation type use a number of tools of different types
(i.e., 84 tools). This is the tool set of the period's tooling requirement for those orders that require

a particular operation type. We call this an operation type tool set, nt,. The tool set of an operation

type set is determined by the sum of the number of tools (including copies) required by the operation

type(s) belonging to that operation type set. We call this operation type set tool set, ns,. A limited
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number of tool sets for each operation type, ny, is available in a period for tooling up the machines.
For example, three sets of tools of an operation type might be available from which two sets of tools
can be used for tooling up two machines while one set of tools is being refurbished. Each operation
type tool set must include any required multiple copies of tools needed for large orders.

The CNC machinés can be single-purpose machines (a single operation type only can be
performed) or multi-purpose machines (two or more operation types can be performed). Capacity
of a machine, ¢, here is expressed in capacity units (CUs), over a period of, for example, a shift or
two, a day, or a week. Processing time of operation j of order i, p;; is also expressed in terms of CUs,
rather than in hours or minutes. The capacity requirement for an operation type set is the number of
CUs per period demanded by the production requirements. The production requirements for the
manufacturing system are given from a master production schedule (MPS) periodically, say each
shift, day, or week. An upper capacity bound (UB) of a particular operation type set is the maximum
amount of available capacity for an operation type set. It is calculated as the sum of the CUs of those
machines which are capable of performing any and all operations belonging to that operation type
set. A lower capacity bound (LB) of an operation type set is the minimum amount of planned free
capacity for an operation type set that is available only to the operations that belong to that operation
type set. It is calculated as the sum of the CUs of those machines which are capable of performing
only those operations belonging to that particular operation type set. This is free capacity because
if it isn't used, there is idle time on the machines. The ideal available capacity per period for an
operation type set is a range defined by the difference between the upper and the lower capacity
bounds of available capacity. The capacity is sufficient if the production requirements from all
operation type sets are less than their corresponding upper bounds. When all operations have been
assigned to machines and the workload is less than the lower capacity bound of any operation type
set, then there is machine idle time.

Weights are given to the operation type sets to trigger several possible objectives. When higher
weights are given to multiple operation type sets, the objective is to maximize “flexibility”, i.e., to
maximize the number of operation types assigned to a machine (to maximize the manufacturing
capability of the machines). When higher weights are given to single operation type sets, the

objective is to minimize “flexibility”. In either case, an attempt is made to balance the workload per
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machine over the planned periods. Intuitively, a better balance should be attained with higher
flexibility.

The introduced notation and concepts are illustrated with the help of Figures 1, 2, 3,4, and Table
2. There is a mixed type manufacturing system consisting of five metal cutting machines. This set
of machines includes three multi-purpose CNC machines (M1,M2,M3) and two single-purpose
machines (M4,M5) as shown in Figure 1. Single-purpose machines can either be conventional or
CNC machines. The system was designed to perform three operation types (ot,, ot,, and ot,), which
are drilling, vertical milling, and horizontal milling, respectively. These main manufacturing
capabilities, which are attainable through tooling up the machines, are indicated in Figure 1. For
example, ot, and ot, at machine #3 indicates that M3 is capable of performing operation types 1 and
2, (i.e., M3 does drilling and vertical milling), whereas M5 is a single-purpose machine for ot,
(drilling). Tooling is determined by all tools that are technically specified for the part types planned
for production in a particular period. Hence, M5 requires the tool set of a single operation type set
(S,), while M3 requires all the tools of ot, and ot, which compose the tool set of a multiple operation
type set (S,). (Operation type sets S,, k=1....,7 are provided in Figure 2).

