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Production Planning for Flexible Flow Systems
with Limited Machine Flexibility

Abstract

A flexible manufacturing system (FMS) is highly capital-intensive and FMS users are
concerned with achieving high system utilization. The production planning function for
setting up an FMS prior to production should be developed in order to make the most of the
potential bencefits of FMSs. We consider two production planning problems of grouping
and loading a flexible flow system, which is an important subset of FMSs where the
routing of parts is unidirectional. We show that considering this routing restriction as well
as limited machine flexibility strongly affects both the solution techniques and the quality of
the solutions. Because of the complexity of the problem, we present a heuristic approach
that decomposes the original problem into three interrelated subproblems. We show that .
the proposed approach usually finds a near-optimum solution and is superior to an
approach that exists in the literature of FMS production planning, We also introduce
effective heuristic methods for two new subproblems that arise because of the
unidirectional flow precedence and flexibility constraints, Computational results are
reported and future research issues are discussed.

Key Words: Flexible Manufacturing Systems, Flexible Flow Systems, Production
Planning, FMS Grouping Problem, FMS Loading Problem, Machine Flexibility, Closed
Queueing Networks.



1. Introduction

A flexible fnanufacturing system (FMS) consists of computer numerically controlled
machines that are capable of performing many different operations and linked by a material
handling system (MHS). All operations and material movements are monitored and
controlled by a computer system. An FMS combines automation suitable for mass
production with flexibility suitable for job shop production. The type of FMSs studied in
this paper are flexible flow systems (FFSs), where the routing of parts is unidirectional.
An FFS is very common for both assembly and machining systems due to easy production
control and the efficiency of a flow system. Such an FFS includes most flexible assembly
systems (Kamath et al. 1988), and flexible machining systems with U-layouts (Harmon
and Peterson 1990), loop layouts (Afentakis 1989), and some group-technology-based
layouts.

Making the most of potential benefits of such expensive FMSs requires well-thought
out production planning before it begins production for each upcoming time period. Stecke
(1983) provides five categories of production planning problems for FMSs, which are part
type selection, machine grouping, loading, resource allocation, and production ratio
determination. The focus of this paper is on two of them, namely, grouping and loading
problems. The machine grouping problem is to partition the machines of the same type into
identically tooled machine groups. Each machine in a particular group is able to perform
the same operations. The loading problem is to assign operations and their tools to
machine groups subject to some technological constraints, such as precedence and which
machine tools are capable of performing which operations.

Several researchers have studied grouping and loading problems for FMSs, using
different techniques such as mathematical programming, queueing networks, and
simulation. Stecke and Solberg (1985) and Dallery and Stecke (1990) address the
grouping and loading problems, using closed queneing network models for FMSs. They
provide useful guidelines on maximizing system throughput. They found that (1) fewer
groups are better, and (2) unbalanced configurations of assigned machines are superior to
balanced ones, and (3) unbalanced workloads are better than balanced ones. They report
that there can be significant differences in the throughput from balanced versus unbalanced
configurations/workloads.

Stecke (1983) provides a nonlinear mixed integer formulation for various realistic
loading problems and gives a linearization solution method. Berrada and Stecke (1986)
develop a branch-and-bound algorithm to solve a similar formulation in a more user-
friendly manner with the workload balancing objective. Kim and Yano (1993) view the
loading problem as a multi-dimensional bin-packing problem and presented a heuristic



approach using multi-pass algorithms. Some researchers study loading problems with two
objectives. Shanker and Tzen (1985) try to balance workloads, while minimizing the
number of late parts. Ammons et al. (1985) have an objective of minimizing workload
imbalance and material movements between machines. Lashkari et al. (1987) give a
nonlinear mixed integer formulation for loading with the two objectives of minimizing
transport load and minimizing refixturing activities, There are also studies (Stecke and
Solberg 1981 and Greene and Sadowski 1986) which address the loading problem in
conjunction with FMS scheduling problems.

Some researchers address both grouping and loading problems for FMSs. Stecke
(1986a) presents a hierarchical framework in which the grouping problem is solved and
then the loading problem is solved using the input from the grouping problem. Several
loading objectives are discussed within the framework. Some iteration is recommended
until a satisfactory solution is obtained. Kim and Yano (1992) present an iterative and
hierarchical approach to address these two problems with part type selection also. They
simplify the part type selection problem by using a prioritized list of part type orders. For
selected part types, the iterative approach resorts to an exhaustive search method to solve
first the grouping problem and then the loading problem. These approaches model FMSs
using closed queueing networks. See Templemeier and Kuhn (1993) for a comprehensive
survey of FMS planning papers.

In this paper, the grouping and loading problem for FFSs are studied for the first time,
to our knowledge. What is unique in this problem is the consideration of both the
unidirectional part flow in FFSs in conjunction with limited machine flexibility. This part
flow restriction imposes a new type of constraint on the loading problem since there are
precedence relations among operations and parts do not revisit a machine group in FESs,
We show that this flow restriction also affects the choice of machine groups. The previous
approaches do not consider material flow and handling aspects of FMSs because there are
no fixed precedence relationships for all part types in FMSs and so it was not important to
consider part transfer times. This new constraint clearly makes the problem more difficult
and greatly affects the solution techniques to be employed. We present a heuristic method
that elegantly decomposes the original problem into three subproblems each of which is
manageable. We show through numerous test problems that the proposed method usually
finds a near-optimum solution and improves on the approach proposed by Kim and Yano
(1992) in both effectiveness and efficiency. This approach, however, does not consider
precedence requirements and some modification is necessary for the comparative study.

This problem is similar to the line balancing problem (Baybars 1986) in that both
involve the assignment of operations among machine groups in a flow line and precedence



relations among operations place an important restriction on the operation assignment,
However, the line balancing problem deals with only a balanced configuration, typically
one machine per machine group, and assumes no limitation in machine flexibility.

The remainder of the paper is organized as follows, In Section 2, we discuss the model
for FFSs and state the mathematical formulation for the problems. In Section 3, we
present the decomposition-based heuristic approach and the solution methods for the three
subproblems. We present our numerical results in Section 4. Finally, in Section 5 we
summarize our findings and discuss some future research directions.

2. Problem Formulation

Given available resources such as machines and material handling devices, part types to
be produced simultaneously for an upcoming period, and their production requirements,
the problem of grouping and loading FFSs is to simultaneously find machine groups and
assign operations among the machine groups. The objective here is to maximize the system
throughput or system utilization. An FMS is highly capital-intensive and FMS users are
concerned with achieving high system utilization (Stecke and Kim 1991). A key objective
of planning FMSs that produce part types having independent demands is the maximization
of system utilization (Smith and Stecke 1996). By maximizing throughput over the short
term, we can also accomplish other goals, such as meeting due dates or reducing operating
costs (Kim and Yano 1992). The system or equipment, however, cannot reach 100%
utilization since there are limits on the WIP allowed into the system (i.e., because of a
limited number of pallets) and there is randomness in the system.

