Division of Research September 1986
Graduate School of Business Administration

TECHNIQUES FOR INCORPORATING HUMAN FACTORS
IN THE SOFTWARE LIFECYCLE*¥

Working Paper {#475

Marilyn Mantei
University of Michigan

FOR DISCUSSION PURPOSES ONLY

None of this material is to be quoted or
reproduced without the expressed permission
of the Division of Research.

¥Proceedings Structured Techniques Association Third Annual Conference,
June 24-26, 1986, Chicago, IL, pp 177-203.

Abstract

Although much literature is devoted to the development of principles on
how to design "user friendly" systems, very little exists on how to
incorporate these principles in the process of software development and
maintenance, commonly known as the software lifecycle. The author of this
paper presents a "generic" software lifecycle plan and discusses where and
how the application of human factors principles and the evaluation of the
user interface take place in the software development process. The costs
of this approach and the cost/benefit tradeoffs that can be expected using
this style of user interface development are examined and used to recommend
when the overall system usage and projected software life justify applying
the human factors techniques being described.

I. Introduction

Traditional software development breaks the software project into
individual components each of which performs a specific function in the
process of putting together a software product (Aron, 1983; Jackson, 1975;
Metzger, lJol; Mills, 1970; Kubin, 1970; Vick & Ramamoorthy, 1984). With
the advent of new program development tools and the growing importance of
human factors issues in the design and building of software, this accepted
way of managing software development needs to give way to new ways of
thinking about the process. In particular, because human factors issues
arise at several of the stages and because prototypes of the proposed
system can be tested long before the final system is in place, many levels
of design iteration are now introduced into the development process.

Because these added methods enhance the software product and help
ensure its acceptance in addition to reducing the product's maintenance
(Card, Moran & Newell, 1983; Norman and Draper, 1986; Rubinstein & Hersh,
1984), their inclusion is a justified and natural evolution of the software
development process. This paper does not address the issue of whether
these ideas should be included in the software lifecycle. This is assumed.
Instead, it addresses the issue of how to include these techniques by
presenting an overview of recommended places within the traditional
software development plan where human factors issues need to be treated.

At each stage it then discusses what type of human factors work applies.

The next section of the paper presents the traditional software
lifecycle. It then updates the lifecycle to represent current practice in
the use of prototyping and 1utomated design techniques. This modified
prototyping lifecycle is expanded to illustrate how human factors methods
can be added to the design.

A third section of the paper discusses the costs of adding the human
factors studies to a project and relates these costs to the overall benefit
they provide for the software design. It also presents a list of
difficulties that can be encountered in testing the software such as the
time investment in developing appropriate user tests and the limitations
that prototypes and mockups have in assessing user difficulties. A fourth
section gives a set of projections on when such an approach will result in
real cost savings. It also raises the control issue flag, pointing out how
the recommended changes to the lifecycle can bring about a loss of project
control unless specific control procedures are implemented at the human
factors stages as well. The final section of the paper summarizes and
presents the author's conclusions.

The reader should note that many important items related to software
development are not discussed in the paper. For example, the paper does
not deal with the problems of staffing the proposed lifecycle or of getting
the different types of professions working together as a team. Nor does it
handle the real issues of product deadlines and organizational structures.
It presents only a set of changes in structure and process for software
development with the hope that their adoption will debug and modify them
into useful working practices.

II. Recommended Lifecycle Changes

In order to establish a frame of reference for the changes to the
software lifecycle which are being recommended, the paper briefly describes
the traditional software lifecycle concepts that had their beginnings in
the years 1970-75., it tnen illusctrates the changes to the traditional
lifecycle that h“ave occurred with the advent of prototyping. This modified
lifecycle represents current thoughts in software development and will be
the format used to indicate the modifications being recommended,
modifications which incorporate human factors engineering into the final
product.

A. The Traditional Software Lifecycle

The traditional software lifecycle includes four to six stages
depending on the level of detail in which it is presented. The six stage
lifecycle plan has been selected for our discussion. This is illustrated
in Figure 1. As a brief overview for the reader, a description of each of
the stages follows.

Feasibility Study
Requirements Definition
Design

Implementation

C o
Testing

Update and Maintenance

Figure 1. The Development Steps in a Traditional Software Lifecycle.

The first stage is the Feasibility Study. In this stage, the company
planning a potential software project does a series of analyses to decide
whether the project should or should not be carried out. The second stage
is the Requirements Definition. If the software plan passes the first
stage, then data is gathered to determine exactly what the software should
accomplish. Systems Design follows the Requirements Definition. In this
third stage, the design of the system is laid out, including inputs,
outputs, program module specifications and procedures.

Following design, the fourth stage of System Implementation builds the
system according to the design. A fifth stage, Testing, executes trial
runs on the system with the goal of removing the errors in the system. An
Alpha Test puts all the components of the system together and, after a
debugging period, has them working as a system. A Beta Test involves a
group of users who agree to work with the new system as the software
developers continue to refine it and make it work as planned. Once the
Beta Test is complete, the product is released.

The product then goes through its final phase, that of Update and
Maintenance. The Update and Maintenance stage is usually the longest
portion of the software lifecycle. As the software product is used, it
evolves to meet the new needs of its users. It also breaks when new uses
find problems that wera not ianticipated and tested for. Update and
Maintenance often involves miniature steps of the entire lifecycle as
changes are planned and incorporated into the system.

Breaking the product development into these components helps to plan
the timing, cost and staffing of a software project and to maintain control
over its progress. In particular, the linear sequence of steps makes it
possible to achieve closure on a step in the development process, allowing
the project managers to catch delays or problems early in the software
lifecycle.

The introduction of prototyping techniques has changed the process,
creating iterations between the Design and Requirements stages and, in some
cases, including the Implementation stage as part of the Design stage. The
use of prototyping significantly lowers the costs of user testing. Because
of this, the prototyping lifecycle is used as the reference frame for
building in the human factors aspects of software development.

B. The Prototyping Lifecycle

With the advent of prototyping, that is, the ability to quickly build
early, albeit incomplete, versions of the proposed software system, the
traditional software lifecycle has undergone major upheaval (Boar, 1984;
Budde, Kuhlenkamp, Mathiassen & Zullighoven, 1984; Wasserman, 1982a;
Wasserman, 1982b). In the traditional lifecycle future users of the
software were not able to grasp the functions and support the software
would provide until they viewed a finished or nearly finished product.
Flowcharts, HIPO Techniques, Dataflow Diagrams, etc. (De Marco, 1978;
Martin & McClure, 1985) do not adequately convey the actual workings of the
system. Therefore, users cannot tell whether the designers have missed
their mark and built a functionally useless system until late in the
development process. This means expensive redesigns.

