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Abstract

This paper presents a hierarchical Bayes circumplex model for ordinal ratings data. The
circumplex model was proposed to represent the circular ordering of items in psychological
testing by imposing inequalities on the correlations of the items. We provide a specifica-
tion of the circumplex, propose identifying constraints and conjugate priors for the angular
parameters, and accommodate theory-driven constraints in the form of inequalities. We in-
vestigate the performance of the proposed MCMC algorithm and apply the model to the

analysis of value priorities data obtained from a representative sample of Dutch citizens.

1 Introduction

A classical finding in psychometrics is that similarity judgements of different colors can be
represented in a two-dimensional space in the form of Newton’s color circle {Shepard, 1962a,
1962b). Based on this work, similar circular representations proved useful for describing
variations among experiences or judgments in a wide range of psychological and related dis-
ciplines. For example, affective states are commonly depicted by a circular structure based
on the dimensions of valence and arousal (Russell and Carroll, 1999). Numerous other appli-

cations can be found in personality and social psychology (Lippe 1995 and Plutchik & Conte
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1997). The circular ordering of the responses implies that the elements of the corresponding
correlation matrix follow a so—called circumplex structure with correlations first decreasing
but then increasing as one moves diagonally from the main diagonal. Guttman (1954) and
Anderson (1960) suggested stochastic processes on the perimeter of the circle that produce
positive correlations obeying the circumplex structure, with, respectively, moving average
and Markov properties. Models that allow for negative correlations were developed by Cud-
eck (1986) and Wiggins, Steiger and Gaelick (1981). Browne (1992} proposed an extension
of Anderson’s (1960) model that allows for negative correlations.

We extend the work by Browne (1992) as follows. First, we introduce a Bayesian speci-
fication of the circumplex for ratings data and present identifying constraints and conjugate
priors for the angular parameters. Second, we specify inequality constraints on blocks of
variables in the circumplex as defined by psychological theories. Third, we accommodate
idiosyncratic response-scale usage by persons (see for example, Rossi, Gilula and Allenby
2001} that, if not accounted for, may substantially distort the derived circumplex. Since
surveys are often burdened with item non-response, we also capitalize on the MCMC esti-
mation algorithm to impute missing values. As a result, our approach facilitates powerful
tests of psychological theories based on a circumplex structure and controls for a number of
nuisance effects.

The next section describes the proposed model and discusses estimation and inference
issues. In Section 3, the model is fitted to value ratings collected in the Netherlands, and
it is investigated whether the underlying data structure is consistent with the prominent

circumplex value theory of Schwartz and Bilsky (1987, 1990). Section 4 summarizes the

paper.

2 Model

Subject 4 responds W; ; to item 7 on an rating scale with [ ordered categories. Such scales

are very common in psychology and other social science applications. We assume that the



observed response is driven by a latent variable Y; ; falling between two cutpoints:
wi;=kiffcip 1 <wyy<cipfork=1,... H

where the cutpoints {¢;} may vary from person to person. We consider it important to
estimate person-specific cutpoints, since response scale bias has been reported to be highly
idiosyncratic (Rossi, Gilula and Allenby 2001). The cutpoints are ordered: ¢; -1 < ¢;, and
the first two and last two cutpoints are fixed without loss of generality: c;p = —00, ¢;1 = —1,
¢ -1 = 1, ¢; g = 0o. The probability of the ordinal response is:

Cik
PriW; =k) = / flygdy for k=1,... H (1)

i b1
where f is the density of ¥; ;.

Browne (1992} proposed using trigonometric series to model the circumplex correlations
between items and developed a corresponding factor analytical model. We similarly specify
a random effects model for the latent response variable Y; ; to describe individual differences

for person 7 and item j:

Yij = pij+ ¢+ aisin{@;) + Gicos(0)) + e (2)

fore=1,...,nandy=1,...,J; 0, =0; and 0 < ¢; < 2n

The mean, latent response for item j is p4; ¢; is a subject-specific random effect that captures
scale—usage effects, and o;sin(8;) + 5;cos(6;) is a subject by item interaction term that
provides circumplex correlations. The error terms, {¢; ;}, are mutually independent, normally
distributed random error terms with zero mean, and item-specific variances: var(e; ;) = o%.

The model can be viewed as a three—factor model where ¢;, «;, and 3; are subject—
specific factor scores. The first factor score ¢; is a random effect that takes into account
subject-specific scale usage effects. These effects are artifacts of the measurement system
and usually do not have substantive, field-dependent implications: they reflect that subjects
use systematically different parts of the ordinal measurement scale. Respondents with a

positive ¢; tend to use the upper end of the rating scale, and respondents with a negative



¢; tend to use the lower end. We will see in the application that ignoring scale—usage effects
can severely distort the estimated circumplex.

The other two factor scores o; and f3; are individual-level random coeflicients that have
substantive meaning for the psychological phenomenon under investigation: they represent
bipolar latent constructs. Their item-specific loadings, sin(6;) and cos(6;), are constrained
to the unit circle; thus, they are expressed in polar coordinates. With the appropriate
assumptions about these random effects and the constrained loading, inter-item correlations,
after adjusting for scale-usage bias, have a circumplex structure.

We assume that the random effects, (¢;, o, 3;), are mutually independent and normally

distributed with zero means and the following variances: var{¢;) = A% var(a;) = 72; and

@
var(3;) = 'rbz. Circumplex correlations are obtained when 7, = 7, = 7. If these variances
are unequal, then one can reparameterize the subject by item interactions as a;7,sin(f;) +
By, cos(0;) were o and §; are factor scores with mean 0 and variance 1. Then the loadings
T, 8in(6;) and 7, cos(f;) are constrained to the ellipse. In the empirical application, we will
compare the circumplex model to this more general one.

After integrating out the random-effects, the variance and covariances of the latent vari-

ables for circumplex correlations (7, =7, = 7) for the items conditional on the angles are:

var(Y ;) = A4 72 {Sin(ﬁj)Q + cos(Qj)Z} + cr? (3)
= Nty UJQ-
cov(Y;;, Yin) = N4 sin(6;) sin(6y) + cos(6;) cos(6s)] (4)

= M+ 7cos(d; — 6)

This covariance is a special case of Browne’s (1992) approximation using first order, trigono-
metric polynomials. In the classical analysis of random-effects models, the variances and co-
variances in Equations (3) and (4) determine the error covariance matrix in the log-likelihood
function. In Bayesian inference, the random effects {¢;, o, 8;) are frequently treated as un-

known parameters that are estimable: they are not just nuisance parameters.



