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Researchers in the social sciences often formulate theoretical models based on constructs that
are not directly measured. For instance, marketing researchers hypothesize a psychological
process by which customers develop satisfaction for products and services. These theoretical
constructs are not directly observed and must be inferred through indirect measurements.
Path analysis or LISREL refers to a class of latent variable models that consist of two parts:
measurement and structural models. The measurement model relates the observed or mani-
fest variables to their unobserved latent variables. The structural model specifies the relation
among the latent variables. The two parts imply a parametric model for the covariance of
the manifest variables. Traditional inference estimates the parameters so that the fitted and
observed covariances are close, either via maximum likelihood or least squares. This paper
proposes Bayesian inference for path analysis and extends the traditional model by including
covariates and interactions among the latent variables in the structural model. This exten-
sion results in nonlinear structural equations. Bayesian inference also accommodates ordinal

manifest variables and imputes the values of the latent variables.
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1. Introduction

Social scientist widely utilize path analysis or LISREL, the mnemonic for “li.near struc-
tural relationships” and Joreskog and Soérbom’s software. A search of the Institute for
Scientific Information’s indices from 1970 to 2000 returned 2463 citations. Latent variable
models have a long history, starting with Spearman’s (1904) pioneering work with factor
analysis and Wright’s (1918) introduction of path analysis. Joreskog (1973), Keesing (1972),
and Wiley (1973) initiated the modern era of LISREL by synthesizing latent factor models
with structural equations. Bollen (1989) and Everitt (1984) provide extensive reviews of
latent variable modeling.

These models enable researchers to estimate relations among theoretical constructs even
though these constructs can only be indirectly observed. For instance, a questionnaire may
require subjects to respond to items on a 7-point Likert scale. Multiple items are designed
to probe different aspects of a theoretical construct, and blocks of items are associated
with different constructs. The data often consist of a large number of moderately correlated
manifest variables, which tend to have higher correlations within blocks than between blocks.

This paper develops Bayesian inference for path analysis. Bartholomew (1994) proposed
utilizing Bayesian inference, and Ansari, Jedidi, and Jagpal (1999) implemented a hierarchi-
cal Bayes procedure for the case where subjects respond to the same survey instrument at
multiple time points. The main difference in Ansari, Jedidi, and Jagpal’s and this paper’s
model is in the identifying constraints: they identify the model by setting some of the factor
loadings in the measurement model to one, while this paper uses moment constraints on
the latent variables. The moment conditions imply constraints on the parameters of the
structural model.

Bayesian path analysis provides several extensions to LISREL. The traditional struc-

tural model is linear in the latent variables so that the unconditional covariance matrix of



the manifest variables is a closed—form function of the model parameters. The structural
model of this paper includes covariates and interactions among both the latent variables
and covariates. This modification implies nonlinear structural models, and the uncondi-
tional covariance matrix does not have a closed-form. Additionally, the manifest variables
frequently are measured on ordinal scales, while maximum likelihood LISREL assumes mul-
tivariate normal distributions. Bayesian analysis accommodates ordinal data with cutpoint
models (Bradlow and Zaslavsky 1999, Gelfand, Smith and Lee 1992, and Johnson 1996). The
Bayesian analysis also imputes the values of the latent variables as part of estimation proce-
dure, thus explicitly accounting for parameter uncertainty. In contrast, LISREL requires a
two stage method that ignores the uncertainty in the model parameters when imputing the
latent variables.

The path model consists of two components. Suppose that n subjects respond to m
manifest variables, which are measured on ratio scales. The modification for ordinal variables
will be presented after the model specification. The manifest variables are grouped into J
blocks with block j consisting of m; manifest variables. The variables in block j are jointly

determined by a latent variable according to the measurement model or outer relation:
Uj = Ly +Yjo;+Ajforj=1,...,J (1)

where U; is a n X m; matrix of observations; 1, is a n vector of ones; K, is a m; vector
of intercepts; Y'; is a n vector of latent variables; c; is a m; vector of loadings, and A; is
a n X m; matrix of error terms. The rows of the error term are mutually independent and
normally distributed.