A prototype replaces the diagram designs of the design stage. With
sof tware prototypes, a user can get a "sense" of using the software tool
before it has proceeded too far down the implementation trail. Thus, much
more iteration and design changes take place early in the lifecycle. These
changes to the traditional software lifecycle are shown in Figure 2. The
modified lifecycle is briefly described in the paragraphs which follow.

The Feasibility Study and Requirements Definition stages remain the
same as in the Traditional Software Lifecycle. The Systems Design stage is
split into two stages, that of Global Design and Prototype Construction.
The Global Design process lays out the system components in the same way as
it is done in the Traditional Lifecycle, but the Prototype Construction
replaces or precedes the Detailed Design. A prototype is built which
represents the user interface to the system being constructed. This

prototype may contain all or a selected subset of the functions of the
proposed system.

Feasibility Study
Requirements Definition

Global Design

\

Prototype Construction

User Evaluation
Implementation
C ol
Testing
Update and Maintenance

Figure 2. The Typical Development Steps in a Prototyping Lifecycle.

The prototype is then presented to future users of the system in the
User Evaluation stage. These users examine the interface and try to use
it. They then give feedback to the designers on whether the system meets
their software support needs. Typically, the act of using the prototype
brings about a new understanding of what the system will provide for the
user. With this understanding comes a change in the requirements
specifications of the system. The software development returns to the
Requirements Definition stage and a new prototype is designed and tested.
This takes place a number of times until the prototype reaches an
acceptable stage of usefulness. The prototype then serves as the detailed
design to be used for the Implementation stage. In some system designms,
the prototype is incomplete and additional detailed specification is
necessary. In other systems, the actual prototype is compiled into the
final product and the Implementation stage is skipped or shortened.

The Testing stage is the same as the Testing stage in the Traditional
Lifecycle, and the Update and Maintenance stage is similar with the
exception that prototypes might be built or modified to reflect large
system modifications. Although the Prototyping Lifecycle looks very much
like the Traditional Lifecycle, time and energy is added to the development
work at an early stage in order to obtain feedback on the acceptability of
the final design. Adding human factors efforts to the lifecycle has the
gsame impact of lengthening the software development time, and of increasing
the acceptability of the final released code. These processes, in turn,
reduce costs in the Update and Maintenance stage.

C. The Human Factors Software Lifecycle

The changes proposed for the Human Factors Software Lifecycle are
illustrated in Figure 3. First, a stage preceding the Feasibility Study
called Market Analysis is added. This stage determines what product needs
to be developed for the market, usually by running focus groups on the
intended users. A Market Analysis assesses the market's potential need for
a proposed product. This is different from the traditional Feasibility
Study in that it examines people's perceptions and feelings about the
information processing tasks that they currently perform. The goal of this
approach is to find out if a software system which aided them in
accomplishing these tasks would be adopted.

Market Analysis

f
Feasibility Study

Requirements Definition
Product Acceptance Analysis
Task A:alysis
Global‘Design
Prototype Construction
User Testing and Evaluation
Implemettation
<:Product Testing
User Testing
Update and Maintenance

Product Survey
Figure 3. The Development Steps in a Human Factors Software Lifecycle.

Following the Requirements Analysis, a second human factor's stage is
added, that of Product Acceptance Analysis. Now that the particular
software product has been proposed, a mockup of what the product does can
be presented to a sampling of its intended market. The future user's
reactions to the mockup will generate information on whether the software
system, as currently envisioned, will be acceptable. This information is
usually acquired via focus group studies and user surveys. Projected users
of the system can also recommend changes at this point. This phase 1is

particularly useful for testing whether the appropriate requirements have
been specified.

Following the Product Acceptance Analysis, a Task Analysis is performed
by the human factors specialist on the project. This task analysis looks
at how the user "thinks" about tne task and the "mental” data manipulation
procedures he or she currently uses. The results of this analysis are
applied in the Systems Design stage where the interface is tuned to match
the thinking processes of the user. The Systems Design stage changes
dramatically because many of the interface design decisions in the human
factors structure are now negotiated with the psychology trained personnel
on the project.

Once the design of the system is finished, a prototype is built in the
Prototype Construction stage. Part of the design stage may incorporate
prototype construction, especially if the prototyping software in use
separates the interface design from the rest of the software system. The
finished prototype is used in the User Testing and Evaluation stage. In
the testing portion of this stage projected users perform a cross section
of tasks for which the system is intended. They are studied while using
the prototype. Problems they have with learning the system or with extended
use of the system are incorporated into design change recommendations.
These changes are built into new prototypes, and testing continues until
the learning and extended use patterns of the system are at acceptable
levels of erfort and ease-of-use, respectively.

The Evaluation portion follows the Testing portion. After users have
gained some experience with the system, they can then assess whether the
system performs the desired functions and also whether the effort needed to
learn the system is in concordance with the features the system provides.
If the system does not do what the user requires of the system, the
Requirements Definition stage is reopened and new requirements are drawn up
to meet the user's needs.

Following the User Testing and Evaluation stage, the actual system is
implemented. Once the system passes the Unit and System texts in the
Product Testing stage, it is put through a second round of User Testing.
These tests are performed on a working system. The results may differ from
the prototype tests because of the differences in response time and
complexity in the final system. Results from these tests can also serve as
benchmarks for expected human performance levels and learning rates. These
values can be used to schedule training, estimate work output and as a
selling factor for the software system.

When the product is released, user feedback on the product is obtained
during the Product Survey stage. This is intertwined with Update and
Maintenance. The data from the Product Survey stage is used to drive
updates. These updates are put into the system beginning with the
Requirements Definition or the Market Analysis. The stage entered depends
on the amount of change introduced by the proposed update. If the update
dramatically changes the purpose and interface of the software, the entire
Software Lifecycle is followed in its re-implementation. If it is a

smaller change, the change can be incorporated beginning with a new
requirements definition.

The reader should note that the above changes can be described within
the Traditional Lifecycle, i.e., a Feasibility Analysis consisting of a
Market Analysis and the Cost/Benefit studies, a Requirements Definition
that includes the Product Acceptance Analysis and the Task Anglysis, a
Design stage that includes Prototyping and User Testing, a Test stage which
includes the User Testing and an Update and Maintenance stage which
includes the Product Survey. Because results from the human factors
portions of these stages can have a direct effect on whether the project
proceeds to the next stage or reverts back for more effort to an earlier
stage, they are explicitly separated out in this paper. The next section
describes the added costs of these projected changes and compares these to
the benefits accrued from the inclusion of human factors efforts.