2.1 Identifiability

The part of the circumplex correlation function that depends on item angles, 72 cos(8; — 0y)
from Equation (4), depends only on the differences in the angles so that the origin is arbitrary.
Thus, we fix 81 to 0, but this alone does not identify the model, which can be gseen as follows.
Define another set of angles as 1y = 0 and ¥y = 27 — 8; for 7 > 2. Because sin(27 — 6)
= —sin(0) and cos(2w — @) = cos(0), the likelihoods L{a, 3,0] and L[—a, 3,1 are equal.
Consequently, we identify the model by introducing a second constraint: 0 < &y < 7. Thus,
61 locates the origin, and 85 determines the positive direction.

We selected the cosine function in the covariance terms to represent the circumplex, but
other functions {(see Browne 1992} could be used as well. A function satisfies the circumplex
properties for correlations if it is even, continuous, monotonically decreasing on (0, 7), mono-
tonically increasing on (7, 27) with maxima of 1 at 0 and 27, and a minimum of —1 at .
We choose the cosine without loss of generality, however, since the angles and trigonometric
function are simultaneously unidentified for a finite set of items. If another function f has the
circumplex properties, then it is possible to define a new set of angles ¢ such that the (¢, f)
and (6, cos) result in the same covariances and likelihoods for a finite set of items. However,
strictly speaking the invariance only holds with respect to the likelihood. For the posterior
distributions of the parameters for the two models defined through (¢, f) and (8, cos) to
be equivalent, the prior for # would have to transformed into an equivalent prior for ¢. In
practice, since the prior specification is often chosen as a compromise between realism and
convenience, the transformed prior for ¢ would rarely match a preferred direct specification

of it. For example, an uninformative prior for 8, may not result in an uninformative prior

for ¢. 2

3We thank one anonymeous reviewer for pointing this out to us.



2.2 Block Constraints on the Angles

Substantive theory often postulates that subsets of angles in the circumplex, characterizing
the items in a certain domain, are less than or greater than other subsets of angles in other
domains, thus imposing blocks of constraints on the directions {#;}. In psychological theo-
ries on personality and value priorities, such domains, consisting of groups of substantively
homogeneous items, are often distinguished. Suppose that there are K blocks of constraints,
and let Bi be the set of indices for the &** block. We are interested in specifying prior
constraints on the order of these blocks of angles. Without loss of generality we assume the
blocks are ordered from 1, ..., K with 8; = 0 and 8y belonging to the first block.

Expressing the block constraints is fairly straightforward, except for the fact that angles
in the first block can be on both sides of the origin. For blocks 2 to K, define the minimum

and maximum angles:
B, =min{f; :j € By} and By, = max{f; : j € By} for k =2,... K.

The “minimum” and “maximum” angles for the first block require some care because

angles in the first block can be on both sides of the zero value:

2m if By > max{f;:je B}
min{8;:j € By and 8; > By} if B < max{f;:7 € Bi}
By = max{f;:j € B andd; <B,}

That is, B, is the smallest angle in the first block that is larger than the angles in the K**
block. If no angle satisfies this requirement, it is defined to be 27. By is the largest angle in
the first block that is smaller than the angles in the second block. With this nonstandard

definition of “minimum” and “maximum” for the first block, we obtain the ordering:
By < B, <By<---< By <Bg <B,.

These constraints are additional to 8; = 0 and 0 < 8 < 7.



2.3 Distributions

Introducing matrix notation simplifies defining the circumplex model in Equation (2} and
its distributions. The n x J matrix for the latent scores {y, ;} (subject ¢ and item ) from

the cutpoint model is:

Y1 - WJ Xll,.
Y = . = E =Y, ... Y, | where
Un1 0 YnJg X:-L].
Y., = J vector of latent item scores for subject ¢;
Y, . = n vector of latent subject scores for item 7.

—*.7

The n x J matrix of error terms is:

The item specific J—vectors for means and angles are:

I 6 sin(8 ) cos(fy)
po= | he=] ] X = : and X =

)

] Ll L] e ]

The J x 2 factor loading matrix is represented as:

X = [Xg Xl

0o ... o

L )

Factor scores and scale-usage effects are collected into n—vectors:

g B ¢1
a = s B= ¢ |, andg=
O B On



With these definitions, Equation (2) becomes:
Y=gl + 10 +oXs+BXp + E

where 1 is a K vector of ones.

We use the bracket notation “/e]” of Gelfand and Smith (1990) to designate a distribution
or density for a random variable. The argument in the brackets identifies the distribution; for
example, | X] and [Y|X] are the distributions of X and Y given X, respectively. The model
and analysis require four distributions: uniform, normal, inverted gamma, and univariate
extended Von Mises. The densities for the first three, standard distributions are displayed

below to establish notation:
wla, b = Uv|a,b) = (b —a) " for a < v <b,

ol 31 = Nl B) = (02180 e |- 5 e )]

L

[{a)

The density for the extended Von Mises distribution is:

lyla,b] = 1G(yla,b) = ——y “" exp(—b/y) for y > 0.

10,0, = V(0. 0.0) o exp{ ~ 6) ~ 4/0leie) - [ o <),

where {(f) = [sin(8), cos(6)]'; d is a 2 dimensional vector; () is a 2 by 2 matrix; y(e) is the
indicator function, and C is a subset of [0, 27). @ does not need to be symmetric or positive
definite because the range of £ is finite. Figure 1 graphs the extended Von Mises distribution
for d = (sin(w}), cos(m}))" and ) = 5/5 when C = [0, 27. If () is a matrix of zeros the density
is uniform. If d = (sin(6),cos(6)), then the mode of the distribution is 8. We will restrict
our attention to quadratic forms because the likelihood function for the angles takes this
expression, and the extended Von Mises is the natural conjugate prior distribution for the

angles.