The production requirements determined by the MPS are given in Table 2 for one production
period. One production period spans one shift. The different part types manufactured in the system
are termed as orders. Identification of these orders is done by the code numbers #101 through #110.
The required operation types are indicated in the heading of Table 2, while their corresponding
operations are given by the calculated processing times expressed in CUs (i.e., order #101 requires
0.10 CUs for drilling, 0.50 CUs for vertical milling, and 0.06 CUs for horizontal milling). 0.10 CUs
means that in a single eight hour shift, 48 minutes of drilling operation is required. In practice, for
order #101, the 0.10 CUs of drilling may represent the drilling operations of 5 borings with different
diameters and bore lengths, which can be processed with 5 different tools during 48 minutes. This
can be done, for example, by one machine visit either on M5, or alternatively, on M3, or on M1.

| The ideal available capacity range for each operation type set is displayed in Figure 2. The
possible operation type sets are placed on the horizontal axis. In this case, there are three operation
type sets (S;, S,, S;) with single operation types, three operation type sets (S,, S, S¢) with two
operation types, and one operation type set (S,) with three operation types. In general, the total
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number of the operation type sets, K, can be calculated as

H-1
K=( H! ) i
w1 hY{(H-h)!

where H is the total number of single operation types.

The vertical axes represent the lower capacity bounds (LBs) and the upper capacity bounds
(UBs) of each operation type set. For example, for the operation type set S;, LB=1, because M5 is
the only machine which is dedicated for ot;; UB=3, since M1, M3, and M5 are all capable of
performing ot,. For S,, which is an operation type set containing operation types ot, and ot,, LB=3
because M3 can perform ot, and ot,, M4 can perform ot,, and M5 can perform ot,. For S,, UB=5, as
all of the machines can do either ot, or ot,. If the capacity requirement is smaller than the LB of any
operation type set, then the system is underloaded, and there is free capacity on one or more
machines. For example, if less than 1 CU from ot, is required, then the single-purpose drilling
machine, MS, will have idle capacity. If the capacity requirement is greater than the UB of any
operation type set, then the system is overloaded, i.e., there is not enough available capacity for the
required operations. For instance, if more than 3 CUs are required from ot,, then M1, M3, and M5
will not have enough capacity to perform the drilling operations for the 10 orders in period 1. When
the production requirements of each operation type set are within the lower and the upper capacity
bounds (the shaded area in Figure 2), then there are neither unutilized nor excess capacity on any of
the machines. In the most favorable case, the capacity requirements of a set of orders of a given
period fall into the ranges defined by the lower and the upper bounds for each operation type set.

The capacity requirement for each operation type set is shown in Figure 3. It is calculated as the
total processing time of all operations of the corresponding operation type set.

Figure 4 plots both the ideal available capacity ranges and the capacity requirements for each
operation type set on one chart. The resulting graphical display is used to determine whether or not
the manufacturing systerh is in complete technological balance, i.c., to check whether there is any
excess capacity or lack of capacity from certain operation types. For example, in our case, Figure 4

illustrates that there are under-loadings at S, and S,. The under-loading at S, indicates that if all
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drilling operations are processed on M35, then this machine still has idle capacity. The under-loading
at S, indicates that idle capaéity may exist on M3 and on M5. The under-loading of S, is higher than
the under-loading of S,, since the total processing time of ot, does not require all of the available
capacities of M3 and M4. Therefore the idle capacity of M5 is increased by the idle capacity of M3,
The idle capacity of M3 can be utilized for a portion of ot,, but then the idle capacity of M5 increases
the under-loading, as can be seen at S,.

Figure 4 also shows over-loadings in S,, S, and S,. The over-loading at S, indicates that the
total capacity requirements of ot, are higher than the total available capacity on M1 and on M2. The
over-loading at Sy indicates that the capacity requirements of ot, and ot, together are higher than the
available capacities on machines M1, M2, M3, and M4. Finally, the over-loading at S, means that
the capacity requirements of all of the operation types are higher than the available capacities of all
of the machines.

In summary, on the one hand there could be idle capacity on certain machines, while there might
not be enough capacity to fulfill all of the requirements for certain operation types. Figure 4 also
displays the increased ideal capacity range when 20 percent capacity over- and under-utilization are
acceptable for the management. The thin dotted line represents the increased upper bounds, and the
thin dashed line shows the decreased lower bounds. The capacity requirements are within this
extended range for all operation type sets.

3. Model Formulation

The objective of the model is the optimal allocation of the operation types to machines necessary
to produce the orders of a given period. A 0-1 mixed integer programming model is developed,
which ensures that the production requirements remain within the ideal capacity ranges, tool
availability conditions are met, and some major managerial objectives are considered.