I1I. Cost/Benefit Analysis of the Human Factors Addition

In the paragraphs which follow, the projected costs for carrying out
the psychological and marketing studies that form the human factors portion
of the software lifecycle are given. The financial benefits that arise
from conducting a Human Factors Software Lifecycle are listed after these
costs. Some costs and benefits can be quantified but others are ambiguous
organizational and sociological gains and losses. These are discussed in
four separate sections, two for the measurable results and two for those
which cannot be measured.

A. A Breakdown of Tangible Costs

In performing the cost analysis for this section of the paper, a $15.00
per hour wage rate is used for hourly employees and a $30.00 per hour wage
rate is used for non-hourly employees. A prototypical software project is
used in the calculations. The project is assumed to be built for 250 non-
hourly in-house employees and to fall in the class of wmedium software
projects, i.e., 32,000 lines of delivered source instructions (Boehm,

1981). Using these assumptions, a cost breakdown can be generated for the
following human factors expenses.

Eight distinct costs are added to a project by the human factors
stages. These are:

1. the cost of running focus groups,

2. the cost of building product mockups,

3. the expense of building a prototype,

4, the expense of making a prototyping design change,
5. the expense of purchasing the prototyping software,

6. the cost of running the user studies,

7. the cost of creating a user study environment and

8. the cost of conducting the user survey.

Two of these, the prototyping system purchase and the user lab construction
are fixed costs whose amount per software project can be reduced in
proportion to the volume of software projects that undergo a human factors
inclusion in their design. Table 1 breaks out the various human factors
techniques and/or tools used in each of the new stages added to the
software lifecycle. The costs of these tools and techniques is discussed
further in the paragraphs which follow Table 1.

-

Cost Item

Lifecycle Stage Cost/Unit Number Total Cost
Market Analysis Focus Group $2,185.00 3 $6,555.00
Product Acceptance Focus Group $2,185.00 3 $6,555.00
Analysis Product Mockup $2,960.00 1 $2,960.00

User Survey $5,600.00 1 $5,600.00
Task Analysis User Study $5,520.00 1 $5,520.00

Lab Construct'n $16,000,00 1 $16,000.00
Prototype Initial Design $4,800.00 1 $4,800.00
Construction Design Change §240,00 20 $4,800.00

UIMS System $15,000.00 | $15,000.00
User Testing & User Study $5,520,00 4 $22,080.00
Evaluation User Survey $5,600.00 1 $5,600.00
User Testing User Study $5,520.00 1 $5,520.00
Product Survey User Survey $5,600.00 1 $5,600.00

TOTAL $106,590.00
Table 1. A Breakdown of the Costs Required to Add Human Factors
Elements to the Development of Software.

l. Pocus Group Cost Breakdown

The cost of running a focus group is the time cost of the individuals
involved in the focus group plus a small equipment cost. This includes the
participants, the moderator, the videotaping personnel and any additional
staff watching the focus group behind a one-way mirror. Focus groups take
two to three hours to run and two days to set up and break down. A minimum
of two days of analysis is needed to assess the results from the focus
groups. On average, ten future users form the focus group population and a
support staff of three employees plus the moderator are needed. A complete
focus group analysis, using three consecutive groups, takes two weeks time.

The projected costs for running typical focus groups are shown in Table
2, The costs listed for focus group type A are for an in-house focus group
using participants and facilities from inside the company. Those costs
listed for group type B are for a completely contracted service from a
marketing research company. Although the costs are much higher for a type
B focus group, the marketing firm provides the appropriate participants and
facilities and carries out a thorough analysis of the participants'
reactions.

Type of Expense Amount
Ten participants at $30.00/hour $900.00
Group Moderator at $1000.00/group $1,000.00
Three Support Staff at $15.00/hour $225.00
Videotape $60.00
Total $2,185.00

A. Cost of Operating an Internal Focus Group

Type of Expense Amount

Fee Charged by Agency for Complete $10,000.00
Study (3 Focus Groups and Analysis)

B. Cost of Contracting an External Focus Group

Table 2. Estimated Costs for Conducting Focus Groups.

For each information gathering session, an average of three focus
groups is run. This is done because the focus group involves a small
segment of the user population and may be a statistical anomaly. Running
three groups does not avoid this problem but it does lessen the probability
of the problem happening. An external unbiased marketing research firm is
essential for running the internal focus groups. It is very unlikely that
employees of a company will express their honest opinions unless they are
guaranteed complete confidentiality through the external operation.

An external research firm is also recommended for a focus group made up
of individuals external to the company. Marketing firms have resources for
obtaining participants and expertise in setting up the facilities for a
good session that may not be available within the company. The cost of
focus groups are fixed costs and do not change much with the size of the
software project. They are dependent on the variability and size of the
expected user group not on the code under development. More focus groups
are necessary to capture data on a large and diverse user population.

Table 1 uses the costs estimated for running an in-house focus group. Both
the Market Analysis and Product Acceptance Analysis stages use focus
groups.

2, Estimation of Product Mockup Costs

The task of building product mockups is one of constructing a false
user interface scenario in software and generating a videotape of the
scenario. The script for the voice overlay needs to be written and the
actor/actress trained in executing the scenario. The videotape need not be
of market quality, but it must not be too amateurish or it will negatively
influence future users of the software. Preparation and Videotaping
usually take two weeks. Large companies have an AV department with staff
available for preparing such a videotape. Smaller firms can usually rent
the appropriate equipment and hire a person to prepare the videotape at
minimal cost. Table 3 illustrates the basic costs of this task. These can
be lowered or raised depending on the desired quality of the videotape.

Type of Expense Amount
Preparation of Mockup Scenario (40 hours) $1,200.00
Videotaping Sessions (20 hours) $600.00
Splicing/Integration of Scenarios (20 hours) $600.00
Equipment Rental for Splicing, etc. $500.00
Videotape $60.00
Total $2,960.00

Table 3. Costs Incurred in Building a Mockup of the
Proposed Software System.