[INSERT FIGURE 1 ABOUT HERE]



The error terms of the latent variables are mutually independent and normally dis-

tributed:
€] 2] = Ny(g,]0;, %) where 05 is a J vector of zeros.
The random effects are also mutually independent and normally distributed:
[61X°] = Na(910,, XL); [ad7®] = Na(al0,,71); and [B17%] = Na(B[0,,, 7°1,)

where [, is the n x n identity matrix. Given the latent variables and cutpoints, the distri-

bution of the response for subject 7 is:
Pr(wi 1y oy Wy J‘Cia.u‘ ¢ia&iaﬁia91 E)

C%wzj
_H f lezg|ﬂj+¢z+atsm( )+B%COS( ), g]dyw

11%?—1

The prior distribution for the cutpoints is conditionally uniform:
o] s x(—l <ega<.. <epg <)
That is, given ¢;;_1 and ¢; y41, the conditional distribution of ¢; 5 is uniform:
(CiklCikot1,Cipr1] = UlCinlCip—1,Cipgr) for k=2, H—2.
The mean latent scores have a normal prior:
) = Nyplme, Vo),

and the error and random effects variances have inverted gamma distributions:

[a?]:fG( \”’ 320); N = IG ()@ o, ”(2’1); and [TQ}:IG( |“;2 ”;’2).

The prior distribution for the angles is extended Von Mises:

M{;|dy, Qo,[0,7])  for j =2

9;] =
U Vit aulom) s

with d, = (0,1}, Qo = 0.2f5 where /5 is the 2 x 2 identity matrix. This prior distribution is
fairly flat on [0, 27).



2.4 MCMC Estimation

A primary goal of Bayesian inference is to compute the posterior distribution of the unknown
parameters given the data. The posterior distribution quantifies the uncertainty about un-
known parameters after observing the data. The posterior mean is the Bayes estimator under
squared-—error loss, and the posterior standard deviation is a measure of uncertainty about
the parameter. For sufficiently large samples and well-behaved models, posterior distribu-
tions are approximately normal, and there is approximately 95% probability that the true
parameter is within + two posterior standard deviations of the posterior mean. For non-
Bayesians, the posterior mean is the point estimator, and the posterior standard deviation
roughly resembles the standard error for the point estimator. Estimation of the model is
accomplished via Markov chain Monte Carlo (MCMC) (c.f. Gelfand and Smith 1990). The
appendix gives details for the application to the circumplex model. After an initial transition
period, the random deviates from MCMC can be treated as random draws from the posterior
distribution and used to numerically approximate posterior statistics of the parameters. For
example, the posterior mean is approximated by the average of the random draws.

The accuracy of these numerical approximations can be ascertained by the root mean
squared simulation error (RMSSE). The RMSSE is the standard deviation of the MCMC
approximation to the posterior mean and accounts for the autocorrelation in the Markov
chain. The RMSSE tends to decrease as one uses more iterations in MCMC. In comparison,
the theoretical posterior standard deviation does not depend on the estimation algorithm,
and it tends to decrease as sample sizes increase. It is important to differentiate between the
posterior standard deviation and the RMSSE. The first quantifies the posterior uncertainty
about a parameter, while the latter quantifies the accuracy of the numerical algorithm in
approximating the posterior mean. We will report the RMSSE to give an indication of the

accuracy of the numerical approximations from the MCMC algorithm.
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2.5 DBrier Scores

Brier (1850} proposed a squared error loss statistic that compares predictive probabilities and
random outcomes (c.f. Gordon and Lenk 1991, 1992). Let {z;} be n uncertain events where
z; = 1 if the event occurs and 2; = 0 otherwise. The Brier score is BS = n 'Y (2 — pi)?
where p; is the predictive probability for z;. Suppose that one uses m different predictive
probabilities {g;}. The Brier score can be decomposed into two components, called “cali-

bration” and “refinement”:

m mn

1

BS =~ Z ZX(pi = g) (2 — ;)

=1 i1
1 m X m T A
- Y nilg = @) 0 i = gz — 4)°
im1 =1 il
ny =Y x(ps=g) and g = ;Y xlpi = g5)z

i=1 i=1

where n; is the number of times that g; is used; and ¢; is the relative frequency of event j
given that one predicted it would happen with probability g;.

The first term of the decomposition is calibration and is related to bias. The calibration
measure is zero when the predictive probability and conditional relative frequencies are equal.
Clearly, calibration alone does not imply an accurate forecasting system. For instance, a
system is well—calibrated if it always reports the base rates for events; however, base rates
may not be very informative. The second measure, refinement, is similar to variance, and
measures the propensity of the prediction svstem to use values close to zero or cone: in
a well-calibrated system, forecasts closer to zero or one are more useful than forecasts in
the middle of the unit interval. DeGroot and Feinberg (1982) showed that if two systems
are well-calibrated and if system A is more refined than system B, then B’s forecasts are
equivalent to passing A’s forecasts through a noisy filter.

Our fit measure is based on a modified Brier score. Instead of using the predictive
probabilities given the data in the computation, we compute the predictive probabilities

given the parameters ) and the data, and use these to compute a Brier score on each

11



iteration of the Markov chain:

_Lizj:ig z ..—k|Q(m))]2

~ NH i=1 j=1 k=1 e P
where N is the total number of observations; 2; ;1 = 1 if person ¢ responded k to variable 7,
and 0 otherwise; and §; ; = 1 if the variable is observed and 0 if it is missing. That is, missing
observations are excluded from the Brier score. The { BS™} are then used in computing

posterior means and standard deviations. This approach extends the Brier score to include

calibration, refinement, and uncertainty in the predictive probabilities.

2.6 Model Test on Synthetic Data

Before presenting the results of an empirical application of the model, we discuss the results
of a synthetic data analysis mimicking 16 variables measured on a seven point ordinal scale
in a sample of 50 persons. The angles #; were randomly generated under the constraints of
four blocks with four angles in each block. Each item independently had a 7% probability
of deletion, and 6.4% of the observations were actually deleted. We estimated circumplex
models with the correct constraints on the angles, with unconstrained angles, and with
incorrect constraints, assigning variable 4 to block 3 and variable 11 to block 1. The incorrect
constraints constitute a mild violation of the true model. We ran the MCMC algorithm for
2000 iterations and used the last 1000 iterations for the analysis. The chains appeared to
have converged by iteration 100. Convergence was checked by running longer chains with
different starting values and by graphical inspection.