The measurement model for all of the variables can be written by concatenating the J
blocks of manifest variables. Define U = [U;...Uy]; p' = (, ..., p); ¥ = [Y;...Y];
and A = [A;...A]. Then the outer model becomes U = 1,4’ + YA + A where A is

a J x m matrix. Row jof Ais (0...0 &} 0...0). The error variance, var [vec(A")], is

3



I,®% where “vec” forms a vector by stacking the columns of a matrix; I,, is a n x n identity
matrix; “®” is the Kronecker product, and ¥ is a m x m positive definite matrix. I will
assume that after a permutation of the columns of U, the permuted columns of ¥ will have
a block-diagonal structure with K blocks. Let D be the m x m permutation matrix such
that D'SD is block diagonal with {X;} along the blocks. |

The latent variables follow an inner relation or structural model that is specified through

a series of regression models:
Y;=X;B8;+€forj=1,...,J (2)

where X; is a n X p; design matrix; B3; is a p; vector of regression coefficients; and ¢; is a
n vector of error terms. The error terms are a random sample from a normal distribution
with zero mean and standard deviation 7;. The design matrix X ; can consist of other latent
variables Y, for k # j, covariates, and interactions among the latent variables or between
the latent variables and the covariates. Equation (2) specifies the distribution of Y'; given
Y (;), which is Y without column j. If Y'; does not have a regression model, then Y’; had a
normal distribution with zero mean and variance matrix I,,.

The model in (1) and (2) is not identified, as can be seen by multiplying c; and dividing
Y ; by a constant. One method of identifying the model is to assume that a component of
each «; is one, which implies that the corresponding manifest variable is Y; observed with
error. In so far as this manifest variable matches the latent construct that the researcher is
attexﬁpting to measure, this identifying assumption is very sensible and greatly simplifies the
analysis because the full conditionals are standard distributions (Ansari, Jedidi, and Jagpal
1999). One limitation is that the imputed latent variables depend on the loading that is set
to one.

This paper identifies the model by constraining the first two moments: n~'E(1,Y;|Y (;), 8,,77)

= 0 and n7'E(Y7Y|Y ;), 8;,7}) = 1. These moment constraints result in imputed latent
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variables that have the same scale. The constraint on the first moment can be easily realized
by mean—-centering the design matrix X ; and setting the intercept to zero. The constraint on
the second moment implies: n~'8; XX ;8 + 77 = 1. This constraint is built into the joint
distribution of {Y;, B, TJ?}, which is implicitly specified through J conditional distributions
(Gelfand and Smith 1990):

[YjIY(j)’ j’T]?][:ley(j)aTJ?][TJ?]OCNn(YjIXj j7T2I)

i
Ny, (B,lbi0, 72 Biox (53X 3B, = 1= 72) 1G (r2rso,530) X(7} < ).

N,(-]€, A) is the g-variate normal density with mean £ and variance A; x(-) is the indicator
function, and IG(77|r;, 8j0) TJTTj’°_2 exp (—0.53,-,0/732) is the inverted gamma density.

An additional restriction is to assume that one or more components of each loading vector
a; are positive. If some of the manifest variables in U are scaled so that their correlations
with Y'; have the same sign, then the corresponding loadings can be forced to be positive
without overly restricting the model. In fact, doing so is a sensible use of prior information.

The parameters of the outer model have the following prior distributions. The outer
model’s means p are normally distributed: Ny, (u|vo, V5). The loadings a = (e, ..., o)’
have truncated normal distributions: Np,(e|vg, Ap) x(at > 0) where o™ is the positive
components of . The prior for each dy x dy, positive definite Xy is the inverted Wishart
distribution: TWy, (Sk|ryx0, Suko) o |Sk| - @rrvmo+1)/2 exp [——O.Str(Ek'ISU,k,o)] for Ty k0
> di. > 1 and positive definite matrix Sy .