This objective is considered here under the two constraints of the unidirectional flow
and limited flexibility capacity. In order to meet this flow constraint, the loading problem
needs to explicitly address precedence relations among operations. The flexibility capacity
constraint limits the maximum number of operations that can be assigned to each machine
group. Each machine type in FFSs has a flexibility capacity, which is measured in terms of
the number of operations that this machine type can perform one after another with
negligible setup times between operation changes (Sethi and Sethi 1990). For example, in
flexible machining systems, CNCs performing various metal-cutting operations are
equipped with tool magazines which can hold a certain number of cutting tools, and among
these tool changes there are negligible changeover times. The tool magazine capacity is
typically 30, 60, or 120 slots in commercial flexible machines (Singh 1996). In flexible
assembly systems, automatic insertion machines or assembly robots perform a limited
number of assembly tasks because they have a finite work space due to their physical
configurations and component feeding mechanisms associated with each assembly task use
some of the finite work space (Ammons et al. 1985, Lee and Johnson 1991),



We use a product-form closed queueing network (CQN) model to represent the FESs.
CQON models hﬁve been widely-used to represent FMSs (Suri and Hildebrant 1984, Stecke
and Solberg 1985, Kamath et al. 1988, Kouvelis and Lee 1995) since Solberg (1977) first
suggested its use for FMSs, This is because these models can capture the aspects of
material handling systems and product flows, of resource contention, and of random events
occurring in FMSs in a reasonably adequate and robust manner. They take into account the
interactions and congestion of parts competing for the same machines and represent in an
aggregate manner the stochastic behavior of work flows due to the uncertainty and
dynamics in FMSs, Our intent here is not to validate CQN models but to use a CQN model
to solve production planning problems for FFSs.

For the FFSs being considered, the throughput per period, TH, is computed from the
CQN model as a function of the following eight parameters: (a) the number of machine

groups M, (b) the number of pallets circulating in the system N, (c) a machine vector S=
(S1,53,-..,SM), where §; is the number of identically-tooled machines at machine group i,

(d) workload vector W = (W1, W2,....Wn), where Wi is the sum of the weighted average

operation times assigned to group i (i.e., the average processing time required to process

one of the aggregate parts), (€) processing capacity vector P= (P,P2,...,PMm), where Pjis
the total available processing time of a machine at group i per period, (f) average material
handling time required to produce one part W, (g) the number of automated guided
vehicles (AGVs), So, if used, and (h) the total available material handling time (by an AGV
or conveyor) per period P,. See Reiser and Lavenberg (1980} for the CQN TH formula.

In the CQN, one aggregate part type, an average part, collectively represents the
individual part types. Precedence diagrams of all part types are merged and represented as
one super precedence diagram for the aggregate part. This precedence representation is
common in mixed-model production, where different part types are simultaneously
produced. (See Graves and Redfield 1988, Liu and Sanders 1988, and Lee and Johnson
1991), Demand and operation times for the aggregate part are specified as the sum of
demands and the weighted average operation times among the individual part types,
respectively. Processing times lost from small but regular disturbances such as tool jams
or tool replacements are also added as part of the average operation time. See Lee and
Johnson (1991) for an example of an aggregate part,

The problem of simultaneously grouping and loading FFSs can be mathematically
stated below. Table 1 provides the notation used throughout this paper.

<Insert Table 1>
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Equation (1) defines Wi, the workltoad at machine group i, as the sum of the operation
times assigned to group 1. Constraint (2) is the flexibility capacity constraint which limits
the number of operations assigned to each group. Constraints (3) and (4) are assignment
constraints which force each operation to be assigned to exactly one group. Constraint (5)
models the precedence relations among operations and ensures that a part does not revisit

any group in the flow system, Decision variables are M, §, and (X;;j) and Problem P0 is a
nonlinear integer programming problem with a complex objective function, which is clearly
hard to solve optimally.

3. Solution Approach

We propose a heuristic method which decomposes the decision variables into two
groups: the assignment of operations to groups and the rest of the decisions. The
assignment of operations to groups represents the majority of the decision variables, and

the two sets of decisions are nicely related through the workloads, W. Thus, instead of
solving the original problem, the methodology solves a relaxed problem where the decision
of assigning operations to groups is replaced by the decision of continuously allocating the
total workload to machine groups. This replacement allows a reduction in the number of
decision variables from nM to M.

For a given number of machine groups, the proposed method solves three subproblems
in order. The first sixbproblem is the workload bound problem (WBP), which is to find



workload upper and lower bounds at each group, such that workloads outside the bounds
cannot be achieved by any operation assignment. The second subproblem is the workload
allocation and grouping problem (WAGP), which is to solve the relaxed problem with the
workload bound constraint from the WBP. Since the WAGP deals with the relaxed
problem instead of the original problem PO, the maximum throughput obtained here serves
an upper bound on the maximum throughput of PO, The WAGP also provides target
workloads as part of the solution, which are input to the third subproblem, the operation
loading problem (OLP). The OLP concerns only the assignment of operations among
groups so that the resulting workloads are as close as possible to the target workloads. The
rationale behind this decomposition is that the CQN throughput function, TH, is unimodal

and well-behaved with respect to the workloads, W (Stecke 1986b, Lee et al. 1991a). The
relationship, input, and output among the three subproblems are shown in Figure 2.
<Insert Figure 2>

The proposed method can iterate over the different number of groups, starting with the
smallest number and incrementing by one uatil it equals the total number of machines, The
general guideline, however, favors the smallest nember (Stecke and Solberg 1985, Dallery
and Stecke 1990). The smaller number of machine groups allows larger resource pooling,
which results in not only larger throughput but also larger routing flexibility and reliability.
In the remainder of this section, we discuss the mathematical formulation and solution
method for each subproblem. For simplicity of presentation, we focus on PO with a single
type of flexible machine (C=1), which is capable of performing all operations.

A similar decomposition approach was taken by Lee et al, (1990) to solve a complex
design problem for flexible assembly systems, where the decision variables include not
only operation assignment but also capacities of machines and material handling devices
with the objective of minimizing total design cost. They present 2 methodology which
decomposes the design problem into six subproblems. The focus of their work is a
framework of the methodology and relationships among the six subproblems. No details
of solution methods for those subproblems are addressed. In this paper, we show that
some of the subproblems can be used to solve a production planning problem in FFSs,
Solution methods for the WBP and the OLP are presented for the first time with
experimental results. We show that the proposed method performs better than an existing
method in the literature.

3.1 The Workload Bound Problem (WBP)
The first subproblem, WBP, identifies the feasible region of workload allocation, The
WBP finds tight workload upper and lower bounds at each machine group subject to the



machine flexibility and unidirectional flow constraints. Thus, the resulting target
workloads from the WAGP become more achievable, and consequently, easier to fit in the
OLP than those from the WAGP without the workload bounds. The visit sequence is the
sequence in which a part visits machine groups and is 1,...,M. The following example
clarifies the WBP.

Example 1. We use an aggregate part of Figure 1. Let the machine flexibility R = §, and
M =2, Denote Uj and L; as workload upper and lower bounds at group i, respectively.
Then, Uj is the sum of the five largest operation times that can be assigned to group 1, that
is, U1 = t1+ta+t3+ta+tg =19. The flexibility limit of R=5 prevents group 1 from having
more than five operations assigned. Although ts > t3, operation 5 cannot replace operation
3 because assigning operation 5 to group 1 makes a part visit group 1 twice. At the first
visit, operations 1 and 2 can be processed but operations 4, 5, and 6 cannot due to
precedence requirements. On the other hand, L is the sum of the two smallest operations
that can be assigned to group 1, that is, L1 = tj+tp =9. Less than two operations cannot be
assigned to group 1 since group 2 can have at most 5 operations assigned due to the limited
flexibility, Replacing either operation by any other operation would require a part to revisit
group 1. Similarly, Uy =t3+t4+ts+tg+ty =20 and Ly = t5+t7 =10.