Table 1 reports the posterior mean and RMSSE (root mean squared simulation error)
of the log-likelihood and the Brier score. The log-likelihood statistic averages the likelihood
function over the posterior distribution of the parameters. It does not play a role in Bayesian
inference; however, it is often reported due to its similarity to log-likelihood evaluated at
maximum likelihood estimates. The fit statistics identify the correct model. In addition, the
unconstrained model yields better fit statistics than the model with the incorrect constraints,

even when the incorrect constraints affect only two out of the 16 variables. Note that the
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number of parameters are the same for the three models. Using the appropriate constraints
improves these fit statistics by reducing the uncertainty in the estimated angles, as will be
demonstrated in Table 2. The simulation result lends credence to the use of the Brier score

in empirical applications to test the adequacy of constraints on the circumplex.
[INSERT TABLE 1 ABOUT HERE]

The algorithm was able to recover accurately the grand means ;, error standard devia-
tions o;, and random effects standard deviations A and 7 as judged by their posterior means
and posterior standard deviations. We estimated the latent variables v; ;, ¢;, ¢y, and G; by
their posterior means. Their correlations with their true values over “subjects” exceeded
0.95, except in the incorrectly constrained model for %;1; with a correlation of 0.89. The
estimated cutpoints had correlation between 0.77 and 0.91 with their true values.

The differences between the models with various sets of constraints are also reflected in
the posterior means and standard deviations of the angles in the Table 2. Although the
posterior means for the two models are close to their true values, as measured by their
posterior standard deviations, the unconstrained model exhibits more uncertainty about the
angles, and their posterior variances are larger. Also, the simulation standard errors are
substantially smaller for the correctly constrained model. For the unconstrained model the
RMSSE is in the range of 0.014 to 0.023; for the correctly constrained model they vary
from 0.009 to 0.016, and for the incorrectly constrained model, they are between 0.009 and
0.022, except for item 11, a wrongly classified item, where RMSSE is 0.198. The constraints
effectively reduce posterior uncertainty about the angles, as can be seen by comparing the
posterior standard deviations of the constrained and unconstrained models. In all cases but
one, the posterior distributions were “mound” shaped and unimodal. The exception was
item 11 in the incorrectly constrained model where the angle wrapped around the circle. It
is worthwhile noting that the incorrectly constrained model did not recover the true angles

for the misclassified variables 4 and 11.
[INSERT TABLE 2 ABOUT HERE]
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3 Application to Schwartz Value Ratings

3.1 Schwartz Value theory

Building on work by Rokeach (1973), Schwartz and Bilsky (1987, 1990) provided a detailed
psychological theory of value content and structure. Values are defined as beliefs that pertain
to desirable states or behaviors, transcend specific situations, guide selection or evaluation
of behavior and are ordered by relative importance. They have been widely used in the
social sciences to explain, for example, voting behavior (Rokeach 1973), mass media usage
(Rokeach and Ball-Rokeach 1989), charity contributions (Manner and Miller 1978), socially
responsible behavior (Anderson and Cunningham 1972), ecological behavior (Ellen 1994),
and innovativeness (Steenkamp, ter Hofstede and Wedel 1999).

Schwartz and his collaborators postulate a comprehensive typology of the content and
structure of domains of values. They distinguish ten value domains, summarized in Table 3,
that are organized along two bipolar dimensions. The first dimension is defined as “openness
to change versus congervation” | and opposes values of self-direction and stimulation to those
of security, conformity and tradition. The second dimension is called “self-enhancement
versus self transcendence” and opposes values of universalism and benevolence to those of
hedonism, power, and achievement. The universal structure of values was investigated by
Schwartz in a number of studies conducted in different countries. Smallest space analysis
(Guttman 1968) of the correlation matrices provided qualitative support for the postulates
of the theory (Schwartz and Sagiv 1995). From those studies, it is apparent that the theory
borrows strength from ideas of circumplex representations. However, the circumplex model,
although popular in psychelogy as a model for the representation of attitudes (e.g., Plutchik
& Conte, 1997) has not been directly applied to the analysis of values, nor has Schwartz
theory been subjected to statistical testing. Here we set out to examine more rigorously the
validity of Schwartz’s value system by investigating the constraints that the theory imposes

on the hypothesized circumplex structure.
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[INSERT TABLE 3 HERE]

3.2 Sample and Data

The data used here are part of a larger data set that was collected for the European Com-
mission. A sample was drawn randomly from the household consumer panel of a market
research agency in the Netherlands. This panel is representative of the Dutch population
with respect to a large number of socio-demographic characteristics. For data collection, mail
questionnaires were sent out to households in the Netherlands. The questionnaires included
the Schwartz values measurement instrument, assessing 44 value priorities on 9-point scales.
Before collecting the data extensive pre—tests were conducted. After sending reminders, the
overall response was around 70 percent (for more details on data collection, see Ter Hofstede,
Steenkamp and Wedel 1999). The sample size was 157 for a total of 6 698 observations with

3.0% missing.

3.3 Results

We analyzed the Dutch value priority data with seven models derived from Equation (2).
The first model has random scale-usage effects only and zeros-out the circumplex structure
(a; = B; = 0 ). We estimated four different circumplex models (7, = 7 = 7). Model
2 is an unconstrained circumplex without scale-usage effects (¢; = 0). Models 3 to & are
circumplex models with scale-usage effects. Model 3 has value domain constraints, and
Model 4 has value dimension constraints. (See Table 3). The latter is a weaker set of
constraints as compared to the former. Model 5 is an unconstrained circumplex model.
Model 6 is a two—factor model (7, # 7) that has a more general correlation structure than
the circumplex. It also has random scale-usage effects. Model 7 allows an unconstrained
error covariance (cov(e; ;, € 5) = ;) among items and removes the random scale-usage
effects and circumplex {(¢; = a; = 3 = 0). The likelihood function with full error covariance

and random scale-usage or circumplex factors is not identified. All models were estimated
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nsing 100,000 draws, with a burn-in of 50,000. After burn-in, every 10t iteration was used
in the computations for a total of 5000 draws.