A cutpoint model is used with ordinal variables: subject 7 selects category ¢t if a latent
variable falls between two cutpoints. Suppose that sets of ordinal variables share the same
cutpoints. Define W* to be the n X j; matrix of manifest variables that use the same
cutpoints for a Ty-point scale. If ordinal manifest variable W, belongs to W*, then subject

i responds w; . if cx(wix — 1) < Ui < ck(wi ) for the cutpoints: —co = ¢x(0) < - -+ < c(Tk)



= 00. U, is a latent variable that follows the outer model, and W is the ordinal manifest
variable.

There is a trade-off between the mean and variance of U, and the location and spread
of the cutpoints. This paper identifies the model by setting the mean u, for U, in the outer
model to zero, and by using a two—point prior for the last cutboint: Ple(Te - 1) = ) =
1—7 and P[ck(Tk —1) = b) = = where aj <0< bpand 0 <7 < 1 are known constants. The
two—point prior allows the probability of the last category to be greater than or less than
0.5. The prior distribution for the remainder of cutpoints given the last one is proportional
to exp[Cker(1)] xlee(1) < -+ < ck(Tx — 1)] for ¢ > 0, which is the product of truncated
exponential and uniform distributions.

The remainder of the paper is organized as follows. Section 2 briefly presents the Markov
chain Monte Carlo (MCMC) algorithm (Gelfand and Smith 1990). Most of the full condi-
tional distributions are standard computations, except for the identifying constraints. Sec-
tion 3 analyzes synthetic data and demonstrates that the procedure accurately recovers the

parameters and latent variables, and Section 4 analyzes a customer satisfaction survey.

2. MCMC
U has a matrix normal distribution Npym(U|l.p' +Y A, I, 2):

x |Z™2exp {%tr [E“I(U — 1.4 = YA)I,(U - 1,4 - YA)]}
o« |B[™2exp {% [vec(U’) = 1, ® p — vec(A'Y")]
(I,, ® 2"1) [vec(U') -1, @ p — vec(A’Y')]} .
W signifies the n x j; matrix of ordinal manifest variables that are bonded to a common

vector of cutpoints ¢ with T}, categories. The last cutpoint takes one of two values a; <

0 < by. Initialize the Markov chain by setting the last cutpoint to b; if the proportion
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of observations in the last category is less than 0.5, else to a,;. After assigning values to
the remaining cutpoints, initialize U* to the intervals between cutpoints according to their
ordinal responses W*. This initialization improves the performance of the algorithm by
starting in a region such that the model and data are consistent. .

If the ordinal manifest variable W, is contained in the matrix Wk, then generate U,
conditional on Uy, the n x m — 1 matrix with column  removed. Set E(U) = © =
1,4/ + Y A. Partition © and ¥ according to U, and Uy: E(U) = Oy, E[U )] = O(x),
var(Uy) = 0k, var{U o)) = In ® L), and cov[U (), U] = I, ® L(x)«. The conditional
mean and variance of U, given U y) are Oy = O + [U ) — O )] [I. ® (Z&I’N)E(K),K)] and
Ol In = [a,c,,c - En,(K)E(‘:’K)Z(K),K] I.. Generate U, from N,(U|©y(x), Oui(x)In) subject
to [T x[er(wi s —1) < wix < ck(wik)]- One method of generating truncated normals is with
the inverse cdf transform (Devroye 1986 and Gelfand, Smith, and Lee 1992)

Define v; = min{U* : W* = t} and T, = max{U* : W* = t}. The last cutpoint
ck(Tx — 1) is aj with probability proportional to x (Yr,-1 < ax <vr,) (1 — ) and b with
probability proportional to x (Y7,—1 < bx < vp,)m. The full conditional distribution of the
remaining cutpoints are proportional to exp[Cecx(1)] T2 x [T < ce(t) < vepa] -

Generate p from Np(p|v,, V) with V, = (VO"1 +n2“1)~1 and v, =V, [Vo“lvo +
>N U - AY! )ln]. If the jth manifest variable is ordinal, set the jth component of u to
Zero.