Before we present the solution method to the WBP, we give three lemmas which state
how many operations should be assigned to each group at the workload bounds. Denote
M, as the smallest number of groups, i.e., Mo = [n/R], where [x]is the smallest integer
greater than or equal to x, Alsolet r=n - R-(M,-1).

Lemma 1. When Mg £ M < n+2-R, Uj is the sum of R operation times for every 1.
Lemma 2. When M = M,, L is the sum of r operation times for every 1.
Lemma 3. When M >M,, L is only one operation time for every i.

The lemmas can be easily proved by using the pairwise interchange argument (Baker
1974). For example, in Lemma 1, suppose R-1 operations are assigned to group i and n-
(R-1) operations assigned to the other M-1 groups, without violating precedence
requirements for a flow system. Then, it is always possible to move an operation to group
i through pairwise interchanging between two adjacent groups without violating precedence
requirements. This movement increases total workload assigned to group i. We now
present the solution procedure to the WBP.

Procedure 1. A solution procedure to the WBP
Step 1. For each j, find the first and last groups, fj and I, in the visit sequence to which
operation j can be assigned. Find the sets of operations, Vi, fori =1 to M, which can



be assigned to group i as follows: Vi ={jfj<i</j}, where fj and l; are obtained
from the following equations (Talbot and Patterson 1984):

Jj = (1 + the number of operations preceding operation j ) /R 1 and
lj =M +1- [ (1 + the number of operations following operationj) /R 1.

Step 2. Find Uj fori =1 to M, where Mg £ M < n+2-R. From Lemma 1, this involves
finding a set of R operations in Vi which maximizes the sum of their operation times
and allows no revisit by a part to any group.

Step 3. Find Lj for i=1 to M. When M = M, from Lemma 2, this involves finding a set
of r operations in Vi which minimizes the sum of their operation times and allows no
revisit by a part to any group. When M > My, Lj is simply the smallest operation time

in Vj according to Lemma 3,

We use fjand /j in Step 1 in order to find tighter workload bounds in Steps 2 and 3.
This is done by exploiting precedence relations among operations and excluding cperations
which cannot be assigned to a particular group.

Step 2 is difficult to formalize and solve optimally. We transform Step 2 into a variant
of a graph problem that is easier to solve but may provide looser workload bounds.
Consider a directed graph Gq that is induced by V; and the precedences among operations
in V;. We use notation j <k for j and k in Vj when there is a directed path from operation j
to operation k, and j X k when there is no directed path from j to k.

Procedure 2, Transformation into the Maximum-weight Connected Graph Problem (MCGP)

Step 1. Create an undirected graph G from Gq by replacing any precedence arc in Gg with
an edge and by adding an edge between j and k when j Xk and k X j.

Step 2. Find a connected subgraph of G; with R nodes (i.e., operations) that maximizes
the sum of their operation times. We call this problem the maximum-weight connected
graph problem (MCGP), where t; is viewed as the weight of node j.

The motivation behind this transformation is that it is not easy to check for a possible
revisit in Step 2 but there is a very efficient algorithm to check connectivity of a graph (Aho
et al. 1974). Note, by definition of fj and /j , that the optimal solution must include those
operations which have both fj and /j equal to i. A similar technique can be applied to find
Ljin Step 3 for the use of minimization instead of maximization. The following example
clarifies the transformation and the MCGP to find workload bounds.

Example 2. Consider the aggregate part of Figure 1. First find (fj, /) for j=1to 7.
These pairs are (1,1), (1,1), (1,2), (1,2), (1,2), (1,2), and (2,2). V1 =1{1,2,3,4,5, 6}



and V2= (3, 4, 5, 6,7}, Note that operations 1 and 2 must be assigned to machine group
1 since their f and lj's are equal to 1. Similarly, operation 7 must be assigned to group 2.
Figure 3 shows the transformed undirected graphs. Two edges are newly added in both
G and Gp. In Gy, one edge is added between operations 1 and 2 and the other between 5
and 6, since there are no directed paths between them. Since R=5, n=7, M=M,=2, we
have r=3. To find Uy, the MCGP finds five operations that form a connected subgraph of
G| and maximizes the sum of their operation times. Since the five operations must include
operations 1 and 2, Uy = ti+to+t3+tg+tg =19. Uz and L1 are directly obtained as Uy =
t3+ta+ts+tg+ty =20 and Ly = t1+tp = 9. To find La, the MCGP finds two operations that
form a connected subgraph of G7 and minimizes the sum of their operation times, Since
the two operations must include operation 7, Lg = ts+t7 = 10. Note that all four bounds
obtained here happen to be the same as the "true" workload bounds obtained in Example 1.
<Insert Figure 3>

Lee and Dooly (1996) present solution methods for the MCGP, using a variant of the
Balas additive method with an imbedded connectivity test and other fathoming methods.
Although the workload bounds of the MCGP are theoretically looser than those of the
WBP, we show, in the experimental results of Section 4.2, that they are quite effective in
finding a near-optimal solution ta PQ.

3.2 The Workload Allocation and Grouping Problem (WAGP)
Given the numbers of available machines, AGVs, and pallets, (X, So, and N), the
WAGP is to determine the allocation of K machines among M groups and the continuous

n
allocation of total workload, 'I'W=21 tj, among the groups. The objective is to maximize
F

throughput, TH, subject to a constraint that the allocated workloads must lie between the

lower and upper bounds obtained from the WBP. Since a continuous allocation of
workloads is permitted, the resulting throughput serves as an upper bound to the optimal
throughput of the original problem PO. A mathematical formulation of the WAGP is

WAGP: Maximize  TH(S,W)

M
subject to: E 5i =K
i=l

"M
z Wi = TW
i=1

Li £ W; €£U; fori=l,...M,

where the decision variables are S and W, which will be referred to as a configuration



hereafter. WAGP is a nonlinear mixed integer programming problem and the details of the
solution method appear in Lee et al. (1991b). In practice, we find it useful to find all
configurations that meet the aggregate demand rather than to find only one configuration
maximizing throughput. This is because some configurations may be not possible to
implement because of other technical and operating issues that cannot be captured in a
mathematical formulation. The solution method to WAGP is modified for this purpose.

3.3 The Operation Loading Problem (OLP)

The OLP involves assigning operations to groups such that the actual workloads are as
close as possible to the given target workloads, subject to the flexibility capacity and
unidirectional flow constraints, A formulation of the OLP can be stated as:

OLP: Minimize D (W,W")

subject to: (1), (2), (3), (4), and (5),

where D (W,W*) is a function which measures the closeness of the actual workload vector
W to the target workload vector V_V*. Kim and Yano (1993) tested several functions for

D(W,W*) for a different FMS loading problem, and suggested D( W.V_V*) =
maxj (W, =Wi™)/ Wi™. With this substitution, OLP is rewritten as :

OLP': Minimize &

subject to; constraints (2) through (5) and

n
20 Xij S 8 i=l-M, (6)
J=1
where gjj is equal to tj / Wi, We develop an e-optimal solution procedure for OLP' by
generalizing an optimal algorithm for the assembly line balancing problem (ALBP), OLP'
without the flexibility capacity constraint (2) is a variant of the traditional] ALBP. In fact,
OLP' with R=e and balanced target workloads (i.e., Wi¥ equals W for all i) is exactly the
type II assembly line balancing problem as defined by Baybars (1986), which is to find the
minimum & given the number of groups M. Thus, OLP' can be solved by applying a
bisection search method to specify trial values of 8 and solving the generalized ALBP for
each trial value of 8. The solution procedure for OLP' is given as follows.