The formulation of the mathematical model is based on the notation defined in Section 2 and
summarized in Table 1. The binary decision variable x,,, is equal to one if operation type set k is

assigned to machine m, and it is equal to zero, otherwise. The integrality constraint is as follows,

ka=0 or 1, k=1,...X; m=1,...M. (1)



Whenever an operation type set k is assigned to machine m, then this machine is capable of
performing all of the operation types of that particular set.
Constraint (2) imposes that the total processing time of all operations of operation type set k

should be higher than the lower capacity bound of operation type set k, that is,

M
(-a)) Y ¢ %, sp. VS, €8 k=LK K=1..K. (@

§'y m=1

Since the lower capacity bound is the capacity of those machines which are capable of performing
only the operations of operation type set k, this constraint ensures that there will be no idle capacity
on these machines. In real manufacturing systems, production managers must generally be resigned
to a certain amount of idle capacity. Idle capacity is either planned and serves as buffer capacity to
absorb the effect of unexpected events (i.e., machine breakdowns, tool breakages, quality problems),
or it is the consequence of scheduling constraints. This fact is incorporated in the model with
parameter &, which expresses the acceptable percentage of capacity under-utilization of the
machines. For example, in Figure 4 the total processing time for all operations of S, is lower than
the lower capacity bound of S, which would make constraint (2) infeasible even for 10 percent
acceptable under-utilization («=0. 1), but feasible for 20 percent acceptable under-utilization (¢=0.2).
For S,, the production requirement is above the lower bound, therefore, constraint (2) is satisfied.

Note that the model helps to avoid capacity under-utilization resulting from improper assignment
of operation types to machines. If machines are idle because of lack of production requirements, then
there is no feasible solution for equation (2). In this case other operation management measures must
be taken, such as decreasing the number of machines assigned to the current set of orders, increasing
order number or order sizes, or ultimately accepting a high value for «.

Constraint (3) imposes that the total processing time for all operations of operation type set k

should be lower than the upper capacity bound of operation type set k, that is,

M
AP Y Yeox, 2P k=l.K h=1,..H. 3)

{vS,lot,€5,} m=1
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As the upper capacity bound i the maximum amount of available capacity for the operation type set
k, this constraint ensures that there will be enough capacity to perform all operations of operation
type setk. In real manufacturing systems, production managers need to work around a certain amount
of lack of capacity. In these cases, management may consider overtime, subcontracting, or other
possible capacity adjustments. This fact is incorporated in the model with the parameter {3, which
expresses the acceptable percentage of capacity over-utilization. For example, in Figure 4 the total
processing time for all operations of S, is lower than the upper capacity bound of S,, which makes
constraint (3) feasible. For S,, the total processing time is higher than the upper bound and therefore,
a certain amount of overtime is required. If 20 percent capacity over-utilization is acceptable, then
constraint (3) for S, is feasible (f=0.2).

Constraint (4) ensures that only one operation type set is assigned to each machine, that is,

K
Yx, <1,  m=l..M @
k=1

Constraint (5) describes the limitations on tool availability:

M
Y Yx, sn, k=LK k=l H 5)
(VS,|ot,e8;) m=1

The left-hand side of constraint (5) calculates how many times each operation type appears in the
allocated operation type sets. These calculated values should be less than the maximum number of
available tool sets of each operation type.

There may be several operation type set allocations satisfying constraints (1)-(5), especially when
relatively high values for o and P are chosen. However, they can all make workload balance
possible. Stecke and Solberg (1985) and Stecke and Morin (1985) showed that balancing the
workload of machines in FMSs may provide optimal throughput under certain conditions. Note,
however, that workload is not allocated to the distinct machines by this model. Allocating operation

types to machines determines how much workload can potentially be assigned to them in the next
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phase, when production scheduling is done. For example, consider a system with two machines (M1,
M2), and requirements for two operation types (for example drilling and milling). Let the required
processing time be equal to 0.1 CU for drilling and 0.9 CU for milling. In case a, drilling is allocated
to M1 and milling is allocated to M2. The maximum amount of production which can be performed
is 0.1 CU on M1 and 0.9 CU on M2. In case b, both drilling and milling are assigned to M1 and only
milling is assigned to M2. In this latter instance, 0.1 CU of drilling and 0.4 CU of milling on M1 and
0.5 CU of milling on M2 can provide a perfect workload balance. Allocation of the exact processing
times to machines is not the objective of this model. However, if operation type allocation does not
consider workload balancing, then the system may not be balanced when production scheduling is
actually performed (see case a). Constraint (2) limits the possible capacity under-utilization of
machines with the help of a specified . This way the situation of case a of the previous example is
avoided.