Let y;; be the value for latent variable j and subject 7. Define

yi,lIm1 e 0 Bl
Bi = ‘- and B =
0 ces yi,JImJ Bn
Then vec(U’) = 1,®@u+Ba+vec(A). Generate a from N(a|v,, A,) constrained to x(at >
0) where A, = [Aal + B’ (In ® 2"1) B]‘-l, and v, = A, {Aalvo + B (In ® E‘l)
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[vec(U') -1, ® ]} . Sequentially generate each component of o from a univariate nor-
mal distribution or truncated normal distribution by conditioning on the current values of
the other components.

Define SSE = D'(U—lnp,’—YA)’(U—lnp,’—-YA)D where D is the m xm permutation
matrix that defines the blocks of 3. Let SSE, be the rows Aand columns of SSE that
corresponds to Xy. Generate X from | Wa, (Bk|ru e m, Sukn) where TUkn = Tuko+ 7, and
Svkn = Syro + SSE;.

The conditional distribution of U given Y can be expressed as (U;|U(;), Y] [Up|Y ;).
Only the conditional distribution of U; given U ;) depends on Y ;. Partition the error co-
variances matrix X according to the block structure of I: var(U;) = I,® X, ;; cov(U;, Uy)
= In®3jx; var[U ;)] = I, ® B;5); cov[U], U = I,® 3, ;). Define ;) to be the vector
of means p with #; removed; and A ;) to be the matrix of loadings A with the row 5 deleted.
The conditional distribution of U; given U(j) and Y is Ny, [U] Y'; o + &)y In, Sjiis)]
where &) = 1ot + (U~ Laittyy =Y () A) Z gy i) and By = 2~ 0265 Z0)4-
The full conditional of Y is N, (Y5l fjn Gin). If X is not null in Equation (2), then G;,

= (505 +77%) 7 Loand £,, = G, (U - &) 850 + 752X ;38;] s else Gy, =
(350 + 1) I, and f;, = Gj [(U; - &) ] -

Given the latent variables, the prior distributions for 7'2 and B; are the natural conjugate
priors for multiple regression with the constraints that T <1and n‘lﬂ XX ! XiB;=1-
Define B;, [BJ"(}+X'X] 1, bjn = Bj, [ bJ,o-i-X'Y] Tin = Tjo + n; and sj,
= sj0 + Y;Y; + b},B;lb;g - b}, B7\b;,. Generate 77 from IG'( j|r]-n,s,-n) x(t? < 1),
a truncated inverted gamma distribution, and then generate 3, from N, Np;(B;by, T} 2B, ;)

(,3 QB; = 1-12%) where Q = n“lX'X Define Z = QZ,B where Q? is the Cholesky
decomposition of Q. The constraint becomes Z’Z — 1—72. Z is generated one component

at a time by conditioning on the previous draws. Then each component, except the last, is a



truncated normal distribution. The last component Z,, can have one of two values: +d for
1

d= (1 —72 22— =22 )i with probabilities proportional to exp[—(+d — ¥p,1p,-1)* /

J p;—1
(2w?

2 oy .
lepj"'l)] where ¥p,jp,—1 and wy,_, are the conditional mean and variance of the uncon-

strained normal Z,, given the previous components. Set 3; = Q'%Z .
3. Simulated Example

The simulation consists of 500 “subjects,” 12 manifest variables, four latent variables,
and two covariates C1 and C2. Table 1 gives the outer model and the manifest variable’s
scales. All variables that are measured on the 3-point scale share the same set of cutpoints,
as do all variables with the 5-point scale. W01 and W02 are the manifest variables for Y1,
W03, U04, and W05 for Y2; W06, W07, U08, and U09 for Y3; and W10, W11, and U12
for Y4. All of the error covariances in the outer model are zero except for cov(IW03, W10),
cov(U04,W11), and cov(W05,U12). This covariance structure occurs in applications when
a panel of subjects respond at two points in time (S6rbom 1979).

The MCMC algorithm had 100,000 iterations: 50,000 for the initial transition period,
and every tenth of the last 50,000 for estimation. Plots of the random draws versus iteration
indicated that the chain converged to its stationary distribution. Independent chains with
shorter runs had nearly the same results. Table 1 reports the true parameters and posterior
means and standard deviations for the outer model; Table 2 reports the cutpoints, and
Table 3 reports the inner model. These tables indicate that the Bayesian analysis accurately
recovers the true parameter values: the posterior standard deviations are small, and the
posterior means are within one or two posterior standard deviations of the true parameters.