Table 4 displays the fit statistics and the root mean squared simulation errors. The latter
are quite small, which indicates the accuracy of our model comparisons. The circumplex
models with random scale-usage effects (Models 3, 4, and 5) perform better than the other
models, and the models without scale-usage effects (Models 2 and 7) performed substantially
worse than the models with them. Model 7 is the most general model, but did not perform
best: it has a very large number of parameters relative to the sample size. More interestingly,
the circumplex models with scale-usage effects (Models 3, 4, and 5) fit as least as well as
the two-factor model (Model 6), which is more general than Models 3 to 5 because it relaxes
the restriction of equal variance parameters for the factor scores. These fits provide strong
evidence that Schartz’s value scales conform to the circumplex once scale-usage effects are
properly handled. Apparently, the proposed approach of dealing with the response scale
bias is both effective and important. For the circumplex models with different constraints
the Brier scores are comparatively close. However, the fit deteriorates slightly as domain
constraints are imposed. Thus, the value priority data seem to violate Schwartz’s theory of
value domains to a certain extent, although judged by the differences in fit between those

models, the viclations appear to be minor.
[INSERT TABLE 4 HERE]

Table 5 reports the posterior means and posterior standard deviations of the estimated
circumplex angles for Models 3, 4, and 5, the circumplex models with scale-usage random
effects and domain constraints (Full}, dimension constraints {Partial), and no constraints
(None), respectively. The root mean squared simulation standard errors are small in all
cases: they vary from 0.002 to 0.005 for Full and Partial and from 0.008 to 0.010 for None.
These RMSSE imply that the numerical approximation accuracy of the posterior mean
is within at least two decimal points. Some of the posterior distributions for the angles

are bimodal because the support of the distribution spans zero. For example, if there are
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constraints, angles in the first block can be less than zero. In these cases, we compute

”

the posterior means and standard deviations by “unrolling the circle” in postprocessing the

MCMC draws. If the posterior distribution of ¢; is bimodal and if more than half of the
(9)

posterior distribution is between 0 and m, we recode MCMG draws 67 for the gt* iteration

that are between 7 and 27 as 9;9) — 27, Similarly, if more than half of the distribution is

{9)

between 7 and 27, we recode draws that are between 0 and 7 as 27 + ng . None of these
variables had random deviates in the 7/2 to 37/2 range. This recoding does not change the
circumplex variances and covariance and is only used in approximating the posterior means
and standard deviations. lgnoring the bimodal distributions results in nonsensical posterior
means and standard deviations: if the posterior distribution is concentrated on both sides
of 0, then posterior mean will be around 7, a region of zero probability.

When comparing the models with the domain (Full) and the dimension (Partial) con-
straints, it is apparent that only a few value angles, using the more general dimension
constraints, differ from the more exacting ordering, using domain constraints. The viola-
tions to the constraints misplace the angles in neighboring value domains within the value
dimensions (Table b). Most of the violations using no constraints, compared to the domain
and dimension constraints, occur for angles near zero or 27.

The posterior standard deviations indicate the uncertainty about the angles. Based on
their posterior means and standard deviations, the posterior distribution of the angles from
the three models are very similar, with the exceptions of angles for Conservation. Even here,
though, the difference are more apparent than real if one keeps in mind that 0.1 radians is
very close to 27 on the circle. In comparing posterior standard deviations and simulation
standard errors, estimators using domain constraints are more precise than using dimension

constraints, which are, in turn, more precise than those without constraints.
[INSERT TABLE 5 HERE]

Figure 2 provides a graphical display of the posterior means for each of the three cir-

cumplex models with random intercepts as well as of the model with fixed intercept. The
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radii of the vectors for angles in the four dimensions have been jittered so that the points
do not overlap. Figure 2A shows significant distortions of the circumplex structure if scale
usage is not taken into account: the value angles are almost entirely confined to the positive
quadrant. Figure 2B graphs the angles for the unconstrained circumplex model with random
effects, and Figures 2C and 2D graphs the angles with bipolar dimension and value domain
constraints.

Inspection of Figure 2 reveals that, although the unconstrained circumplex does fit the
data marginally better, the differences in the locations of the values on the circumplex are
minor. ‘To reveal their correspondence, Figure 3 presents scatter plots of the angles for
the four circumplex models. Figure 3A plots the angles from the unconstrained circumplex
models with and without scale-usage effects and reinforces the observation that scale-usage
effects are needed. Figures 3B and 3C plot the constrained models against the unconstrained
one with scale-usage effects. The points in the top left-hand corners are due to values in the
Conservation dimension overlapping with those of Self-Transcendence in the unconstrained
model. Finally, Figure 3D plots the domain and dimension constrained models. These plots
indicate that the three circumplex structures are quite similar: the estimated angles are
virtually on a straight line. Because of the few and minor violations of the dimension and
domain constraints, we are inclined to conclude that the Schwartz value theory holds fairly
well in the Netherlands sample, even though the Bayesian model selection criterion points

towards the unconstrained model.
[INSERT FIGURES 2 and 3 HERE]

Individual differences in the value judgments are depicted in Figure 4. This figure is
based on the bipolar dimension constraints and displays average interaction effects. The
averages are over items from the same value dimension:

a .
cad(By) jezs:k sin(f;) + Wﬁ(lﬁ’k) jezl;k cos(8;) (5)
where card(By) is the cardinality of By. Figure 4 contains four curves with o and g equal

to plus and minus one. The figure illustrates that a person who has high values for self-
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transcendence has low values for self-enhancement and moderate values for openness—to—
change and conservation. Likewise, a person with high values for openness—to—change has low

values for conservation. Similar patterns can be observed for the other two value dimensions.

[INSERT FIGURES 4 HERE]

4 Conclusion

Models for covariance structures are popular in the social sciences for assessing latent psy-
chological constructs from proxy variables that are intended to represent the psychological
domains in question. Whereas the exploratory factor analysis model has been used frequently
since 1960, confirmatory factor models (Joreskog 1974) became popular in the 1970°s for
applications where prior theory guided the identification of the underlying latent variable
structure. However, because of their linear form, these broad modelling frameworks can
include only a subset of relevant models for covariance structures. One of the significant ex-
ceptions, which is not included in the confirmatory factor modelling framework, is the class
of circumplex models (Guttman 1954, Browne 1992} which imposes non-linear constraints
on the correlation matrix. These constraints are derived from the ordering of the proxy
variables on the circumplex and, thus, avoid the need to achieve simple structure through
either rotation or identifving constraints.