The videotape mockup is used in the Product Acceptance Test in two
ways. A mockup is shown to focus group participants who are encouraged to
vocalize their reactions to the software system. The mockup is also shown
to audiences of orojected users who are asked to fill out a questionnaire
designed to elicit their assessment of whether they will learn and use the
software being demonstrated. The survey also probes into the perceived
needs of the user population and asks whether the software demonstrated in
the videotape mockup will respond to these needs.

In addition to the human factors uses, the mockup can also be used for
marketing. It can be shown to seniot managers who wish to know what the
software development group is working on and to potential investors or
customers who wish to know about a proposed product.

3. Expense Layout for Conducting the User Survey

A user survey 1is the distribution of questionnaires to the future or
current users. The questionnaire is designed to collect information from
these users on their reactions to the software system. User surveys are
employed in the Product Acceptance stage to assess future users' responses
to the video showing of the product mockup and to capture their suggestions
for changes to the product design. They are used once the product is
released to find out difficulties users have with the working system, to

find out what tasks the system is being used for and to gather suggestions
for changes to the existing system.

Questionnaire design is an art. Survey researchers who are skilled in
questionnaire design know where to put particularly difficult questions,
when a person will not be able to respond truthfully to a question, how to
test for the truthfulness of a response and, in general, how to elicit the
maximum amount of information from a respondent with the minimum amount of
questions., Without a good design, the responses on a survey form are worth
little. With this understanding in mind, a considerable amount of the
expense for running a user survey is in the development of the questions
for the survey. The cost breakdown for conducting a single user survey is
listed in Table 4 below.

Type of Expense Amount
Development of Questionnaire (40 hr) $1,200.00
Pilot Testing of Questionnaire (40 hr) $1,200.00
Distributing and Collecting Survey (20 hr) $300,00
Coding and Entering Data (20 hr) $300.00
Analyzing the Results of the Survey (40 hr) $1,200.00
Cost of Time Lost in Filling Out Survey $1,200.00
Computer Time $100,00
Supplies and Duplicating Costs $100.00
Total $5,600.00

" Table 4. Cost Breakdown for Running a Product Survey for
.the Software Product Being Tested.

For the user population of 250 employees in our prototypical example,
at least half of the employees would receive a user survey. A typical
survey is four pages in length and requires approximately half an hour for
an individual to fill out. The cost for conducting a user survey is
extremely stable. Any increase in cost depends primarily on the number of
users who receive the survey. The number of users surveyed need not rise
if a good sample is taken of this group of individuals but the task of.
taking an accurate sample will increase the overall costs of the user
survey by $1,200.00 or forty additional man-hours. The entire survey
requires approximately four weeks to run.

4, Initial Prototype Building Costs

Although considerable time is spent in building a prototype, the cost
breakdown for prototype construction excludes much of this time as design
time and presents only that time required to build the actual prototype.
The estimates shown in Table 5 are based on a study which implemented a
pre-designed system in three separate prototyping systems (Mantei and
Culver-Lozo, 1986). The time to build the entire prototype is four weeks.

Type of Expense Amount

Specifications of the Screen Transitions $2,400.00
Design of the Individual Screen Layouts $2,400.00
Total $4,800.00

Table 5. Costs Incurred in Building a Prototype of the
Proposed Software System. The Prior Development
of a Global Design is Assumed.

Most prototyping systems require a two-stage design specification. 1In
the first stage, the connections between the screen displays must be
specified. The second stage then involves the design of each individual
screen layout. Advanced prototyping systems do not group design units into
screen displays but into states between user interactions. The second
stage design process 1s then the design of the individual states and the
alterations that take place because of the user's action. The design work
required for each stage is approximately equal.

As the interface grows more complex, the time required to build the
prototype increases. If the complexity of the interface is characterized
by the number of states required and the average number of new details to
be specified in each state, the cost of building a prototype can be written
as:

C =S(a + bD)

Where C = Cost
S = Number of states
D = Average number of new details per state
a = Constant reflecting the cost
of building a single state
b = Constant reflecting the cost
of adding a single detail

The above model assumes little interconnection between states and the
ability to copy detailed state descriptions from one state to another.
These assumptions reflect a large variety of user interfaces and
prototyping systems, The time projections for building the prototype also
assume a powerful and flexible rapid prototyping package. Limited
prototyping packages decrease the prototype building time because they are
only able to produce simple interfaces, e.g., numerical menu selections.
Using such systems is a dangerous practice. Their limitations may, in turn,
limit the designer's conceptualization of creative interface designs.

5. Cost Breakdown for Design Changes to the Original Prototype

Once the prototype is built, the user tests will uncover difficulties
that the user has in learning and using the system. The cause of these
difficulties will be used to suggest design changes. Once the suggested
changes are incorporated in the prototype, the prototype will be tested

again. The iteration of testing and updating the prototype will occur
until the number and type of difficulties a user has with the system reach
an acceptable level.

The initial user studies will uncover many problem areas. These may
lead to redesigns for parts of the system. Later changes are minimal.
Because a task analysis and user surveys were used to build the basic
design of the prototype, the .prototype is close to the final design.
Therefore, the design changes are not expected to force a complete redesign
of the prototype but only updates of various parts of the prototype.
Because of this time saving, the average time estimated for a design change
is one day. The cost of each change is shown in Table 6.

Type of Expense Amount
Modification of the Screen Transitions $120,00
Redesign of the Individual Screen Layouts $120.00
Total $240.00

Table 6. Costs Incurred in Incorporating a Design Change
to the Original Prototype of the Proposed
Software System. These Costs Assume that the
Design Change Does not Require a Complete Redo
of the Screen Transitionms.,

The number of changes expected and the amount of time a change will
take is dependent upon the complexity of the interface being comstructed.
The relationship is the same as the relationship shown for building the
prototype.

6. The Prototyping Software Purchase

Commercially available prototyping systems cost as little as $2,500.00
and over $15,000.00. Most systems that are powerful enough to provide
graphics capabilities, design tools and system management tools cost close
to $10,000.00,

The various prototyping systems differ widely in the features and
support they provide. The choice of a prototyping system depends on the
match of features to the type of interfaces typically constructed by the
software staff and the requirements for project management. The review and
selection process for a prototyping package is therefore expected to take
at least a month. The time spent on making an intelligent purchase and the
actual purchase cost constitute the complete price of the package. This is
shown in Table 7.

Type of Expense Amount

Time Spent Reviewing Potential Packages $5,000.00
Purchase Cost of Package $10,000.00
Total $15,000.00

Taﬁle 7. Costs Incurred in Examining the Market and
Purchasing a Suitable Prototyping System.