Procedure 3. A solution procedure for OLP'
Step 1. Find lower and upper bounds, 81, and 8y, on 8. Set the iteration number to 1.

10



Step 2. If 8y - 8L < £, a small value used as a termination tolerance, then terminate with an
g-optimal solution. Otherwise, set  to (8L, + 8(J) /2 and go to Step 3.

Step 3. Apply an algorithm for the generalized ALBP to determine whether a feasible
solution exists for OLP' for the given d. Increase the iteration number by one.

Step 4. If a feasible solution exists, then update the incumbent solution (operation

n
assignment) and set §yJ to max; (Z 0ij Xij ); otherwise, increase 8[_ to 6. Go to Step 2.
=1

Constraint (6) is violated for any 8 < 1. When & = 1, we have a perfect fit, i.e., Wi*=
Wi for all i, Thus, the initial 81y and 8p, are specified as follows. For the initial 8(J, an

arbitrarily large value can be specified to ensure a feasible solution, but this requires a large
number of iterations before termination. Instead, an initial 8y is set to 2 and increased by
one until the first feasible solution is found. The initial 8[, is set to 8{J -1 and the resulting
oL 2 1. We found that 8=2 is usually large enough to ensure a feasible solution since with
8=2, the OLP tries to fit operations to a bin with its capacity two times larger than the ideal
bin size, Wi, In order to solve Step 3, we generalize Johnson's (1988) branch-and-bound
algorithm for the traditional ALBP, and the details appear in Lee (1989).

The WAGP usually finds several configurations which have just different permutations
of a machine vector S. Solving Pracedure 3 for each configuration is time-consuming for

even small M since Procedure 3 requires a solution of an integer program several times.

Using the fact that the product-form CQN throughput is permutation-invariant, i.e.,

TH(S,W) = TH(x(S),n(W)) for any permutation &, we now present a procedure that
reduces computation by considering at most twe such permutations. When the WAGP

finds multiple configurations, we permute the machine vector for each configuration in
lexicographic order such that St <... € Sm and eliminate any duplicates. We denote this
ordered machine vector as Sy. For each Sy, we solve the workload allocation problem
without the workload bound constraints and find the unconstrained workload vector, Wu,
that maximizes TH.

We derive two configurations by permuting (S, Wy,) and use them in Procedure 3 for
the OLP. There are two reasons why we use the (permuted) Wy as the target workload
vector for the OLP, First, the CQN throughput function, TH, is unimodal (maximal at W)
and well-behaved with respect to the workload vector (Stecke and Solberg 1985, Stecke

1986, Lee et al. 1991a). Thus, the closer the actual workload vector obtained from the

I1



OLP is to Wy, the higher the resulting throughput is. Second, those configurations
associated with one S, may have several workload vectors of which lexicographically
ordered W's are not identical. This happens when one or more workload bound
constraints bind for some configurations. In this case, Wy serves a collective

representative for them.

Procedure 4 below finds two effective orderings (i.., permutations) of (Sy, Wy). These
orderings have small and large target workloads ordered alternately in a zigzag fashion (the
machine vector is also ordered accordingly). One ordering starts with a large target
workload and the other with a small workload. One reason for this is the opportunity to
assign operations with larger processing times, which tend to be the most difficult to "fit"
in the context of the OLP, to various machine groups spread throughout the system. We
found this to be préferablc to having machine groups with large target workloads clustered
in one portion of the flow system. This is because clustering target workloads makes it
difficult to achieve actual workloads close to the targets while simultaneously satisfying the
flexibility capacity and unidirectional flow constraints. Since there are still a large number
of possible orderings for each of the two ordering patterns, this procedure uses the
workload bounds obtained from the WBP and finds a unique ordering for each pattern,
This is achieved by matching large (small) target workloads with large (small) Ujs (Ljs).
These two ordered workload vectors are referred to as the zigzag target workload vectors
and denoted as z1 and z2, respectively, This procedure is appropriate only for the
unbalanced target workloads since all orderings are identical when the target workloads are
balanced. The procedure consists of two parts. The first five steps of the procedure
describe how to find Z1, while Step 6 describes how to find 72,

Procedure 4. A procedure to find the two zigzag target workloads, 71 and 72

Step 1. Partition elements of the target workload vector Wy into two sets, ZJ, and Zg, such
that the cardinalities of Z|, and Zg are [M/2] and | M/2], respectively, and any
workload in ZJ, is greater than or equal to evcrf workload in Zg.

Step 2. Assign workloads in Z[, to the odd numbered groups by matching the largest
workload in ZJ, with the largest U; among the odd numbered groups and the second
largest workload in Zf, with the second largest Uj among the groups and so on. If
there is a tie, choose one match arbitrarily,

Step 3. Do pairwise interchanges among the workloads assigned in Step 2 until

interchanging any two workloads does not reduce the amount of infeasibility (i.e.,
Zoddi max (zl-U; 0, L; - 1)),
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Step 4. Assign workloads in Z§ to the even numbered groups by matching the smallest
workload in Zg with the smallest L; among the even numbered groups and the second
smallest workload in Z§ with the second smallest L; among the groups and so on. If
there is a tie, choose one which makes the resulting workloads more zigzagged (i.e.,
max jg I 121 - 2.11 |, where I is a set of groups that are tied and even numbered). If
there is still a tie, choose one arbitrarily.

Stcp' 5. Do pairwise interchanges among the workloads assigned in Step 4 until
interchanging any two workloads does not reduce the amount of infeasibility.

Step 6. To find Z2, repeat Steps 1 through 5 with the following changes: in Step 1,
exchange the sizes of ZJ, and Zg; in Step 2, replace the odd numbered groups by the
even numbered groups; in Step 4, replace even by odd.

Example 3. Suppose M =5, Wy = (10, 18, 30, 32,35), L=(3,33,4,4,20),and U =
(28, 45, 47, 48, 35). In this example, there are 120 possible orderings of Wy and
Procedure 4 provides two potential orderings among them, After Step 1, we have Z|, =
{30,32,35} and Zg = {10,18} for z1, and after Step 5, we have zl = (30, 18, 35, 10,
32). Similarly, for z2, we have Z|, = {32,35) and Zg = {10,18,30}. Initially, 32 in Z,
is matched with Uz = 45 and 35 with U4 = 48, but they are interchanged to reduce the
amount of infeasibility. Thus, 2 = (10, 35, 18, 32, 30). We show the effectiveness of
these zigzag orderings in the expetimental results of Section 6.1.

3.4 The Proposed Methodology
We now present the overall methodelogy to solve Problem P0, using the subproblems
and their solution methods discussed in the previous sections. An example follows.

Procedure 5. Methodology to solve Problem PO
Step 1. Solve the WBP using Procedures 1 and 2.

Step 2. Solve the WAGP and find all configurations, (S, W), that mect demand. If none,
terminate. We either need to acquire more resources or find another set of part types.
Otherwise, sort configurations in decreasing order of throughput. Order a machine
vector in each configuration lexicographically from the top of the sorted list, and
eliminate any duplicates. Pick the first configuration in the list.

Step 3. If the current configuration is balanced, then solve the OLP using Procedure 3 with
balanced target workloads and go to Step 4. Otherwise, solve the workload allocation
problem without the workload bound constraints and find two zigzag target workload
vectors from Procedure 4. For each of the two vectors, solve the OLP using
Procedure 3.
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Step 4. Calculate the actual throughput nsing the operation assignment from the OLP. If
this throughput is greater than the incumbent value, then update the incumbent solution.