A standard measure of fit in LISREL is the root mean squared error between the observed
and fitted correlations of the manifest variables. On each iteration of the MCMC, predictive

values for the manifest variables were generated given the current parameter values. The



correlation matrix was then computed for the these predicted values and averaged over
MCMC iterations. The observed and estimated correlations are within one or two posterior
standard deviations, and the RMSE between the observed and estimated correlations is
0.038. |

The imputed latent variables were fairly accurate. The correlation and RMSE between
the actual and imputed latent variables are: 0.97 and 0.23 for Y1, 0.97 and 0.25 for Y2,
0.97 and 0.25 for Y3, and 0.95 and 0.33 for Y4. Table 4 demonstrates that the correlations
among the imputed latent variables accurately estimate the correlations among the known,

but unobserved, variables from the simulation.
4. ACSI Survey

The American Customer Satisfaction Index (ACSI) survey is conducted by the National
Quality Research Center, The University of Michigan Business School. Fornell et al (1996)
describes the survey methodology and presents the theoretical basis for the model, which
is shown in Figure 1. Customers’ Expectations, perceived Quality, and perceived Value are
antecedents to customers’ Satisfaction, and consequences of Satisfaction are Complaints and
Loyalty.

One hundred and seventy five customers rated their experience with a local telephone
carrier by answering 15 items on a questionnaire. Respondents were asked what their expec-
tations were prior to purchase, i.e. their ez ante expectations. Three expectation measures
are overall expectation, the expectation of the provider’s ability to customize the service
to meet the customer’s personal requirements, and expectation of service reliability. Three
quality measures are post-purchase evaluations of perceived quality: overall quality, ability
to meet personal requirements, and reliability. Two value measures rated the quality of the

service relative to its price and the price relative to quality. Three satisfaction measures
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are overall satisfaction, the difference between service performance and expectations, and
the difference between actual and ideal service. Two complaint measures are the number of
formal and informal complaints to the service provider. The first loyalty measure is the like-
lihood of repurchasing the service, and the second measures the customer’s price tolerance.
If a customer discontinued the service, price tolerance is the percentage that the price would
have to drop to induce repurchase. If a customer continues the service, it is the percentage
that the price would have to increase before cancelling the service. This item could be viewed
as a respondent’s reported, not actual, reservation price, the highest price that he or she is
willing to pay for the service.

The variables used in the analysis have been transformed. All of the variables except
the two complaint measures and price tolerance were measured on a 10-point ordinal scale.
Fornell et al (1996) justify the 10-point scale “to reduce the statistical problems of extreme
skewness” with partial least squares and “to allow customers to make better discriminations.”
PLS is designed for ratio data, and the 10-point scale attempts to satisfy this assumption.
The data exhibited considerable skewness. Among the 13 ordinal variables, the modal re-
sponse was 10 with 37% of all responses, 11% of the responses were nine, 16% were eight,
and 9% were seven. Less than 15% of the responses were less than five. Skewed ordinal
data does not present a problem when using the cutpoint procedure. However, with so few
observations in the first four categories, the data are not very informative about the lower
cutpoints. I reduced the 10-point scale to six points by grouping categories one to four and
combining five and six.

The number of formal and informal complaints are highly skewed with means of 1.0 énd
1.2, standard deviations of 2.5 and 4.7, and maxima of 20 and 52. Seventy two percent and
75% of the respondents reported zero complaints, and 17% and 15% reported one or two

complaints. I recoded the complaints to a three points scale: one for no complaints, two
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for one or two complaints, and three for three or more complaints. Price tolerance ranged
from —50% to 90% with a mean of 19% and a standard deviation of 25%. Five percent of
the respondents gave negative numbers, and no respondents reported 0%. Fourteen percent
indicated that a 1% price increase would be sufficient for them to cancel their phone service.
All of the responses after 10% were stated in increments of 5%. The lumpiness of the
responses implies that the scale is not truly ratio. I converted it to a five point scale by
coding negative responses as one; 1% to 10% as two; 15% and 20% as three; 25%, 30%, 25%,
and 40% as four, and 45% or more as five.