The actual cost of purchasing a software package for a single project
is quite low if the cost is distributed over several software projects.
This distribution 1s not assumed in our cost analysis. If it were, the
cost of the prototyping software would be negligible.

7. Cost Breakdown for Running User Studies

A typical user study presents an individual with a set of tasks to
perform. As the user performs these tasks, measures are taken on the
performance. These user studies are akin to psychological research since
they take place in a laboratory and collect data on individuals. They are
different from psychological research because they have no hypotheses to
prove and no experimental treatments to administer.

The user studies gather data, data on how people use the planned
software systems The primary mechanism for gathering this data is ,
videotaping. As a user tries various tasks with the software system or the
prototype, a camera records the user's difficulties and successes on
videotape. In most cases the individual in the study vocalizes the
difficulties encountered as they occur. This person also describes how the
system is believed to operate and various strategies for getting the system
to perform a desired task. Secondary mechanisms such as keystroke records
and recorded comments by an unseen observer can also be used to obtain data
in these studies.

The information captured in a user study is analyzed for a variety of
potential problems with the system under development. Among these are
consistent errors that occur in a particular place in the interface, stated
misconceptions the user has about using the software, extremely high task
performance times and numerous requests for help made by users at key
points in the task. The human factors and the design staff discuss each of
the observed difficulties and agree on design changes that might alleviate
the problems.

The major difficulty in conducting a user study is the preparation of
material for the individuals being studied. Since the software system is
new, a manual must be written. The manual need not be complete, but it
must contain a complete description of those parts of the system which the
the individual will use in the study. In addition to the manual, a set of
directions and a set of tasks are needed for the study.

As with most written material, the first version of the manual, the
directions and the tasks will be incomplete, obtuse and too difficult or
too easy for the user study. To correct these problems, a pilot of the
user study is run on a small number of individuals. The feedback from the
pilot is used to rewrite the instructions. Following the testing of the
study material, the user study is run and analyzed. The entire process
requires a month, Table 8 presents a cost breakdown of the worktime used
in the process and the videotape required.

Type of Expense Amount
Development of Subject Directions (40 hr) $1,200.00
Pilot Testing of Directions (20 hr) $600.00
Redesigning Subject Directions (20 hr) $600.00
Running Experiment (40 hr) $1,200.00
Analyzing Results of Lab Study (40 hr) $1,200.00
Videotape . $120.00
Cost of Subjects in Experiment (20 hr) $600.00
Total $5,520.00

Table 8. Costs Incurred in Conducting a Single Laboratory
Test on Five Subjects.

Three types of user studies are run in the Software Lifecycle. The
first of these is used in the Task Analysis. Instead of testing a software
system on projected users, these users are asked to perform the types of
tasks the software system will help them accomplish, but without the
software system. Paper and pencil, calculators, file cabinets or an
existing computer system may be used to replace the not-yet-built system.
The videotapes of these sessions are used to build a model of how the users
think about the tasks. . This model guides the interface design.

The second and third user studies are more conventional with the second
study conducted on prototypes of the system under construction and the
final study conducted on the implemented system. A final study is always
run because the actual system is different enough from the prototype
system, that potentially serious user problems could be embedded in its
design.

The cost of a single user study is typically not related to the
complexity of the user interface being developed. Instead, if a user
interface has many complex parts, the number of user studies conducted
increases. This occurs naturally by the need to divide the interface into
distinct user studies to avoid tiring the participants.

8. Costing the Construction of a User Laboratory

A laboratory in which to conduct user studies can be an office that is
temporarily appropriated for the purpose or a permanent facility.
Permanent space is used when user studies are plannéd every month for many
separate software efforts. A user study laboratory is a mockup of the
natural environment where the software system will be used, e.g., an
office. The individual being studied works in this environment. Ceiling
mounted cameras and a one-way mirror allow human factors staff to record
and observe the study session. The observation room is built next to the
user environment and contains the recording equipment and the monitoring
computers.

Table 9 presents a cost breakdown for a small permanent facility, one
which may be used four months each year for user studies. In constrast to
the $16,000.00 price tag shown in the table, IBM has built a permanent user
study environment for one million dollars. IBM rents these facilities for
$50,000.00 for two weeks. On the other side of the coin, a laboratory was
established in a home for $100.00 in video equipment rental costs. It was
used to test the interface of a home computer product.

Type of Expense Amount
Time Spent Laying out Laboratory Design

and Selecting Lab Equipment (80 hours) $4,800.00
Cost of Carpenter, Electrician $1,200.00
Cost of Cameras, VCRs, One-way Mirror $10,000.00
Total $16,000.00

Table 9. Costs of Establishing a Permanent Human Factors
Testing Laboratory. These are Mid-Level Costs.
Much Fancier and Much Less Well-appointed
Laboratories can be Built.

The cost of the laboratory is independent of the software system. If
it is used to test many software projects, the cost per development effort
becomes negligible. The user study area can also be reconfigured for
running the focus groups.

The type of laboratory environment generates an image of the software
product being tested. Therefore, it is appropriate to appoint the
laboratory with the furniture and equipment that conveys the desired image.
For example, a machinist trying out numerical control software would not
receive the software tests comfortably in a plush office. Nor would a
secretary enjoy a user test conducted in a laboratory full of wires and
measuring equipment.

B. The Most Commoa Tangible Benefits Derived from Human Factors Design.

Although empirically gathered data is not presented here, the direct
benefits from adding the human factors aspect to the project can be
calculated by making several valid assumptions about the improvements to
the interface. These improvements are:

l. a reduction in user learning times,
2. a reduction in user errors and
3. a reduction in the cost of maintaining the system.

The same size system used in calculating the added costs of human
factors stages is used for calculating these estimates, i.e., a 32,000
delivered source instructions system to be used interactively by 250 non-
hourly employees. A summary of the first-year savings from the human
factors addition to the software development is shown in Table 10.

Type of Savings Incurred Amount

Training Costs......l‘.......’.... .$30,000.00
Error Reduction CoStSsesesesscaesss$85,000,00
Avoidance of Late Design Changes...$18,000.00

Total.otooooo'ooou.co.o-oo-00000005133,000000

Table 10. Sample Estimates of First Year Savings
Incurred Through the Introduction of
Human Factors Elements in the Software
Design Process.

l. An Estimate of Potential Training Cost Savings

It is estimated that the learning time for the new system will be cut
by one~fourth by the development of a human-factored system. If the
turnover rate is fifty employees per year and the learning time is
typically two weeks of classes, the business has saved $30,000 a year in
education costs.