Step 5. If either all configurations in the list are exhausted, or the incumbent throughput is
no less than the theoretical throughput found from the WAGP for the next configuration
in the list, then write the incumbent solution and terminate. (In the latter case, a better
solution cannot be found from the remaining configurations since the theoretical
throughput from the WAGP is no less than its corresponding actual throughput from
the OLP). Otherwise, pick the next configuration and go to Step 3.

Example 4. Suppose that an aggregate part consists of 14 operations with their
processing times and precedence as shown in Figure 4a. The flexibility capacity, R, is set
to 5. Suppose that the aggregate demand, d, is 650 parts per period and the processing
capacity, P, is 10,000 minutes per machine per period. Conveyors are used to move parts
and the total material handling time for one part, Wy, is 20 minutes. Available resources,
(K, N), are (8, 7). The number of groups, M, is set to the minimum, which is 3. The

workload bounds from Step 1 of Procedure 5 are obtained as L = (18, 11, 11) and U =
(34, 34, 33), The WAGP in Step 2 provides two configurations which meet the demand:

@31=3,3,2), Wr* =(29.9,29.9, 15.2) and (b) Sz= (3, 2, 3), W2" = (29.9, 15.2,
29.9). Their throughputs are TH=657.4. The second configuration is eliminated in Step

3, since Sy can be pérmuted into S;. Wy* is optimal for the unconstrained workload

allocation problem, since L < W1* < U. The two zigzag target workload vectors found in
Step 3 are (29.9, 15.2, 29.9) and (29.9, 29.9, 15.2). The solution of the OLP with the

first workload vector is the higher throughput of 653.1 with the actual workload W = (31,

18,26) and S =(3, 2, 3). The corresponding operation assignments are shown in Figure
4b, For this small problem, we can verify that this solution is optimal for PO by
enumerating all feasible operation assignments and machine vectors and computing the
corresponding throughputs.
<Insert Figures 4a and 4b>

4, Experimental Resulfs

This section consists of three parts of experimental results, The first part shows the
effectiveness of the zigzag target workload vectors obtained from Procedure 4. The second
part shows that Procedure 5 finds a near-optimal solution for P0. The third part shows that
Procedure 5 outperforms the existing method in both effectiveness and efficiency.
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4.1 Effectiveness of the zigzag target workload vectors

A number of experiments were conducted to investigate the effectiveness of the two
zigzag target workload vectors that Procedure 4 identifies. M is equal to four or five. This
limits the maximum number of orderings to be 24 and 120, respectively, which we
considered to be reasonable for enumeration. In addition, the following set of parameters
are used to generate test problems: (2) two numbers of operations (n=20 for M = 4 and
n=30 for M = 5), (b) two densities of precedence diagram (.05 and .50}, where density is
defined as the ratio of a number of present precedent arcs to the total number of possible
precedent arcs, i.e., ('21), and precedent arcs are randomly generated such that each arc is

equally likely, (c) operation time t; is randomly generated from a discrete uniform
distribution between1 and 9 minutes, (d) aggregate demand per period d=400, (e)
processing capacity per machine per period P=10,000 minutes, (f) flexibility capacity R=6,
and (g) use of a conveyor with 5 minutes for average material handling time between two
" machines. The numbers of available machines and pallets, i.e., (K, N) are assigned such
that the maximum throughput from the WAGP is greater than or equal to the demand, 400.
Five problems are tested for each of four combinations (two values each of both M and
density) of the parameter set. Procedure 3 is solved with the termination tolerance €
replaced by the number of iterations limited to five.

The following two statistics are collected for each unbalanced configuration found by
the WAGP that meets demand: (i) ranking recorded as a / b which means that the zigzag
workload vector with the larger throughput of the two achieved the ath largest throughput
among the b distinct ©(Wy)s; (ii) two throughput percentages (zigzag, worst), where
'zigzag' is the throughput achieved by the better zigzag workload vector divided by the
largest throughput among all distinct t(Wyy)s and 'worst' is the smallest throughput divided
by the largest throughput. The 'b' is usually less than the maximum number, since many
m(Wy)s are identical when several Wiu's are equal. These statistics are summarized in
Tables 2 and 3.

< Insert Tables 2 and 3 >

Experimental results show that the zigzag workload vectors are very effective. When
M = 4, the better zigzag workload vector of the two achieved the largest throughput 10
times out of 17 unbalanced configurations. The better zigzag workload vector also had at
least the third largest throughput 16 times out of 17. On average, the zigzag workload
vector achieved 99.8 percent of the largest throughput for both densities. When M =5, the
better zigzag workload vector achieved the largest throughput 11 times out of 21 and at
least the third largest throughput 20 times out of 21. On average, the workload vector
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achieved 99.7 percent for density = .05 and 99.1 percent for density = .50. Further
evidence on the effectiveness of the zigzag workloads is presented for M > 5 in the
following section. The results also reveal that the ordering of the target workload vector
can significantly affect the quality of the solution. For example, in Table 3, when the
density is .50, the ordering that gives the smallest throughput was only 72.7 percent of the
largest throughput for the second configuration of Problem 3, and only 77 percent for the
first configuration of Problem 2.

4.2 Experiments with Procedure 5

A number of experiments were conducted for the proposed method to solve PO,
Procedure 5. Procedure 5 was coded in PASCAL and FORTRAN and run on a mainframe
computer, IBM 3090-600. The same parameter values are used as before except for the
following ones. Two demand levels are d=100 and 200. The number of operations, n, is
100. Two different flexibility capacities are R=15 and 30, since R=30 was used by
Ammons et al. (1985) for a PCB assembly system manufacturing computers. Average
material handling between two groups is 10, about the average processing time for two
operations. Conveyors or stop-and-go AGVs are used to move pallets between groups.

Experimental results for three aggregate parts, eight problems for each aggregate part,
are summarized in Tables 4, 5, and 6. For each problem, the following statistics are
recorded: the (K, N) used, the upper bound on throughput obtained from the WAGP, the
number of Sy's, the actual throughput and machine vector obtained from the proposed
method, the ratio of the actual throughput to the upper bound, the number of operations
assigned to each group, and the CPU time.

<Insert Tables 4, §, and 6>

The proposed method found a feasible solution for 20 problems. It did not find a
feasible solution for 4 problems, although their upper bound throughputs are greater than
the target demand. These 4 problems occurred when R=15 and d=200 for aggregate parts
1 and 3. When R=30, the FEFS needs only four groups to accommodate 100 operations,
compared to seven groups required for R=15. Machines that are spread over a smaller
number of groups lead to a smaller number of material handling operations and a larger
number of parallel machines (i.e., the more pooling of resources). Consequently, under
the larger flexibility capacity (i.e., when R=30), the proposed method achieves an average
of 13.6 percent higher throughput than when R=15. A smaller M results in a larger number
of Su's to which OLP can be applied, and consequently, a longer CPU time. A larger
number of parallel machines also enhances both system reliability and routing flexibility.,
When R=30, a better fit is achieved in the operation assignments of the OLP. The actual
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throughput deviates from its upper bound by an average of 0.8% when R=30, compared to
2.9% when R=135, This is due to the fact that more flexible machines can process a larger
number of operations, allowing more freedom to maneuver operation assignments.