Besides workload balance, other management priorities can be considered with the introduction
of weights assigned to the operation type sets. Applying such weights, the following objective

function is formed:

K M
E E Wen *im® (6)

k=1 m=1

The resulting model can be either a minimization or a maximization problem.

One management priority is the minimization of tooling costs. After purchasing, tooling costs
include the costs of preparation (sharpening, measuring, repairing) and loading (changing tools in
the tool magazine, machine down time, adjustments) of the operation type set tool set. The tooling
cost of an operation type set tool set can be expressed by the weights, w,,, which can be determined
by the number of tools and by the technical complexity and geometrical characteristics of the parts.
Applying these weights, an objective function is developed, which should be minimized.

Another management priority can be to utilize the benefits from machine pooling. It has been
shown that machine pooling may improve system performance (Kleinrock, 1975, Stecke and Solberg,

1985). Pooling machines alleviates the effects of machine breakdowns, facilitates part routings, and
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reduces material handling of the parts. The ideal pooling would be to load every machine with all
tools for every operation type. This strategy, however, is usually neither feasible (tool and tool
magazine limitations), nor necessary (there may be small workload requirements of certain operation
types relative to others). Pooling should be done based on the production requirements. When
machines are pooled, they are identically tooled to perform an operation type set S,. That is, the
workload of operation type set S,, which is given by p,, will be split among all of the machines
pooled for S,. The workload can be balanced among pooled machines when the average workload
of the pooled machines is close to the average workload of all the machines. This can be expressed

by the following weights.

Py
Py

Wi = k=1,...K; m=1,...M,

~P average |’

0

]

P average

where

1 H
average = '1‘_4' hg (8)

A general belief of management, and a naive measure, is that flexibility can be defined by the
number of operations that a machine can perform. More operations tends to mean more flexibility.
In this case, if the same number of operations can be performed on two machines, then the flexibility
is the same. Then an objective function that assigns higher weights to multiple operation type sgts
expresses the management priority of maximizing flexibility. Different managerial attitudes and
business objectives, demand patterns, and manufacturing conditions may cause different evaluations
of flexibility at different plants. The different evaluations of flexibility can be expressed with utility
measures. In the literature, there are approaches to elicit the necessary information, and to quantify

them (Keeney and Raiffa, 1976, Wakker, 1989). Depending on whether the advantages of flexibility
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or the disadvantages of the lack of flexibility are expressed with the weights (w,_), either a
maximizing or a minimizing objective function can be formulated.

An easy way to form weights for flexibility is to normalize the production requirements of each
operation type set in a given period. In this case, flexibility will be required just for those operation

type sets which have relatively high workloads. These weights can be calculated as

b,
w, = R k=1,...K; m=1,...M.
8 ©

Eph

h=1

4. Numerical Illustration

The data used in Section 2 is applied to illustrate the formulation and solution of the aggregate
production planning model. The manufacturing system consists of five identical CNC machines.
These machines should be able to process the orders of one period, listed in Table 2. The operations
of the orders are aggregated into three operation types, which form seven operation type sets. The
total processing time of each operation type set, p,, is given in the second row of Table 3. The
acceptable levels of capacity under- and over-utilization of the machines are equal to 20 percent
(¢=p=0.2). The available numbers of the operation type tool sets, ny, are three, four, and two,
respectively.

With this data, the mathematical model consists of seven lower bound constraints (2), seven
upper bound constraints (3), five constraints (4), three tool availability constraints (5), and thirty five
0-1 decision variables. The model is solved for four different objective functions. The objective
function coefficients (w,,) of the four objective functions are given in Table 3. Since all five
machines are considered identical, the weight of an operation type set is identical for all the five
machines (w, ;= ... =w, 5). The corresponding optimal solutions are given in Table 4.