In our Bayesian formulation of circumplex models for rating scales, we explicitly account
for idiosyncratic response scale usage by using an individual level cutpoint approach that
assumes that respondents map an underlying latent trait onto the response scale and by a
random effects specification that allows for differential scale usage tendencies. In the syn-
thetic data application, we demonstrated that the individual-level cutpoints can be recovered
well even when the sample size is small, while the empirical application showed that failure
to accommodate response scale usage seriously distorts the recovered circumplex structure.
A potential drawback of our Bayesian approach, however, is that as yet standard software is

not available and that it requires more computer time than maximum likelihood methods.
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The circumplex model has been of much appeal to social science researchers because of its
implied properties for the correlation structure of the measured items. Our approach yields
a tractable representation that deals with different sources of person—specific heterogeneity.
Moreover, the Bayesian formulation of the model and the proposed MCMC algorithm al-
low us to impose inequality constraints on the circumplex that are derived from substantive
theory. In the synthetic data analysis and empirical application we showed how to inves-
tigate the validity of these constraints. We believe that these contributions will facilitate
rigorous tests and further increase the popularity of circumplex models for the analysis of

psychological constructs in the social sciences.

A MCMC

All of the full conditionals, except those for the angles, are standard distributions. The
MCMC algorithm proceeds by drawing recursively from the full conditional distributions
of the parameters, as provided below. Each of those full conditional distributions takes a
standard form, with the exception of the full conditional for the angles, #. We will use the
matrix notation and distributions in Section 2.3. The algorithm was implemented in the

GAUSS language, and the code can be obtained from the first author.

A.1 Full Conditional for Y;; for Observed W;;

;4| Rest] o Nius ;lp; + &5 + i sin(05) + B cos(05), 05) X(Cign—1 < Uig < Cimr,)s

where y(e) is the indicator function. The full conditional distribution is a truncated normal
where the truncation depends on the cutpoints and the observed ordinal response. We use

the inverse cdf transform to generate truncated normal random variables.
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A.2  Full Conditional for Y;; for Missing W, ;

The model easily accommodates missing data assuming MAR. If W, ; is missing, then Y} ; is

normal:
[ 5| Rest] = Ni[yi 15 + ¢ + o sin(6;) + f; cos(9;), 73]

That is, one does not know which cutpoints ¥; ; would have fallen between.

A.3 Full Conditional for cutpoints ¢;

Given ¢; 31, ¢; k11, and the latent variables ¥;, the cutpoint ¢;; is uniformly distributed:

(i Rest] = Uleip| max (i j,cip-1), min (vij,Cipsr) for k=2,...,H—2.
’w?;,j:k wi,j:k+1

A.4 Full Conditional for @

| Rest] = Ny(p|m,,, V2,)
Vo= (nZ v

my, = Vo (S7HY — ¢l — aXg — BXLYL, + Vg tmy)

A.5 Full Conditional for Eﬁ

[@Rest} = Nn(@\%,v¢fn)
ve = (15571, + A7)

my =ve(Y — Loy’ — o X — BXL)Y 'L,

A.6 Full Conditional for ¢ and 8

s, Bi|Rest] = No[(a, Bi)' My, 4., Vay 5]
Voo = (XIE_lX + 7_212)71
My, 8 — Vai,ﬁerIE_l (Xi,o —H— qb@lJ‘)

—, 03
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AT

A8

A9

Full Conditional for crj,?-

2 2("n 5n
(05| Rest] = IG (0j|5,7)

Tm="To+n

8p = 80+ Z {%,j — fi — b — oy Siﬂ(‘gj) — 3 003(93'”2

i=1

Full Conditional for )2

N¥[Rest] = 16 (X222 220

Up1 =Ugl + 71

Un1 = Vo1 + Q’Q

Full Conditional for 72

[7%|Rest] = IC (Tgun,z’vn,z)
2 2
Upa = Ugo + 20

Vpo =12+ o+ Qfl_a
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A.10 Full Conditional for 8

6| Rest] ocexp{ 222(172 Wi — by — @i — oy sin(6;) — B; cos(6; )}} (8 €C)

i=1 j=1 J

X €Xp {; D LE06) — dul Qolé(6) - do}}

7=2

J
x [[VM6ld;.@5.C))
j=2

where C; is the constraint set for #;, and C = UJ‘LQCJ-. Because the prior distribution for
the angles are independent, the full conditionals depend on each other only through the
constraints. Thus, generating from the full conditionals involves generating from univariate
distributions, which we do by using the inverse cumulative distribution transform of a uniform
random deviate.

Our experience has been that once the random coefficients and angles are in the vicinity
of their true values, generating directly from the full conditionals works very well. However,
the algorithm can get “stuck”, because the random coefficients (X matrix in the posterior
density) limit the range of values attainable for the angles and visa versa. Thus, given one set
of parameters, draws from the other set may not visit high probability areas of the parameter
space.

Therefore, we pursue a hybrid sampling strategy and in addition to generating the angles
form their full conditional distributions directly, we generate all the angles and random
coeflicients in a Metropolis step at every other iteration. The Metropolis step works as
follows. We generate the angles from a random walk. The jump distribution is a finite

mixture of L uniform distributions where the end points depend on the current angle and the
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constraints. Figure b.a graphs the density of a typical mixture of uniforms, centered at zero,
for the error distribution. It puts most mass around zero, which implies that most candidates
values, 1;, will be close to the current value, 8;, and it allows large jumps with relatively low
probability. Figure 5.b graphs the jump distribution given the current ¢; is 2.5 and the block
constraints imply that 0.5 < 4; < 2.6. With probability p;, the candidate value, 95, for 8; is
generated from a uniform that is proportional to x(8; € C;)U (1405 — wy, 8; + w;) where v is
a prespecified positive constant, and C; are the constraints on 8; given the other values of .
Once we have candidate values for the angles, we generate candidate values for the random
coefficients « and 3. The candidate values for the angles and random coefficients are jointly

accepted or rejected.
[INSERT FIGURE 5 ABOUT HERE]

The constraints on the angles result in relatively complex expressions, though easy to
compute, for the acceptance probabilities. Without loss of generality, suppose 61 = 0; 0 <
By < m; 6y and &, are in the first block By, and there are K blocks. The indicies by, ..., bg
will give the last angle that belongs to the blocks:

I,....,yeByand by 1+ 1,..., 0, c Byfor k=2,... K.

The blocks follow the order in Section 2.2.

Candidate values s, ..., ¥ for the angles are generated sequentially. We will use the
definitions of the minimum and maximum angles, (B,, By), from Section 2.2 where it is to
be understood that these minimum and maximum angles change as current values of &, are
replaced by the candidates 1, as the candidates are generated. Define “V” as the maximum
operator, and “A” as the minimum operator. The random walk is a mixture of L uniform

distributions: in Figure 5a the endpoints for component [ are +w; with mixture probability
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. For angles in the first block, the jump distributions are:

05 = ZL: X(0 <9y <[Bo Al +wy) A7)

— 3 By A (024 w) Al

o120, ..