(Savings/Year) = (Turnover) * (Training Time Saved) * (Wage)
Savings/Year = 50 * 20 * $30.00
Savings/Year = $30,000.00

2. Calculating the Cost of Errors

It is also estimated that at least one "user trap” occurs regularly in
each database retrieval scenario. A user trap is defined as a standard
sequence of user responses where the user consistently makes an error. The
errors are usually negligible and easily corrected, but extremely annoying
to the user. These traps are a result of the interface design violating
the learned behavior of the user. (The experiences a driver has with a car

with an automatic shift after ‘driving a standard shift car are analogous to
these user traps.) The User Testing stage catches these problems

Suppose a user of the system had ten scenarios which they used
regularly and a probability of falling into a user trap of 0.025. For a
company with 250 employees using the system at least 3 hours a day and
performing approximately 20 scenarios per hour, the company would encounter
750 traps per day. If it took 2 minutes to recover from each such trap, a
total of 125 hours or $1,875.00 would be lost per week because of these
unremoved difficulties. This is a lower bound estimate. A number of these
traps take as much as 10 minutes to recover from. To estimate the savings
per year involved in removing a user trap from the design, the number of
man days per month are taken as 19 following the practice of Boehm (1981).
Using the calculations below, an estimate of $85,500.00 is saved per year
if a user trap with a 2.5 percent chance of happening is caught and removed
from the system in the User Testing stages. For a firm with 25 employees,
the savings is still considerable, $8,500.00 per year.

Errors/Year = (No Emp) * (P[Error]) * (Scenarios/Hr) * (Hrs/Yr)
Err/Yr = 250 * 0.025 * 20 * (19 dy/mo) * (3 hr/dy) * (12 mo/yr)
Errors/Year = 85,500

Cost/Year = (Errors/Yr) * (Hrs/Error Corr) * (Wage/Hr)
Cost/Year = 85,500 * (2 min/err) * (1 hr/60 min) * $30.00
Cost/Year = $85,500.00

3. Potential Savings Achieved by Early Change Detection

Harder to estimate is the amount of system maintenance time that was
saved by engineering the system to match the thinking behavior and
limitations of the users. The design changes that were incorporated in the
prototype and the final system can be estimated to cost ome-fourth of what
they will cost to make in a released system. Let us assume that twenty-
five necessary design changes occurred as a direct result of user tests on
the prototypes. If these changes took, on average, a day to implement in
the prototype, then $18,000 was saved through early design changes. It is
true that some of these user problems may never have been found and
changed, but then, a new cost is incurred via the user's difficulties with
the particular system problem.

Early Cost = (Hr/Change) * (No. Changes) * (Wage/Hr)
Early Cost = 8 * 25 * $30.00
Early Cost = $6,000

Design Change Savings = (Late Cost) - (Early Cost)
Design Change Savings = 4 * (Early Cost) — (Early Cost)
Design Change Savings = 4 * $6,000 - $6,000
Design Change Savings = $18,000.00

A final very tangible benefit is that of system adoption. If careful
planning is made for the system to meet the psychological and functional
needs of the user, the system has a higher probability of acceptance and

use. In this case, the benefit is the entire cost of system development
which is not lost.

C. Intangible Costs to Control For in Human Factors Software Lifecycles

Intangible costs can occur in a software design project when human
factors elements are included in the design process. These costs arise
mainly from the four situations explained in the following paragraphs.

1. The Selection of Non—Critical Design Decisions for User Testing

User interface design is a nightmare of detailed decisionms. “Should
the selected text have a shadow border when displayed in reverse video or
will the existing border be discriminable?” "If we permit a very large
field width on a form, how should the form be displayed when the user types
in more information than will fit on the computer screen?” These questions
are not always answerable by the direct application of user interface
design theory. Therefore, a designer will often opt to build a variety of
solutions in a prototype and evaluate these solutions through user studies.
Although there are a great number of design decisions to be made in
building an interface, a great many of them make no difference in the
quality of the user interface (Norman, 1983).

Human factor researchers have considerable intuition on what design
issues are important to test, but they can still be wrong. For example,
the careful selection and testing of icon names to use in the Xerox Star
interface did not reveal any differences in performance between the design
choices (Bewley, Roberts, Schroit and Verplank, 1983). It is possible to
both spend time on testing what appear to be crucial design decisions that
make no difference in the final software and to miss testing design
decisions that are essential to the effective operation of the interface.
Running the wrong user tests costs time and money. Missing the necessary
ones makes their change more expensive when discovered at a later stage of
software development.

One approach to this problem is to make the testing process open-ended
enough so that information is always acquired from a user test. To
uncover missed design problems, followup user tests are run on the final
product, which do not, unfortunately, avoid the additional expense incurred
from the earlier omission.

2. The Establishment of too High a Level of Usability

The second cost problem with applying human factors elements to
software development occurs when user interface standards are set too
stringently for the software system. It is easy to set standards for
learnability and usability on paper, but hard to meet these standards in
the design of software. Often, the task of learning a software system is
hard because the task the system is designed for is hard. In this case a
performance requirement for the system to be learned in one week of
training might be impossible because the actual task cannot be learned in
one week.

Few benchmarks exist for describing the level of performance expected
of computer users. For example, only two published studies describe
benchmarks for text editors. Digital Equipment has collected data on user
performance with their "vi" editor (Good, Spine, Whiteside and George,
1986) and Roberts and Moran (1984) have established ballpark performance
levels for nine text editors. Since few standard performance levels are
available, it is extremely difficult to set performance standards for
system use. -

Information collected in the Task Analysis stage can be used to set
user performance levels for the system tests, but this data is not
infallible. Therefore, it is important to establish incremental levels of
improvement from current practices and to recognize that improvements to
the user interface are iterative and will come with increased experience
with new designs and new ideas for eliminating user problems in subsequent
software systems. If this is not done, considerazble time can be spent
trying to implement a design to meet unreasonable requirements.

3. Falling into the Trap of Overdesign because of the Powerful Prototyping
Tools Available

Because a prototyping system makes it easy to design changes to a user
interface, a designer can fall onto the trap of building more and more
bells and whistles into the user interface. The additions are not
necessarily added functionality, but such detail as borders which uniquely
identify different screen groupings or the installation of a running clock
in the corner of the screen. The extra intangible cost is both that of the
designer's time and of the time needed to implement the final design.