As demand increases from 100 to 200, a larger numbers of machines and pallets are
required, which leads to a larger number of Sy's and longer CPU time. As density
increases from 0.05 to 0.50, there are more precedence arcs among operations. This leads
to tighter workload bounds from the WBP, a smaller upper bound throughput, and a
smaller number of Sy's from the WAGP that meet demand, and shorter CPU time. The
actual throughputs obtained are insensitive to density except for one case, where R=15 and
d=200 for aggregate part 3. In this case, the throughput decreases from 193.4 to 169.1 as
density increases from (.05 to 0.50. This insensitiveness was against our expectation that
the high density of the precedence diagram restricts the assignment of operations in the
OLP and results in poor fit and low throughput. One possible interpretation for this is that
the flexibility capacity R=15, which allows machines to accommodate up to 15 operations,
is still large enough to temper an adverse effect of additional precedence arcs on operation
assignment.

Overall, the proposed method works very well under various experimental conditions,
providing a near-optimal solution most of the time. The average difference between the
actual throughput and the corresponding upper bound throughput is only 1.8 percent. This
also gives evidence that the workload bounds obtained from Procedures 1 and 2 to solve
the WBP are effective and serve the tight workload bound constraint for the WAGP. All
24 problems require less than 30 seconds of CPU time when (K, N) does not exceed
(12,35). Twenty one problems among them require less than 15 seconds. This is
reasonable since this problem is addressed in short-term planning and would be solved
about once a day or week.

4.3 Comparison with an existing method

Although solving the grouping and loading problem simultaneously for FESs has not
been studied before, we took a solution method for FMSs available in the literature (Kim
and Yano 1992) and modified it for comparative study with our proposed method, The
Kim and Yano method (KY) is basically an enumeration scheme that consists of the
following three steps: (1) generate all possible machine group configurations; (2) find the
ideal continuous workload allocation that maximizes throughput with no workload bounds
for each configuration; (3) rank configurations in decreasing order of throughput and solve
the loading problem one by one in the sorted list until either a feasible solution is found or
the list is exhausted.
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In order to solve the loading problem in (3) for KY, Procedure 3 is used for a given
ordering since KY consider a special case with density 0.0, i.e., no precedence relations
among operations. Since it is not realistic to evaluate all possible orderings (for example,
5040 orderings for M¥7), Procedure 4 is applied to generate two zigzag orderings with
workload bounds specified as Lj = 0 and Ui=TW for every group. In order to avoid
unnecessary computation for K, all configurations with their ideal throughputs less than
demand are eliminated after (2). KY is applied to the same set of test problems that were
used in the previous section. The results are summarized in Tables 7 to 9 including the
following statistics: the number of Sy's with their ideal throughputs no less than demand,
the actual throughput and machine vector obtained, ratio of the actual throughput to the
ideal upper bound throughput, and CPU time. However, the tables exclude those cases
where K=7 and M=7. In these cases, there is only one possible Sy which is balanced, and
both methods found the same solution.

<Insert Tables 7, 8, and 9>

The proposed method is superior to KY in both effectiveness and efficiency. The
proposed method finds solutions with an average of 9.5% (i.e., 14.2 parts) larger
throughput than KY. There is no significant difference in CPU time when demand is 100,
but when demand is 200, KY requires an average of 156% (i.e., 10.3 seconds) longer
CPU time than the proposed method. This is because KY deals with a larger number of
Su's, since the ideal throughput is obtained without the workload bound constraints, We
expect that this will become more evident for higher demand since higher demand requires
the larger number of machines K and the total number of Sy's exponentially increases with
respect to K.

Ranking Sy's in decreasing order of ideal throughput in Step 3 also causes longer CPU
time since larger ideal throughput is associated with more unbalanced Sy's and more
unbalanced ideal workloads, but may not be achievable in Step 4 due to limited flexibility
capacity and tight precedence relationships. As a result, a feasible solution is not found on
many occasions until the lower part of the ranked list is reached. On the other hand, the
proposed method avoids this problem by obtaining effective workload bounds from the
WBP. These workload bounds are used in the WAGP to give more realistic target
workloads and ideal throughputs. Thus, ordering Sy's based on these throughputs in Step
2 of Procedure 5 helps to find a good solution faster than ordering by KY. Another
advantage of the proposed method over the other is that it always gives a tighter upper
bound on the throughput from the WAGP, which better serves in determining the quality of
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the solutions obtained from the heuristics. The proposed method achieves an average of
97.7% of its upper bound throughput, whereas KY achieves an average of 87.2%.

5. 'Summary and Future Research Issues

In this paper, we studied two important production planning problems for FFSs:
grouping and loading problems. We present a method which solves these two problems
simultaneously with the objective of maximizing system utilization. With the precedence
requirements, the complex throughput function and the machine flexibility constraint inhibit
seeking an optimum solution. We present a heuristic method which decomposes the large
optimization problem into three interrelated subproblems. The specific contributions and
findings are summarized as follows:

(1) We show that the proposed method is effective and finds a near-optimum solution
most of the time for a moderate size of problems with up to 100 operations, 7 groups, 12
machines, and 35 pallets. Experiments with 24 various test problems show that the
throughput of the solution obtained is within an average of 1.8 percent of its upper bound.
Computation time is also reasonable without exceeding 30 seconds on a mainframe
computer.

(2) We show that the proposed method is superior to an existing method from the FMS
literature, Experiments with 18 test problems show that the proposed method achieves
9.5% larger throughput than the existing method. The propesed method is also more
efficient than the iterative approach, which is based on an enumeration scheme. The latter
requires 156% longer CPU time when demand is 200 parts per period. This becomes more
evident as the number of machines or demand increases. This result shows the importance
of addressing the grouping and loading problems for FFSs simultaneously rather than
hierarchically. Another advantage of the proposed method is that it always provides a
tighter upper bound on the throughput than the other, which helps to better assess the
quality of the solution obtained.

(3) We define the WBP for the first subproblem and present a solution method. Even
this subproblem is hard to solve optimally due to a complex combinatorial nature and so we
present a heuristic method by exploiting the flexibility capacity and part flow constraints
and transforming it to the MCGP, which is easier to solve. Experimental results show that
workload bounds obtained by this method are effective since the upper bound throughput
from the WAGP with these workload bounds is close to the actual throughput obtained.

(4) We define the OLP for the third subproblem and present a solution method. Since
this subproblem is more difficult than the assembly line balancing problem, a heuristic
method is developed. The ordering of the target workload vector elements can make a
significant impact on operation assignment and the actual throughput. This is unique and is
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not shared with FMS loading problems and the line balancing problem. FMS loading
problems do not need to deal with precedences and are independent of the ordering,
whereas the line balancing problem considers precedences but deal with a balanced
configuration only. We develop a procedure which finds two effective zigzag orderings.
Experiments with 38 test problems in Section 4.1 show that the throughput from the OLP
with these two orderings is at least 96.4% and average 99.5% of the maximum throughput
obtained from all possible orderings. The effectiveness of these two orderings is further
reinforced by experimental results with an additional 24 test problems in Section 4.2.

We leave two issues for future research. First, a similar proposed method can be
applied to other types of flow systems such as open asynchronous lines which can be
modeled as an open tandem queuneing network. In this case, the objective is to minimize
the total number of WIP parts rather than to maximize the system utilization. The same
proposed method can be applied except that the WAGP requires a different solution method
like that given by Calabrese (1992). Second, the scope of the proposed method can be
broadened to include other planning problems such as part type selection. Sometimes, all
part types required to be produced for one period cannot be produced at the same time
because machine flexibility is limited and all the necessary tools cannot be loaded into tool
magazines. Then the issue is how to divide part types into batches so as to minimize total
makespan to complete all production requirements. To each selected batch of part types,
the proposed method can be applied.
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Figure 1. Precedence diagram for an aggregate part.
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Aggregate part (demand, precedences, processing times),

Processing equipment (flexibility capacity, processing capacity per machine,
total number of machines), and

Material handling equipment (number of pallets, either transporters
or conveyors, material handling time)

solve WBP

Workload lower and upper bounds
at each machine group

solve WAGP

Number of machines at each group
and target workload allocation
among machine groups

solve QLP

Operation assignment among machine groups,
Number of machines at each group, and
Maximal system throughput

Figure 2. The proposed decomposition method: relationship among three subproblems.
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Darker edges are newly added.
Shaded circles 1 and 2 indicate operations that must be assigned to
machine group 1, while shaded circle 7 must be assigned to machine group 2.