In addition to the transformed data, I analyzed the original data by assuming that all
of the variables are on ratio scales and by using the original 10-point ordinal scale and
ratio scales for complaints and price tolerance. The outer model depends on the scaling of
the variables, but the estimated inner relations were remarkable robust with most of the
estimated parameters for different analyses within +5% of each other. Using the 10-point
scale seemed to increase the amount of autocorrelation within the Markov chain.

Bryant and Cha (1996) found evidence of an impact of demographics on ACSI. They used
a two-stage method: first, they computed individual ACSI scores, which is the PLS imputed
satisfaction, and then averaged these scores by industry and demographic segment. They
found that gender, age, socioeconomic status, and urban/rural effects across 40 industries.

The following analysis uses five covariates. Age is the respondents age in years, which
ranged from 18 to 83 years with a mean of 41 and standard deviation of 15. College is a 0/1
variable that indicates whether the respondent attended college, with or without receiving
a degree: 64% of the sample reported some college. Rich is a 0/1 variable that indicates
whether the respondent’s income was above $50,000 per year; 25% of the sample reported
incomes above $50,000. Male and Minority are 0/1 variables that indicates whether the

respondent reported as being male or as being African-American or Hispanic. Thirty four
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percent of the sample are male, and 20% are minority.

I augmented the basic ACSI model in Figure 1 with demographic variables and interac-
tions. There is evidence that not only does Expectation influence Satisfaction, but also that
Satisfaction strongly effects Expectation. One reason may be that all of the items on the sur-
vey were jointly determine. Subjects were asked to report their ez ante expectations at the
same time that they reported their post hoc perceptions of quality, value, and satisfaction.
The reported expectations may not be purely ez ante.

The MCMC algorithm ran for 100,000 iterations. The first 50,000 iterations were dis-
carded, and every tenth iteration from the remaining 50,000 were used for estimation. In-
dependent runs using shorter chains resulted in estimates similar to those reported in the
following tables. Table 5 reports the outer model for the augmented ACSI model. For man-
ifest variables that use the same cutpoints, the loadings and error standard deviations can
be compared to each other. The predictive correlation squared is the correlation squared
between the observed and predicted manifest variables. The algorithm generated predicted
values of'U on each MCMC iteration according to the outer model and used the cutpoints
to create ordinal variables. Correlations between these predicted and the manifest variables
were squared and averaged over iterations. The predicted correlation squared is one indi-
cator of model fit. Loyalty 2, which is price tolerance, has the smallest measure of fit; and
Loyalty 1, which is likelihood of repurchase, has the largest.

Table 6 gives the inner model for the both the basic and augmented ACSI model. Because
the error standard deviations are forced to be less than or equal to one, their magnitude
provides some indication of model fit. A pseudo R-squared is one minus the error variance.
For both models Satisfaction has the largest R-squared of 77% and 84%, and Complaints
has the smallest of 27% and 32%.

The estimated basic ACSI broadly supports with the hypothesized model, except that the
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effects of Expectation on Satisfaction and Complaints on Loyalty are negligible. In the basic
ACSI model, Expectation does not have a regression relation, so its variance is set to one.
The effects of Expectation on Quality, Value, and Satisfaction are larger in the augmented
ACSI than the basic ACSI. In the augmented ACSI model, the qoeﬁicient for Satisfaction on
Expectation is large, both absolutely and also relative to its posterior standard deviation.
There is moderate evidence that older customers have higher expectations and that college
education reduces perceived quality. Expectation and Quality strongly effect Value, with the
more affluent having higher perceived value. This result may be due to the wealthy either
being less price sensitive or using a greater degree of customized services. Expectation,
Quality and Value are strong determinants of Satisfaction with some evidence of a negative
interaction between Quality and Value. As predicted by the ACSI model, satisfied customers
tend to complain less frequently. Perhaps more surprising, at least to men if not women,
is that for a given level of satisfaction, men tend to complain more frequently than women.
Loyalty is positively related to Satisfaction with minorities being less Loyal for a given level
of Satisfaction. The RMSE of the residual correlation matrix is 0.056 for the augmented
ACSI, which is 27% less than the RMSE (0.077) for the basic ACSL