2 Xaymy < Y < i)
Im ™m Im
gl[wm|¢2:"'awm—1:8m:"'agﬂ - Zpl ol ol
=1

bl,m,l — Qim,1

Qim1 = (BK — 27’[’) V (gm — ul)
bimi = By A (O +w)
form=3,...,b;.

[f the candidate value 1, in the first block is negative, then it is recoded as 2w + ,,,.

For angles in blocks & = 2 to K, the uniform random walk has density:

L X(@mk < UVm < bpmi)
gk[¢m|¢2:"':wm—lagm:"':gﬂ - Zpi bk = bk

brm i — Qi
Uk = Biq V(O —w)
bimpe = Bipt A (O +w)

form=0by,_1+1,...,b.

where B = B,

After generating the candidate angles {¢,}, candidate values of the random coefficients
{af, 3%} are generated from normal distributions in Sections A.6. The acceptance probability
for the candidates are:

min {1 ['40, C}:Cjﬁcﬂ/} Hf:l Hf:=5k_1+1 kam‘gz, . ,gm,h ’gbm, . ,’QDJ] {g,ﬁ“ﬂ }
’ 0,0,8|Y] Hf:l H%=bk_1+1 G lta, 1, O, 05|, BE2]

where by +1 = 2, and [0, a, B)Y]| « [Y|u, &, ,8,0,0]0][a][3].

In the model without block constraints, mixing is improved if one of the uniform distri-
butions in the mixture allows for reflections such as x(C;)U(af;|m — 0; —wy,m + 6; + ) for
7 =2 and x(C;)U {2 — 6; — w;, 27w + 6; + ) for 7 > 2. The rational for the reflection
is that the random walk chain has to progress from a region of high probability, through a

region of low probability, to arrive at another area of high probability. For example, suppose

25



that the current value of the angle is 0.2, so cos(.2) is close to one and sin(.2) is close to
zero. Angles close to 2m — .2 result in similar values for the sine, cosine, and covariances
among Y variables. However, for a random walk to reach 2w — .2, it has to pass through
regions around 7 where the sines, cosines, and covariances are very different. If .2 is a highly
probably value for the angle, the random walk will not reach the other side of the circle
because of the low probability region that intervenes. We also included random phase shifts
in the algorithm, by adding a small random amount to each angle, which slightly rotates the
entire configuration and helps to escape from regions of low probability.

Our experience has been that the random walk Metropolis explores the parameter space
more rapidly than generating angles from their full conditional distributions only. However,
once the chain is in a high probability region, generating from the full conditionals is more
efficient because none of the random deviates are rejected. We therefore perform one random
walk Metropolis and one draw from the full conditionals of the angles at each iteration of

the Markov chain.
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Table 1. Model fit statistics and correlations for synthetic data

RMSSE is the root mean squared simulation error

Constraints
Correct None  Incorrect
Log Likelihood: Mean —220.65 —27847 —321.97
Log Likelihood: RMSSE 1.10 1.30 1.15
Brier Score: Posterior Mean 0.0106 0.0130 0.0146
Brier Score: RMSSE 0.000052 0.000058  0.000052
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Table 2. Estimated directions for the synthetic data.

The constraints given to the

program were either no constraints, the right constraints, or the wrong constraints.

Posterior Posterior
Mean STD

Item True | None Right Wrong | None Right Wrong
1 0000|0000 0.000 0.0000.000 0.000 0.000
2 0673|0613 0664 06180201 0113  0.082
3 5700|5838 5831 5856 |0.209 0.087  0.096
40778 0.855  0.842 1.293 | 0.191 0.092  0.113
5 0811|0772 0937 0814|0222 0.108  0.108
6 1.030 | 1.127 1.128  1.147 | 0.198  0.100  0.105
7 1096 | 1.116 1.101  1.165 | 0.197 0.098  0.106
8§ 1.116 | 1.309 1.310  1.254 | 0.183 0.096  0.111
9 2332 | 2531 2547 2507 | 0.195 0.133  0.128
10 2577 | 2,676 2.673 2,648 | 0.180 0.130  0.128
11 3285|5494 5497 4444V | 0177 0137 2.560
12 4568 | 4.693 4.622 4576 | 0.235 0.116  0.158
13 4.646 | 4702 4.723  4.684 | 0.208 0.104  0.150
14 4913 | 5.081 5.070 5001 |0.192 0.102  0.130
15 5.340 | 5487 5.418 5486 | 0.182 0.103  0.120
16 5.538 | 5.792 5.732 5760 | 0.145 0.096  0.009

I The posterior distribution is bimodal with mass near 0 and 27. The median is 5.78.
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Table 3. Dimensions, domains, and values according to Schwartz’s theory.

Openness-to-Change Conservation
Domain Values Domain Values
Self Creativity Security Family Security
Direction Freedom National Security
Independent, Social Order
Curious Cleanliness
Chooging Own Goalg Reciprocation of Favors
Stimulation  Daring Conformity  Politeness
Varied Life Obedient
Exciting Life Self-Discipline
Honoring Elders
Tradition Humble
Accepting Fate
Religicus
Respect for Tradition
Moderate
Self-Transcendence Self-Enhancement
Domain Values Domain Values
Benevolence  Helpful Hedonism Pleasure
Honest Enjoying Life
Forgiving Achievement  Successful
Loyal Capable
Responsible Ambitious
Universalism Broad Minded [nfluential
Wisdom Power Social Power
Social Justice Authority
Equality Wealth
World Peace
World Beauty
Unity with Nature
Environment
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Table 4. Fit statistics for the Schwartz Value Data.