Figure 3. Transformed undirected graphs for the MCGP.
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Figure 4a. Precedence diagram for Example 4.

machine group 1
’ machine group 2
. ONz©, ﬂé O
—
loading and FFS with 8 machines :
unloading 5 ga\lhlﬁ;) v:)latilt
< ' 7
O OF GF
machine group 3

Machines 1, 2, and 3 form machine group 1, each processing operations 1, 2, 3, 4, and 5.
Machines 4 and 5 form machine group 2, each processing operations 6, 7, 9, 10, and 12.
Machines 6, 7, and 8 form machine group 3, each processing operations 8, 11, 13, and 14,

Figure 4b. The grouping and loading solution for Example 4.
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Table 1, Notation.

A¢ = set of groups using machines of type ¢

C = number of machine types

d = demand of the aggregated part

Jj = the first machine group in the visit sequence to which operation j can be assigned
K¢ = number of available machines of type ¢

lj = the last machine group in the visit sequence to which operation j can be assigned

L = (L;), where L is the lower bound of the workload at group i, Wj

M = number of machine groups in the system

M, = the smallest M possible

n = total number of operations in the aggregate part

N = number of pallets circulating in the system

n(-) = a permutation function among elements of a vector

P, = total available material handling time by a transporter or conveyor per period

P = (P}), where P;is the total available processing time by a machine at group i per period

R, = flexibility capacity of machines of type ¢

So = number of AGVs or transporters if required

S =(S;), where S; is the number of machines at group i

Sy =lexicographically ordered S such that S1 < ... < Sum

tj = average processing time of operation j of the aggregated part

Vj = set of operations that can be assigned to machine group i, ie., Vi={j | fjsigly}

U = (Uy), where Uj is the upper bound of the workload at group i, Wj

W, = average total material handling time required to produce a part

W = (W), where W; is the workload (average total processing time) at machine group i
required to produce a part

W, = optimal workload allocation that maximizes TH for a given Sy under no workload
bound constraints

TH = throughput of the CQN for given N, M, Py, Sy, W, P, S, and W

TW = total workload (i.c., average total processing time) required to produce a part

1 if operation j is assigned to group i;

v — h \s' .abl = H
Xijj = the assignment variable {0 otherwise.

z = zigzag target workload vector
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Table 2. Experiments with the zigzag target workloads for M =4.

Density = .05 Density = .50
Replicationno. | Ranking |Throughput Percentagd Ranking | Throughput Percentage
(K,N) a/b Zigzag | Worst a/b Zigzag | Worst
Problem 1 (1)4 1/4 100 98.8 1/4 100 97.7
@7
Problem2 (1) 1/4 100 99.6 2/4 99.9 08.8
7.7 @ 2/12 99.5 85.9 1/12 100 87.0
Problem 3 (1) 2/12 99.9 97.2 3/12 98.4 90.6
@7 @ 3/6 99.3 92.3 1/6 100 89.6
Problem4 (1) 1/6 100 95.8 1/6 100 90.5
6,7 2 1/4 100 95.1 = - -
Problem5 (1) 1/4 100 99.0 2/4 99.9 99.8
(7.9 () 4/12 99.1 92.5 1/12 100 86.5
Average 99.8 95.1 99.8 92.6

&(i): i indicates the ith unbalanced configuration found by the WAGP that meets demand for the associated

test problem,

*For Problem 4, the WAGP finds two configurations that meet demand when density = 0.05, but it finds

only one configuration when density=0.50.
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Table 3. Experiments with the zigzag target workloads for M = 5,

Density = .05 Density = .50
Replicationno. | Ranking {Throughput Percentagd Ranking |Throughput Percentage
(X, N) al/b Zigzag | Worst a/b Zigzag | Worst
Problem1 (1)¥ 1/5 100 99.7 1/5 100 97.5
(11, 12) @) 3/30 99.8 85.4 - - -
(3) 1/10 100 84.0 = - -
Problem2 (1) 3/20 99.9 90.9 1/20 100 71.0
(10, 10) (2) 2/30 99.9 86.0 -~ - -
Problem 3 (1) 1/5 100 98.0 1/5 100 84.1
6,9 @ 3/30 99.8 84.2 4/30 974 72.7
(3) 3/10 93.4 86.2 - ~ -
Problem4 (1) 1/5 100 98.6 3/5 96.4 95.4
(11, 10) (@) 2/30 99.9 83.8 - - -
(3) 1/10 100 91.3 -~ - -
Problem5 (1) 2/5 99.5 98.6 /5 100 84.0
6,100 @) 1/30 100 87.3 1730 100 79.5
(3) 3/10 99.1 93.2 - - -
Average 99.7 90.5 99.1 84.3

&(i): i indicates the it unbalanced conliguration found by the WAGP that meets demand for the associated

test problem.

*Far Problem 1, the WAGP {inds three configurations that meet demand when density = 0.05, but it finds

only one configuration when density=0.50.
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Table 4. Experiments with the proposed methed: aggregate part 1.

Demand/period 100

density d .05 S50

Problem No. _P-1 P2 P-3 P-4
flex. capacity R 15 30 15 30
My, N, K 7,25,7 4,257 7,25,7 4,25,7
na. of S,s 1 3 1 2
upper bound TH* 111.6 124.7 1114 123.8
actual TH 111.6 123.8 109.3 123.8
adopted S (1.1.1,1,1,1,1) (12.2.2) (1.1,1,1,1,1,1) 2221
oper._assignment}(10.15,15,15.15,15,15)| (10,30.30,30)  |(15.14.13,15.15,14,14) (27.2830.15)
actual TH/ TH* 100% 99.3% 98.1% 100%
CPU time (sec.) 2.7 5.7 0.4 0.2
Demand/period 200

density d .05 .50

Problem No. P-5 P-6 P-7 P-8
flex. capacity R 15 30 15 30
Mo, N, K 7,35, 12 4,35, 12 7,35,12 4,35, 12
no. of Sy's 3 11 1 7
upper bound TH* 201.3 220.7 201.0 2186
actual TH 194.0 217.9 194.0 217.1
adopted § (222.2,1.2,1) 4242 (2222.12.1) (2433)
oper. assignment |(15,15,15,15.14.15.11) | (30,17,30.23) _ [(15.15,15,15,14,15,11) (16.30.29,25)
actual TH/ TH* " 964 98.7% 96.6% 99.3%
CPU time (scc.) 11.0 29.7 0.2 1.8
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Table 5. Experiments with the proposed method: aggregate part 2,