Avoidance of overdesign requires strong management control and a
regular review of the design process. As with program design, errors can
be made both on the side of underdesign and overdesign where necessary
features are left out and unnecessary features put in. User tests will not
indicate overdesign problems but will pinpoint systems that do not have
enough careful user design considerations. Most projects will incur some
wasted costs in this area. These amounts will drop as human factors
personnel obtain more experience in working with different levels of design
complexity.

4. Communication Problems between Psychologists and Software Designers

A large problem with current human factors efforts in software
development is that of the knowledge gap between the psychologist carrying
out the human factors aspects of the software building task and the
computer scientists who are designing and building the system. The
psychologist has been trained to recognize and interpret a wide variety of
human behavior which the computer scientist will miss when observing a
computer system user. Although the psychologist can recognize problems
with system usage, the recognition of these problems has no translation
into a software design specification.

For example, consider the following user problem that has been observed
to occur with the Macintosh pulldown menu. Users find the task of holding
the button of the mouse in depressed mode while positioning the mouse to be
difficult. Many menu selection mistakes occur with this selection
mechanism. The obvious solution is to allow the menu to remain open when
selected. However, allowing the selected menu to remain open until a
selection is made introduces a large number of other design decisions--
decisions such as whether a "close” selection option needs to be included
in each menu and whether the menu should close automatically if the cursor
moves away from the menu window. The psychologist working with the
software team is often not aware of the ramifications a corrected problem
has on the rest of the interface.

Individuals with human factor's training do not have the bag of
interface design tricks that software designers have- developed through
performing their profession. They cannot easily use a rapid prototyping
system to design a user interface on their own. They need to work with
individuals who have these design skills. This leads to a large
communication cost. The psychologist needs to convey the entire nature of
the user problem that is being solved and the software scientist needs to
convey the possible solutions and their ramifications on other parts of the
system. Until more expertise in the opposing areas is gained by both types
of personnel, a communications overhead will exist on any project that
incorporates the human factors methodologies. How much this overhead will
cost has never been measured although Gould and Lewis (1983) and Grimes,
Ehrlich and Vaske (1986) have captured a qualitative assessment of the
problem. :

D. Intangible Benefits Associated with Human Factors Software Development

A variety of difficulties can occur with software that has not been
“tuned” to its user, difficulties which cannot readily be measured.
Intangible benefits accrue when these difficulties are removed from the
software. Three such common difficulties are listed and explained in the
paragraphs which follow.)

l. Reduced Adoption of Features Which Save Time

A reduction in feature adoption occurs when the complexity of the
system causes its user to eschew learning advanced features. Davis (1985)
has shown that users adopt the less complex software package if they can
achieve the same functionality. Thus, if a task can still be carried out,
albeit less efficiently, it is unlikely that more powerful features built
into the system will be used. The Product Acceptance Analysis and the User
Tests avoid the development of the unnecessary features and reduce their
complexity, respectively.

2. Employee Disaffection Leading to System Sabotage
Many organizational situations can lead to employee sabotage. Being

requested to use a system which is inappropriate, difficult or inadequate
for a task that an employee needs to get done can cause intense

frustration. In the right individual, this frustration can be followed by
typing in inaccurate data or reporting false system failures (Dowling,
1979). The focus groups used in the Market Analysis and Product Acceptance
stages are designed to capture intormation on the receptivity of projected
users for the software innovation. The Task Analysis is done to make the
final product fit the user's conception of the task as closely as possible.

3. Reduced Ability to Solve Conceptual Problems Using the Software System.

If a software system requires an intense amount of concentration on
detail in order to carry out a task using the software system, this
concentration takes away from an individual's available mental capacity for
solving the problem. Although the problem is solved, it may not be solved
as creatively. This loss in creativity that occurs with the use of a
difficult system is impossible to measure, but the loss may be very large.
The User Testing stage is designed to remove system complexities that can
hamper problem solving.

Although the aforementioned costs and benefits can and do occur,
because they are not measurable, they are often discounted in decisions to
include or exclude stages in software development. Unfortunately, the
dollar figures associated with the intangibles are usually much larger than
those associated with the tangibles.

IV. Recommendations for Human Factor's Inclusion

A large amount of project management data collected over a large
variety of projects is needed to prepare a model for determining when human
factors stages are to be included in the software lifecycle. The human
factors savings as well as the costs of including human factors in the
software are sensitive to a variety of phenomena. These include such items
as the type of system user, the number of users of the system, the
complexity of the user interface being built and the amount and type of
human factors stages that are included in the software development
lifecycle. Since a model cannot be built and a tradeoff analysis performed
from the small amount of data available, the paragraphs which follow will
discuss the qualitative aspects of the software project and make
recommendations as to the viability of including various human factors
stages in developing the software from this perspective.

The four factors, discussed previously in this paper, which make the
inclusion of human factors cost effective are listed in Table l1l. They are
matched with the human factors stages of the software development lifecycle
that are most relevant to reducing the costs associated with these factors.

If the use of the software or the software features being developed is
discretionary, those stages which measure whether the software meets the
needs of the user, both functionally and emotionally are important to add
to the lifecycle. Performing a Market Analysis is a crucial step if the
software is being developed for an external market, especially if the
market is a mass market.,

Cost Reduction Item Related Lifecycle Stage

Increased System Adoption Market Analysis
Product Acceptance Analysis
User Evaluation

Reduced Training Costs Task Analysis
User Testing
Reduced User Errors Task Analysis
User Testing
Transfer of Design Changes to an Prototype Construction
Earlier Stage in the Lifecycle User Testing on Prototype

Product Survey (next redesign)

Table 11, The Human Factors Lifecycle Stages and the Type of Software
Cost Reductions that They are Most Likely to Affect.

If the software will be used by a large number of employees, reducing
both the training costs and the time lost to user errors will make the Task
Analysis and the User Testing stages cost effective. The cost of running
user studies rises with the complexity of the interface. Since an
interface built for many users 1s somewhat more complex than one built for
a few users, the cost of running the user studies increases slightly with
the number of users.

The savings incurred from running the user studies rises dramatically
as the size of the user population goes up. These two functions intersect,
as is shown in Figure 4. For user populations larger than the intersection
point, it is appropriate to include the human factors efforts in the
software design. The reader should note that the size of the user
population is calculated over the life of the software system. If a system
has ten users who will use the system for the next ten years, the size of
the user population is measured as one hundred.