The weights, w,,, applied for the tooling cost minimization problem are given in the third row
of Table 3. These data were estimated by experts and they reflect the higher costs of the use of
multipie operation types. When these weights are applied, the use of dedicated machines is favored.
This is reflected by the ‘r’csults, given in the second row of Table 4. It can be seen that only one

operation type is assigned to each of the five machines. M2 is loaded for ot;, M1 and M5 are loaded
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for ot,, and M3 and M4 are loaded for ot,. The results also show that the orders can be manufactured
in a system consisting of dedicated machines only, with less than 20 percent capacity over- and
under-utilization.

The weights, w,.,, applied for the machine pooling maximization problem are given in the fourth
row of Table 3. These coefficients are calculated by equations (7) and (8). In case of w, ,, equation
(7) yields infinity, which indicates that machines loaded just for ot, are not suitable for pooling at all.
Since the total processing time of operation type set S, does not fill the available capacity of a single
machine, it is obviously not logical to pool machines with this operation type set. This pooling would
provide much excess capacity. In case of w, ., equation (7) yields zero, which means that a perfect
workload balance can be gained with the total pooling of all five machines. This, however, is not
possible because of the tool availability constraints. The results are given in the third row of Table
4. It shows that the first three machines are pooled and loaded for ot and ot,, M4 is loaded for o,
and ot,, and M5 is loaded for ot;.

The first flexibility maximization problem uses utility measures in the objective function. The
applied weights, w,, are given in the fifth row of Table 3. These are the same coefficients as the
weights for the tooling cost objective function, but now this function is maximized. It can be seen
that the highest priority is given to the machines which are loaded for all of the operation types. The
results, in the fourth row of Table 4, show that two machines are loaded with all of the operation
types. This result may ';1150 suggest that two flexible machines and three dedicated machines can
produce all operations of the orders in this period.

The second flexibility maximization problem uses the relative workload of operation type sets
in the objective function. The applied weights, w,,, are given in the sixth row of Table 3. These
coefficients are calculated by equation (9). In this case, one machine is loaded for all operation types,
two machines for two operation types, and two machines are operated in a dedicated manner, ag is
shown in the fifth row of Table 4. This result was applied to the sample problem in section 2, and
its implementation is shown in Figure 1.

The solutions of all four problems make it possible to balance the workload when the orders are
assigned to the machines in the next planning phase, provided that 20 percent capacity over- and

under-utilization is acceptable.
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5. Sensitivity Analysis

Sensitivity analyses of the parameters of the model can help to analyze how certain changes
affect the capacity over- and under-utilization of the manufacturing system. The production
requirements (p,) of an operation type and the machine capacity (c,) are the most important
parameters altered by unexpected changes. For these instances, sensitivity analysis can determine the
validity range of a chosen parameter, within which the system remains balanced, that is, the capacity
requirements remain within the ideal available capacity range. This sensitivity range can be
determined by the feasible increase and the feasible decrease of a given parameter.

5.1. Sensitivity analysis of the total processing time of an operation type (p,)

Every change concerning the orders may result in a change of their production requirements. A
customer may request an increase of an order. Another customer may cancel an entire order. A
customer may require a small modification of the product which may result in, for example,
increased drilling time. In case of a rush order, the production requirements of all operation types
may change. The sensitivity analysis of the total processing time of an operation type can help to
analyze the consequences of these situations.