Log Likelihood Brier Score
Numberf of | Posterior Posterior  Simulation
Parameters Mean STD Error Mean RMSSE
Model 1 89% -10271 0.367 0.0162 0.00000063
Model 2 133 -0912 0.447 0.0774 0.00000311
Model 3 134¢ -0752 0.492 0.0157  0.00000079
Model 4 134¢ -0730 0.382 0.0156 0.00000064
Model 5 134¢ -0693 0.433 0.0156  0.00000069
Model 6 1354 -9822 1.212 0.0157 0.00000156
Model 7 1034° -11743 1.494 0.0880  0.00000980
Model 1: Random scale-usage effects and no circumplex (a; = 8; = 0)
Model 2: Circumplex (7, = 7), no scale-usage effects (¢; = 0}, no constraints
Model 3: Circumplex (7, = 7}, random scale-usage effects, domain constraints
Model 4: Circumplex (7, = 7), random scale-usage effects, dimension constraints
Model 5: Circumplex (7, = 7), random scale-usage effects, no constraints

Model 6: Elliptical model (7, # 7), random scale-usage effects, no constraints
Model 7: Full error covariance

T Counting the number of parameters in Bayesian, random effects models is not straight-
forward. We do not include the latent variables Y} ;, the individual-level cutpoints for the

ordinal model, the random effects (¢;, a;, 3;), nor the prior parameters.
“ 44 means p;, 44 error variances 032-, and random effects variance A2,
b 44 means t4, 44 error variances J;‘.’, 44 angles §;, and random coefficient variance 72,

¢ Same ag *

plus random effects variance A2
4 Same as ¢ plus unique 7, and 73 instead of common 7

® 44 means p; and 44(44 + 1)/2 error variance and covariance terms.
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Table 5. Value Angles for Netherlands Data using Three Sets of Constraints.
“Full” is ordering of angles based on value domains; “Parital” is ordering of angles based on
bipolar dimensions. “None” is unrestricted mode.

Dimension
Domain Mean Posterior STD
Values Full Partial None Full  Partial None

Self-Transcendence

Benevolence
Helpful | 0.000  0.000 0.000 | 0.000  0.000 0.000

Honest | 0.151 0.160 0.581 | 0.113  0.117 0.202

Forgiving | 0.240  0.388 0.864 | 0.157  0.224 0.353

Loyal | 0.326 0.3583 0842 | 0144 0170 0.298
Responsible | 0.240  0.281 0738 | 0.154  0.178 0.310
Universolism
Broadminded | 1.430 1.280 1954 | 0,180  0.169 0.315
Wigdom | 0.906 0.825 1.345 | 0.249 0.232 0334

Social Justice | 0.512 0.249 0.708 | 0.151 0.176 0320
Equality | 0.977  0.838 1.276 | 0.253  0.248 (0.348

World Peace | 0.560  0.389 0.904 | 0.163 0,160 0.304
World Beauty | 0.739 0.613 1.08 | 0203 0212 0325
Unity with Nature | 0.623  0.443 0946 | 0.179 0.203 0324
Environment | 0.952 0.834 1.306 | 0208 0199 0321

Openness-to-Change
Self-Direction

Creativity | 2023 1.964 2.861 | 0.199  0.208 0.386

Freedom | 1.556 1406 1577 | 0.194 0179 0324

Independent | 1.802  1.576 1.703 | 0.266  0.256 0.364

Curious | 1.945  1.862 2413 | 0209 0212 0.360

Choosing Own Goals | 1.869  1.735 2.120 | 0204  0.205 0.317

Stimulation

Daring | 2.274  2.086 3488 | 0173 0176 0.333

Varied Life | 2.225  1.988 2575 0173 0178 0317

Exciting Life | 2.214  1.916 2430  0.173 0188 0.317
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Table 5 Continued

Dimension
Domain Mean Posterior STD
Values Full Partial None Full  Partial None

o

Self-Enhancement

Hedonism
Pleasure | 2.346 2.100 2.076 | 0.174 0180 0.331
Enjoyment | 2.352 2.202 2200 0,174 0179 0.331

Achievement

Successful | 3.088  2.985 3648 0221 0212 0331

Capable | 2455 2192 1663 | 0.198 0192 0.329
Ambitious | 3.457  3.659 4.327 | 0.225  0.269 0.365
Influential | 3485  3.608 4.252 | 0.206  0.233 0.350

Power
Social Power | 3.001  3.779 4.341 | 0.256 0.253 0.341
Authority | 3.920  3.832 4.397 | 0.230 0228 0.334
Wealth | 3.647  3.166 3.722 | 0.199 0.242 0,338

Conservation

Security

Family Security | 5.572  5.833 0.176 | 0.179  0.220 0.350
National Security | 5.536  5.850 0.240  0.201  0.238 0.374
Social Order | 5.645  6.084 0405 | 0.154 0142 0.315
Cleanliness | 4,080  4.027 54706 ) 0.220 0224 0.322
Reciprocation of Favors | 4.888  4.922 5710 | 0.314 0350 0.461

Conformity
Politeness | 5.816  5.925 0.162 | 0,134 0,192 0.334
Obedient | 5.798  5.672 6.192 | 0.133  0.205 0.300
Self-Digcipline | 5.852  6.153 0.821 | 0.133 0,113 0.328
Honoring Elders | 5806  5.664 6.151 | 0.133  0.207 0.315

Tradition
Humble | 6.041 5348 5637 0,135 0.341 0371

Accepting Fate | 6.154  6.086 0.743 | 0.103  0.178 0.367
Devout | 5.982 4743 5262 | 0.135 0.279 0,362

Respect for Tradition | 5.999 5489 6.076 | 0.137 0273 0.380
Moderate | 6.122 6.038 0475 | 0.114 0169 0.315
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Figure 1. Extended Von Mises Distribution.
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Figure 2. Sine versus Cosine of posterior means of item angles for Schwartz value data:
A. no constraints and fixed intercepts, B. no constraints and random intercepts, C. bipolar
constraints and random intercepts, and D. value domain constraints and random intercepts.
Angles are identified by their bipolar dimensions: T = self-transcendence, O = openness-to-

change, B = self-enhancement, and C = conservation.
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Figure 3. Plots of Angles from different Circumplex Models. A. Scale-usage effects versus no

scale-usage effects without constraints. B. Dimension constraints versus no constraints with

scale-usage effects. C. Domain constraints versus no constraints with scale-usage effects.

D. Domain constraints versus dimension constraints with scale-usage effects.

T = seli-

transcendence, O = openness-to-change, E = self-enhancement, and C = conservation.
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Figure 4. Plot of average interactions for selected values of the random coefficients for the
Schwartz value model with bipolar dimension constraints. The four curves are averaged
interaction effects where the averaging is within value dimensions for different combinations

of @ = +1 and 8 = +1 in Equation (5).
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Figure 5. Random walk jump distribution for angles. a. Mixture of four uniforms. b.
Random walk based on mixture of uniforms assuming that the current value of the angle is
2.5 radians and the block constraints imply that the angle is restricted between 0.5 and 2.8

radians.
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