Demand/period 100

density d .05 50

Problem No. P9 P-10 P-11 P-12
flex. capacity R 15 30 15 30
My, N, X 7,25,7 4,25, 7 7,25,7 4,25,7
no. of Sy's 1 3 1 2

upper bound TH* 108.2 120.9 108.2 120.0
actual TH 108.2 120.0 108.1 120.0
adopted (LLLLLLI (2.1.2.2) (LLLLLLD (2.12.2)
oper. assignment 1(10.15.15,15,15,15,15) | (29.13,30.28) _1(14,15.13.15,14.15.14) | (29.13.30.28)
actual TH/ TH* 100% 99.3% 99.9% 100%
CPU fime (sec.) 2.5 10.2 0.3 0.3
Demand/period 200

density d .05 .50

Problem No. " P-13 P-14 P-15 P-16
flex. capacity R 15 30 15 30
My, N, K 7, 35,13 4, 35, 13 7,35, 13 4,35, 13
no. of Sy's 4 14 3 8
upper bound TH* 211.8 232.3 209.7 229.9
actual TH 210.2 2292 208.0 227.9
adopted S (22.22.1.2,2) (4.144) (22.12222) (24,34
oper, assignment )(12,15,15,15,14,14.15){  (30,10,30.30) (15,15,10,15,15,15,15) (15,30.25,30)
actual TH/ TH* 99.3% 98.7% 99.2% 99.1%
CPU time (scc.) 13.0 25.6 0.7 2.3

31



Table 6. Experiments with the proposed method: aggregate part 3.

Demand/period 100

density d .05 30

Problem No. P-17 P-18 P-19 P-20
flex. capacity R 15 30 15 30
Mo, N, K 7,21,7 4,21,7 7,21,7 4,21,7
10. of Sy's 1 3 1 2
upper bound TH* 1123 127.6 112.2 126.3
actuad TH 112.2 126.4 111.7 126.2
adopted S (1,1.L1.1,1.1) (2.2.1.2) (LLLLLLY (22.2.1)
oper. assignment 1(10.15,15,15.15.15.15) {  (21.30.19.30)  1(13,14.15.13.15.15.15) (27,2830.15)
actual TH/ TH* 99.9% 99.1 99.6% 99.9%
CPU time (sec.) 1.7 13.0 0.2 0.3
Demand/period 200

density d .05 .50

Problem No. P-21 P-22 P-23 P-24
flex. capacity R 15 30 15 30
Mo, N, K 7,30, 12 4,30, 11 7,30, 12 4,30, 11
no, of §u's 3 11 2 7
upper bound TH* 206.6 2273 203.9 224.7
actual TH 1934 2234 169.1 2232
adopted S (222,12,1,2) (2433) (2212221 (4.23.3)
oper. assignment |(14,15,15.11,15,15,15) |  (11,30,29,30) (15,15,13.15,15,15,12) (30,16,27.27)
actual TH / TH* 93.6% 98.3% 82.9% 99.3%
CPU time (sec.) 8.9 24.8 0.6 2.0
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Table 7. Comparison among the methods: aggregate part 1.

Problem No. KY Proposed Method
P-2 no. of Sy's 3 3
adopted $ (3,1,2,1) (1,2,2,2)
upper bound TH" 126.2 124.7
actual TH 114.8 123.8
actual TH / TH* 91.0 99.3
CPU time (sec.) 7.2 5.7
P4 no, of Sy's 3 2
adopted S (12,1,3) (2,2,2,1)
upper bound TH" 126.2 123.8
actual TH 103.0 123.8
actual TH/ TH" 81.6 100
CPU time (sec.) 0.4 0.2
P-5 no. of §y's 7 3
adopted S (22,2.1,2,1,2) (2222121
upper bound TH" 207.9 201.3
actual TH 179.8 194.0
actual TH /TH* 86.5 96.4
CPU time (sec.) 27.6 11.0
P-6 no. of s 15 11
adopted S (5.13.9) (4242
upper bound TH' 226.1 220.7
actual TH 205.2 217.9
actual TH/TH" 90.8 98.7
CPU time (sec.) 42,9 29.7
P-7 no. of Sy's 7 1
adopted § (12.12.22.2) (222212.1)
upper bound TH” 207.9 201.0
actual TH 154.6 194.,0
actual TH / TH* 74.4 96.6
CPU time (sec.) 14 0.2
P-8 n0. of Sy's 15 7
adopted S (1434) (2.4.3.3)
upper bound TH* 226.1 218.6
actual TH 202.7 217.1
actual TH/TH" 89.7 99.3
CPU time (sec.) 2.0 1.8

33




Table 8. Comparison among the methods: aggregate part 2.

Problem No, KY Proposed Method
P-10 no. of Sy's 3 3
adopted S (1.2,1,3) 2.12.2)
upper bound TH® 122.3 1209
actual TH 103.7 120.0
actual TH/ TH" 84.8 99.3
CPU time (sec.) 104 10.2
P-12 no. of §,'s 3 2
adopted S (2,2,2.1) (2,12.2)
upper bound TH"® 122.3 120.0
acteal TH 119.9 120.0
actual TH / TH® 98.0 100
CPU time (sec.) 0.6 0.3
P-13 no. of Sy's 11 4
adopted S 22.2,2,2,1,2) (22,2,2,1,2,2)
upper bound TH" 2193 2118
actual TH 200.1 210.2
actual TH/TH" 913 99.3
CPU time (sec.) 42.1 13.0
P-14 no, of ' 18 14
adopted S (1,6,3.3) {4,14.4)
upper bound TH® 237.7 232.3
actual TH 201.3 229.2
actual TH / TH" 84.7 98.7
CPU time (sec.) 54.5 25.6
P-15 no. of Sy's 1 3
adopted S (2222212 (22.122.22)
upper bound TH* 219.3 209.7
actual TH 198.2 208.0
actual TH /TH* 90.4 99.2
CPU time (sec.) 3.1 0.7
P-16 no. of Sy's 18 11
adopted S (4441 (2.4,34)
upper.bound TH' 2317 229.9
actual TH 220.0 227.9
actual TH/TH’ 92.5 99.1
CPU time (sec.) 3.6 2.3




“Table 9. Comparison among the methods: aggregate part 3.

Problem No. KY Proposed Method
P-18 no. of §,'s 3 3
adopted § (3,1,2.1) (2,2,1,2)
uppet bound TH* 129.5 127.6
actual TH 118.1 126.4
actuall'JI'H/TH' 91.2 99.1
CPU time (sec.) 7.3 13.0
P-20 no. of Sy's 3 "2
adopted S (3.1.2,1) (2,2.2,1)
upper bound TH" 129.5 126.3
actual TH 101.0 126.2
actual TH/ TH* 78.0 99.9
CPU time (sec.) 0.4 0.2
p-21 no. of Sy's 7 3
adopted S (2.2,2,1,2,1,2) 2,2,2.1,2,1,2)
upper bound TH* 212.2 206.6
actual TH 193.4 193.4
actual TH / TH' 91.2 93.6
CPU time (sec.) 26.1 8.9
P-22 no. of §'s 15 11
adopted § (4.3.4.1) (2,4.3,3)
upper bound TH' 233.8 221.3
tual TH 217.8 223.4
ac!s;l TH/TH' 93.2 983.3
CPU time (sec.) 38.3 24.8
P-23 n0. of Sy's 7 2
adopted § (2.22.1,2,1.2) (2,2,1222.1)
upper bound TH* 212.2 203.9
actual TH 155.9 169.1
actual TH/ TH* 73.5 82.9
CPU time (sec.) 1.2 0.6
P-24 no. of Sy's 15 7
adopted S (5,1,3.3) (4.2.3.3)
upper bound TH* 233.8 224.7
actual TH 202.7 223.2
actual TH/TH' 86.7 99.3
CPU time (sec.) 1.7 2.0
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