5. Discussion

An alternative estimation method for latent variable models is partial least squares (Frank
and Friedman 1993 and Wold 1966 and 1989). PLS uses projective geometry and fixed—point
methods to iteratively estimate linear functions of the manifest variables that have maximal
predictive correlation. Fornell and Bookstein (1982) and Fornell and Cha (1994) contrast
LISREL and PLS. Goutis (1996) shows that PLS estimators shrink ordinary least squares
estimates. The Bayesian imputation of the latent variables use a similar idea: the means of

the full conditionals of the latent variables are linear functions of the manifest variables.
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Decomposing complex, joint distributions by conditioning on unknown quantities or “la-

tent variables” has a long history in Bayesian inference.
De Finetti’s representation (De Finetti 1930 cf. Bernardo and Smith 1994) for infinitely ex-
changeable sequences can be viewed as a latent variable model. Tanner and Wong (1987)
used data augmentation to simplify complex posterior distributions; and Damien, Wakefield,
and Walker (1999) push the concept to its natural extreme. In this sense, latent variables
are not new to Bayesian inference. This paper continues this tradition to analyze covariance
matrices that have complex parameterizations.

An open question concerns the specification of the structural model. Traditionally, it has
been based on theory, while including covariates and interactions may be driven by empirical
analysis. What is the effect of adding covariates or interactions to different parts of the inner
model? In the ACSI survey, is it better to introduce Age in the equation for Expectation so
that Expectation is a mediating variable for the effect of Age on Quality and Value or in the
equations for Quality and Value so that Expectation is a moderating variable? Bayes factors

can be used to provide a statistical answer, but what are the substantive implications?
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Table 1. Outer model for the simulated data. The estimates are the posterior means, and

the numbers in parentheses are the posterior standard deviations.

Manifest Scale Means Loadings Error STD

Variable True Estimate | True Estimate | True Estimate
W01 3-point 0.546  0.558 0.447 0414
(0.034) (0.027)
W02 3-point 0.890 0.913 0.707 0.669
(0.063) (0.048)
W03 5-point 0.981 0.946 0.548 0.539
(0.065) (0.035)
U04 ratio -0.500 -0.555 0.862 0.762 1.000 0.946
(0.044) (0.107) (0.037)
W05 5—point 0.797 0.741 0.707  0.662
(0.057) (0.031)
W06 3-point 0.807 0.845 0.894 0.950
(0.109) (0.065)
W07 5—point 0.649 0.527 1.225 1.267
(0.085) (0.065)
Uo08 ratio 4476 4.461 0612 0613 | 0316 0.341
(0.018) (0.026) (0.022)
U09 ratio 3.120 3.118 0.611 0.545 1.414 1.412
(0.065) (0.069) (0.045)
W10 5—point 0.640 0.514 0.548 0.570
(0.102) (0.052)
W11 5—point 0929 0.752 1.000 0.989
(0.136) (0.072)
U12 ratio 6.237 6.292 0.637 0.624 0.707  0.789
(0.036) (0.178) (0.094)

Error Covariances

W03 & W10 U04 & W11 W05 & U12

True Estimate | True Estimate | True Estimate
0.200 0.202 0.800 0.726 -0.200 -0.203
(0.035) (0.078) (0.038)
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Table 2. Cutpoints for the ordinal scales in the simulated data.

Five Point Scale
True -1.000 -0.250 0.250
Posterior Mean | -1.014 -0.252 0.261
Posterior STD | 0.036 0.025 0.021 0
Three Point Scale -

—

True 0.000 1
Posterior Mean | 0.022 1
Posterior STD | 0.026 0

Table 3. Inner model for the simulated data. The estimates are the posterior means, and
the numbers in parentheses are the corresponding posterior standard deviations.