The sensitivity range of a particular processing time, py, can be determined by calculating the
possible change of p, for all operation type sets that contain operation type ot,. That is, a range is
computed forall S,, when ot €S,. The feasible decrease of the total processing time of operation type
h, Ap, , is determined by the minimum of the algebraic differences between the processing times and

the capacity lower bounds for all operation type sets which contain operation type ot,, that is,

’ '

- L k=1,.K; K'=1,..K’

Ap = Min |p-(-0) X Ncx | Fo SSEG (g)
' {Vsk'wkesk) ¢ S’y m=1 h—l,"'H | VS kK o Sk. (

The feasible increase of the total processing time of operation type h, Ap,*, is determined by
the minimum of the algebraic differences between the capacity upper bounds and the processing

times for all operation type sets which contain operation type ot,, that is,
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; ] Yy ¥ k=1,..K;
Apy = Min |0+B) % Pr|  pe1 H (11)
(VS lot,eSy) {(VS,lor,€S,} m=1 -5

The results obtained from equations (10) and (11) when applied to the sample problem are
given in Table 5. The sensitivity ranges are valid for 20 percent acceptable capacity over- and under-
utilization (0t=P=0.20). The second row of Table 5 shows that the capacity requirement of ot; cannot
be decreased without the violation of the lower capacity bound (Ap, =0). Figure 4 shows that for S,,
the capacity requirements are equal to the 20 percent decreased value of the lower bound. Therefore
the minimum in ( 10) is found at S,. The acceptable increase of the capacity requirement of ot, is
equal to 0.9 (Ap,*=0.9). The change of the capacity requirement of ot, affects operation type sets S,
Ss S5, and S,. Checking the differences between the 20 percent increased value of the upper bound
and the capacity requirements of these operation type sets, the minimum of equation (11) is found
atS,.

For ot,, an acceptable decrease of p, is equal to 0.3 (Ap, =0.3). The change of the capacity
requirement of ot, affects operation type sets S,, S,, S, and S, and the minimum of the differences
is found at S, as is shown in Figure 4. The feasible increase of p, is equal to 0.5 (Ap,"=0.5) and this
value is found at S,

For oty, Ap, =1.1, that is, a considerable decrease of the capacity requirements of ot; is
possible without violating the lower bound. The value of zero for the feasible increase of the capacity
requirement of ot, (Ap,*=0) shows that the production system cannot perform more of this operation
type unless it exceeds the available capacity by more than 20 percent.

The results in Table 5 are independent validity ranges, that is, the feasible decrease and
increase is valid only if the capacity requirements of a single operation type change. When the
capacity requirements of more than one operation type set changes, a joint range for all of the
simultaneously changing parameters can be determined.

5.2. Sensitivity analysis of the machine capacity (c,,)
The capacity of the machines may decrease because of machine breakdowns, unexpected

production stops, or waiting for operators, repair-persons, or tools and materials. The capacity
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increase can be regarded as scheduled overtime or as the organization of extra shifts. The sensitivity
analysis of the machine capacity can help analyze these situations.

The sensitivity range of the available capacity of a particular machine can be determined by
calculating the feasible change of the upper and lower capacity bounds of all of those operation type
sets which are affected by the change of the operation type set assigned to that machine. For example,
if a machine is tooled just for drilling, then the feasible change of the upper and lower capacity
bounds of all of those operation type sets which contains drilling has to be examined.

The capacity decrease of a machine diminishes both the lower and upper capacity bounds.
For our purposes, the decrease of the upper bound is relevant, because it may result in an infeasible
capacity over-utilization. When the capacity of a particular machine changes, then all of the capacity
upper bounds of those operation type sets, which contain any and all of the operation types assigned
to this machine, are affected. The feasible decrease of the capacity of machine m, Ac,, is
determined by the minimum of the algebraic differences between the capacity upper bound and the

processing time for all of the affected operation type sets, that is,

M k=1,..,K;
Ac,=  Min  ((1+B) X, Deyx,op|  hELLH (1)
(Y8, ]2, =1,01,€5,) (VS,|or,€8;) m=1 m=1,...M.

The capacity increase of a machine augments both the lower and upper capacity bounds. For
our purposes, the increase of the lower bound is relevant, because it may result in an infeasible
capacity under-utilization. When the capacity of a particular machine changes, all of those capacity
upper bounds of operation type sets, for which the operation type set assigned to the machine is a
subset, are affected. The feasible increase of the capacity of machine m, Ac_*, is determined by the
minimum of the algebraic differences between the processing time and the capacity lower bound for

all of the affected operation type sets, that is,

3 ’K’ k,=1""!K,;