With or without the User Testing, the Prototype Construction stage will
cause design changes to occur at an earlier less expensive stage in the
lifecycle. A prototype should always be used on complex projects where a
later stage update or design change would be very expensive. A quick rule
of thumb is to use a prototype when the cost of the prototype is less than
one-fourth of the project cost. This assumes that the design changes that
will come about later in the project will cost at least that amount of
additional change effort. ‘

1 Point at which User Testing
4" and Task Analysis is Cost
Benefits of ! Effective
Cost / Testing |
Savings [
in I Cost of Testing
Dollars >
t
;::!——””’/”’
1

Size of User Population

Figure 4. Cost of Running User Tests and Benefits
Achieved from Running User Tests Graphed
Against the Size of the User Population.
When the Cost Curve Drops Below the Benefit
Curve, these Steps can Achieve a Savings
for the Software System.

In general, the human factors techniques are not recommended for small
simple projects but for larger more complex interfaces, especially those
used by a large number of people.

V. Conclusion

The goal of this paper has been to give the system analyst and project
manager a description of human factors methods available for building a
sof tware product that meets the desires, needs and capabilities of its
proposed user. These methods are incorporated into the existing management
structure of software projects. An explanation of what they provide to the
software development at each stage is given and a cost/benefit analysis is
presented to provide a quantitative basis for deciding how to budget these
methods.

Space is too limited to give a detailed description of the personnel
needed to carry out the human factors tasks, to suggest organizational
structures or to lay out the variations in the estimates that occur with
differing project sizes. In short, this paper is intended to fill the
current gap that exists between the human—-computer interaction research
papers and the pragmatic needs of the software developer.

VI. Biography and Address of Author

Dr. Mantei is currently an Assistant Professor of Computer and
Information Systems at the University of Michigan. Her research focuses on
the development of User Interface Management Systems and Methodologies for
Incorporating Human Factors in the Software Design Process. She recently
chaired the ACM CHI'86 Conference on Human Factors in Computing Systems and
is currently Chair of the ACM SIGCHI Advisory Board.

Prior to joining the faculty at Michigan, Dr. Mantei worked at
Carnegie-Mellon University and in human-computer interaction research at
Xerox PARC. Before entering graduate school she developed very large
database systems and modeling packages for Lawrence Berkeley Laboratory.

Marilyn Mantei

School of Business Administration
University of Michigan

Ann Arbor, MI 48109-1234

(313) 763-5936

VII. Bibliography

Aron, J. D. 1983, The Program Development Process Part II - The Programming
Team. Addison-Wesley, Reading, MA.

Bewley, W. L., Roberts, T. L., Schroit, D. and Verplank, W. L. 1983. "Human
factors testing in the design of Xerox's 8010 'Star' office workstation.”
Proceedings CHI'83 Human Factors in Computing Systems, pp 72-77. ACM, New
York, NY. .

Boar, B. H. 1984. Application Prototyping: A Requirements Definition
Strategy for the 80's. John Wwiley & Sons, Inc., New York, NY.

Boehm, B. W. 1Y8l. Software Engineering Economics. Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

Budde, R., Kuhlenkamp, K. Mathiassen, L. and Zullighoven, H. eds. 1984.
Approaches to Prototyping. Springer-Verlag, New York, NY.

Card, S. K., Moran, T. P., and Newell, A. 1983, The Psychology of Human-
Computer Interaction. Lawrence Erlbaum Associates, Inc., Hillsdale, NJ.

Davis, F. D. 1985. A technology acceptance model for empirically testing
new end-user information systems: Theory and results. Ph. D. dissertaion,
Sloan School of Management, Massachusetts Institute of Technology.

De Marco, T. 1978. Structured Analysis and System Specification. Yourdon
Press, Inc., New York, NY.

Dowling, A. F., Jr. 1979. "Hospital staff interference with medical
computer systems implementation: An exploratory analysis.” Sloan School of
Management Working Paper No. 1073-79, Massachusetts Institute of
Technology.

Good, M., Spine, T. M., Whiteside, J. and George, P. 1986 "User-derived
impact analysis as a tool for usability engineering.” Proceedings CHI'86
Human Factors in Computing Systems, pp 241-246. ACM, New York, NY.

Gould, J. D. and Lewis, C. 1983. "Designing for usability--key principles
and what designers think." Proceedings CHI'83 Human Factors in Computing
Systems, pp 50-53. ACM, New York, NY.

Grimes, J., Ehrlich, K. and Vaske, J., J. 1986. "User interface design:
Are human factors principles used?" SIGCHI Bulletin, Vol. 17, No. 3, pp
22-26.

Jackson, M. A. 1975, Principles of Program Design. Academic Press, New
York, NY.

Mantei, M. and Culver-Lozo, K., 1986. "A proposed benchmark for testing
user interface management systems.” Working Paper, School of Business
Administration, University of Michigan, Ann Arbor, MI.

Martin, J. P. and McClure, C. 1985. Diagramming Techniques for Analysts
and Programmers. Prentice-Hall, Inc., Englewood Cliffs, NJ.

Metzger, P. W. 1981, Managing a Programming Project. Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

Mills, H. D. 1976. "Software development."” IEEE Transactions on Software
Engineering, SE-2, wo. 4.

Norman, D. A. 1983. "Design principles for human-computer interfaces."
Proceedings CHI'83 Human Factors in Computing Systems, pp 1-10. ACM, New
York, NY.

Norman, D. A. and Draper, S. W. eds. 1986. User Centered System Design:
New Perspectives on Human—-Computer Interaction. Lawrence Erlbaum
Associates, Inc., Hillsdale, NJ.

Roberts, T. and Moran, T. P. 1983. "The evaluation of text editors:
Methodology and empirical results.” Communications of the ACM, Vol. 26, No.
4, pp 265-283.

Rubinstein, R. and Hersh, H. 1984. The Human Factor: Designing Computer
Systems for People. Digital Press, Bedford, MA.

Rubin, M. L. 1970, Introduction to the System Life Cycle. Handbook of
Data Processing Management Vol. 1. Brandon/Systems Press, Princeton, NJ.

Vick, C. R. and Ramamoorthy, C. V. eds. 1984, Handbook of Software
Engineering. Van Nostrand Reinhold, New York, NY.

Wasserman, A. L. 1982a. "Rapid prototyping of interactive information
systems.” Software Engineering Notes, Vol. 7, No. 5, pp 171-180.

Wasserman, A. I. 1982b. “"The user software engineering methodology: An
overview.” In Information System Design Methodologies, ed. Verrijn-Stuart,
A. A., pp 591-628. North Holland Press, Amsterdam.