Y1 Y2 Y3 Y4
True Estimate | True Estimate | True Estimate | True Estimate
Y1 0.200 0.211 -0.280 -0.236
(0.020) (0.038)
Y2 0.150 0.118
(0.035)
Y3 0.050 0.009
(0.052)
Y1xY2 -0.446 -0.482
(0.025)
C1 0.201 0.197
(0.003)
C2 0.128 0.141
(0.024)
Y1xC1 0.108 0.104
(0.007)
Y1xC2 0.137 0.126
. (0.008)
Y3xC1 -0.078 -0.055
(0.038)
Error STD | 0.239  0.299 0.138 0.373 0.187 0.345 0.176  0.286
(0.040) (0.034) (0.041) (0.034)
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Table 4. Correlation matrix for the latent variables in the simulated data.

Y1 Y2 Y3
Y2 True 0.233
Posterior Mean | 0.253
Posterior STD | 0.028 :
Y3 True -0.688 -0.150
Posterior Mean | -0.644 -0.187
Posterior STD | 0.022 0.044
Y4 True 0.076 0.661 -0.276
Posterior Mean | 0.058 0.436 -0.301
Posterior STD | 0.061 0.277 0.086
Table 5. Outer model for the augmented ACSI model.
Manifest Loadings Error STD | Predictive
Variable Posterior Posterior Correlation
Mean STD [ Mean STD Squared
Expectation 1 | 3.600 0.417 | 2.467 0.298 0.369
Expectation 2 | 2.758 0.305 | 1.953 0.262 0.374
Expectation 3 [ 2.984 0.482 | 3.928 0.403 0.100
Quality 1 3.132 0.308 | 1.282 0.207 0.628
Quality 2 3.151 0.315 | 1.342 0.210 0.607
Quality 3 3.454 0.400 | 2.338 0.260 0.365
Value 1 4.953 0470 | 1.802 0.452 0.658
Value 2 4.150 0.379 | 1.266 0.385 0.728
Satisfaction 1 | 2.847 0.211 | 1.029 0.167 0.711
Satisfaction 2 | 2.846 0.313 | 2.616 0.224 0.267
Satisfaction 3 | 3.408 0.316 | 2.124 0.213 0.444
Complaints 1 | 0.913 0.117 | 0.326 0.053 0.592
Complaints 2 | 0.805 0.100 | 0.320 0.049 0.546
Loyalty 1 4.188 0.467 | 1.283 0.670 0.745
Loyalty 2 0.644 0.107 | 0.878 0.104 0.057
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Table 6. Inner model for the basic and augmented ACSI models.

Basic ACSI Expectation Quality Value Satisfaction Complaints Loyalty
Expectation 0.130 0.048  0.004
(0.063) (0.042) (0.027)
Quality 0443 0415
(0.096) (0.079)
Value 0.549
(0.082)
Satisfaction -0.513 0.627
(0.143) (0.088)
Complaints -0.023
(0.120)
Error STD 1.0 0.803 0.771  0.483 0.856 0.758
(0.0) (0.075)  (0.066) (0.050) (0.079) (0.071)
Augmented ACSI | Expectation Quality Value Satisfaction Complaints Loyalty
Expectation 0.690 0429 0.171
(0.084) (0.112) (0.087)
Quality 0354  0.354
(0.113)  (0.083)
Value 0.515
(0.082)
Satisfaction 0.715 -0.480 0.614
(0.068) (0.153) (0.091)
Complaints -0.025
(0.123)
Valuex -0.072
Quality (0.055)
Age 0.010
(0.010)
College -0.206
' (0.138)
Rich 0.196
(0.144)
Malex 0.425
Satisfaction (0.180)
Minority x -0.542
Satisfaction (0.217)
Error STD 0.625 0.700 0.688  0.399 0.825 0.709
(0.073) (0.065)  (0.062) (0.045) (0.080) (0.084)
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XPECTATION

Figure 1. The American Satisfaction Index Model
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