1
M
Ac, = Min p-(1-0)-3° ) Com Fim L VS < 8 (3

k=
h=1,..H
(VS % =1s Spe8y) §'y m=1 m=1,...M.
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The results computed for the sample problem using (12) and (13) are given in Table 6. The
sensitivity ranges are valid for 20 percent acceptable capacity over- and under-utilization (¢=$=0.20).
The second row of Table 6 shows that the capacity of M1 cannot be decreased without violating the
upper capacity bounds (Ac, =0). All operation types are assigned to M1. Therefore, every operation
type set contains at least one of the operation types of M1. Thus, the difference between the 20
percent increased value of the upper bounds and the capacity requirements for all operation type sets
must be checked, and the minimum of equation (12) is found at S,. Figure 4 shows that for S, the
capacity requirement coincides with the acceptable capacity over-utilization. Therefore, the capacities
of those machines which contain ot, cannot be decreased. This also explains the zero value found
for the feasible decrease of the capacity of M2 (Ac, =0). The feasible increase of the capacity of M1
is equal to 1.1 (Ac,*=1.1). The operation type set assigned to M1 is S;. This is the largest set and it
effects exclusively the lower capacity bound of operation type set S;. (S, is a subset of only itself.)
Thus, the difference between the capacity requirements and the 20 percent decreased values of the
lower bounds must be checked at S, and it is equal to 1.1. For M2, the assigned Sq is a subset of S,
and a subset of itself. The smallest difference between the capacity requirements and the 20 percent
decreased value of the lower bounds is found at S,. Therefore, the feasible increase for M2 is also
1.1 (Ac,*=1.1). -

Machine M4 contains a single operation type, ot,. In this case, the feasible decrease of the
machine capacity is equivalent to the feasible increase of the production requirements of ot,, that is,
Ac, =Ap,"=0.5. Similarly, the feasible increase of the machine capacity is equivalent to the feasible
decrease of the production requirements of ot,, that is, Ac,*=Ap, =0.3. Machine M5 also contains a
single operation type, ot,. The last row of Table 6 shows that the feasible capacity change of this
machine is the same as the feasible change of the production requirements of ot,, except that the
value of the feasible decrease must be changed by the value of the feasible increase.

6. Conclusions

FMSs are capable of performing a wide variety of technologically different operations.
Therefore, any model trying to handle all of the operations has to cope with the problem of
complexity. The aggregation of operations into operation types can help to address this problem.

The paper provides an easy to use graphical and mathematical model to analyze the availability of
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capacity. An operation type set assignment to machines is determined, which ensures that there will
be no machines with excess idle time or too much overload of work. If machines are tooled in
accordance with the result of the model, then workload balance can be achieved. Besides workload
balance, other planning issues exist in an FMS. Several objective functions are also presented to
determine alternatives for cheaper tooling, increased flexibility, and better pooling of machines.
The results of the model can be used as input to production programming. A production
prograxh has to be found, which provides the assignment of orders to the machines and includes the
details of tooling. If the production program is consistent with the operation type set assignment, then
workload balance will be achieved and the management priority expressed by the objective function
will be ensured.
The number of decision variables is determined by the number of operation types. Therefore
a careful aggregation strategy has to be chosen. If operations are aggregated into very few operation
types, then the problem is easy to solve, However, then the model for disaggregation (i.e., for
production programming) will be more complex. If the number of operation types is high, then the
aggregate model is difficult to solve, but the subsequent production programming will be easier. This
is, however, a general problem of all existing aggregate production planning models. The formulation
of disaggregation models for detailed tooling and routing with various objective functions is a topic
for further research.
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Captions and Table Headings

Figure 1. Allocation of operation types to the machines in the sample manufacturing system

Figure 2. Ideal available capacity ranges for the operation type sets

Figure 3. Capacity requirements for the operation type sets

Figure 4. Ideal available capacity ranges and capacity requirements for the operation type sets
(x=p=0.2)

Table 1. Notation

Table 2. Production requirements in CUs for one period

Table 3. Objective function coefficients

Table 4. The results of the operation type assignment

Table 5. Sensitivity analysis of the production requirements (a=p=0.2)
Table 6: Sensitivity analysis of the machine capacity (¢=p=0.2)
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