May 1980

Division of Research Graduate School of Business Administration The University of Michigan

FORECAST.A AN INTERACTIVE FORECASTING PROGRAM

Working Paper No. 218

Ruediger Mueller Raj K. Bhargara Martin R. Warshaw

University of Michigan

FOR DISCUSSION PURPOSES ONLY

None of this material is to be quoted or reproduced without the express permission of the Division of Research.

INTRODUCTION

FORECAST.A is a forecasting program intended for users with limited statistical knowledge. Therefore, input and output are deliberately kept simple. The user is guided interactively through the program by prompts and comments. The program uses three forecasting methods:

- 1. Decomposition
- 2. Winters' three-parameter exponential smoothing model
- 3. Trend-line analysis

Forecasts are made up to 12 periods ahead. Although the program was originally designed to handle monthly time series, provisions are made to handle periods of different lengths. A minimum input of 12 and a maximum input of 120 periods can be handled.

TECHNIQUES

Decomposition

The decomposition method used in FORECAST.A is similar to the Census II X-11 method, but simplified to suit the needs of users with limited experience. This part of the program requires a minimum of thirty-six monthly data points; it cannot handle other than monthly data. Options offered are trading day adjustment and cutoff of extreme values. Trading days are days during which business has actually been transacted. A correction for trading days allows the user to take into consideration normal fluctuations in the number of trading days, as well as unusual events like strikes, etc. Trading day adjustment, if desired, takes place before decomposition starts.

Decomposition assumes that a time series consists of four components: trend, cycle, seasonal, and an irregular component. An attempt is made to isolate these components in order to explain the behavior of the time series and to make predictions based on the components. Generally the components can be connected in two different ways, by addition or by multiplication. Census II X-11 offers both possibilities, while FORECAST.A is limited to multiplicative models as illustrated below:

$$X_t = T_t \times C_t \times S_t \times I_t$$

where

 X_t = actual observation at time t

 T_t = trend factor at time t

 $C_t = cyclical factor at time t$

 S_t = seasonal factor at time t

 I_t = irregular factor (random element in time series).

Trend and cyclical factors are not separated in this model because a cycle is assumed to be so long that its separation from the trend would not improve its explanatory power.

As a first step FORECAST.A attempts a preliminary separation of the trend-cycle components from the seasonal and irregular components:

$$\frac{X_t}{M_t} = R_t = \frac{T_t \times C_t \times S_t \times I_t}{T_t \times C_t} = S_t \times I_t$$

where

$$M_{t} = T_{t} \times C_{t}$$

$$R_{t} = S_{t} \times I_{t}.$$

This separation is achieved by the use of twelve-month centered moving averages (MA), which eliminate most seasonal and irregular variations from the time series. The ratio of this series (M_t) to the original series (X_t) is the basis for further calculations (R_t).

It is now possible, if so desired, to remove extreme values from the time series. The program will transform the time series into a set of twelve time series, each of which contains the data for a specific month. For example, one series will contain all January data, one will contain all February data, and so forth. For each of these monthly series, extreme values will be removed by a two-step process. In step one, $3 \times 3 \text{ MA's}^1$ are calculated. The process

 $^{^{13}}$ x 3 MA's are calculated by calculating three-month MA's of the time series and then calculating three-month MA's of those MA's.

results in the loss of two values at the beginning and two values at the end of the series. These four values are replaced by weighted averages calculated from the first and last values, respectively.

As a second step, means and standard deviations for each monthly series (e.g., Januaries, Februaries, etc.) are calculated. All values falling outside of a user determined range will be replaced by the average of the values immediately preceding and following the dropped value. This range will be determined by the user in terms of standard deviations. For example, the user can specify that all values deviating more than two standard deviations from the mean are to be replaced. This option should be used only if it is known that outliers are caused by unusual events such as strikes, catastrophes, etc., whose effects have not already been removed by the use of the trading day adjustment option. Careless use of this option will lead to a loss of information.

At this point in the procedure, the time series is twelve values shorter than the original series because six values were lost from the beginning and six from the end by the calculation of the twelve-month centered MA's.

Before new preliminary seasonal factors can be calculated, these values have to be replaced. Replacement values are the corresponding values of the second year for the first six values of the time series and the corresponding values of the next to last year for the last six values. The original series will then be divided by this adjusted series. At this point the time series is actually a series of ratios, and in order to determine preliminary seasonal factors this series will be normalized so that the mean for every year equals 100. Then 3 x 3 MA's will be calculated for every month as previously described. The results are preliminary seasonal factors, and the division of the original series by these factors yields a preliminary seasonally adjusted time series:

$$PS_{t} = \frac{X_{t}}{S_{t}} = \frac{T_{t} \times C_{t} \times S_{t} \times I_{t}}{S_{t}} = T_{t} \times C_{t} \times I_{t}$$

where

PS_t = preliminary seasonally adjusted value in time t.

The time series of these preliminary seasonally adjusted values (PS_t 's) is the basis for the application of thirteen-month Henderson moving average weights (see Table 1) to eliminate random fluctuations. ¹

$$M_{t}' = \frac{PS_{t}}{I_{t}} = \frac{T_{t} \times C_{t} \times I_{t}}{I_{t}} = T_{t} \times C_{t}$$

where

$$M_t^{\dagger} = T_t \times C_t$$

In order to determine the final seasonal-irregular factor ($S_t \times I_t$), the original time series (X_t) is divided by the $M_t^!$. Extreme values in the resulting series of ratios will again be removed, if so desired, by the procedure mentioned previously. The following series will result:

$$FSI_{t} = \frac{X_{t}}{M_{t}^{\prime}} = \frac{T_{t} \times C_{t} \times S_{t} \times I_{t}}{T_{t} \times C_{t}} = S_{t} \times I_{t}$$

where

$$FSI_t = S_t \times I_t$$

In order to obtain the final seasonal factors (S_t) from this series (FSI_t) , the irregular factor (i.e., random fluctuations) must be removed. This will be achieved by the application of 3 x 3 MA's to each month in the manner described above:

$$S_t = \frac{FSI_t}{I_t} = \frac{S_t \times I_t}{I_t}$$

Shiskin, J., Young, A. H., Musgrave, J. G. "The X-11 Variant of the Census Method II Seasonal Adjustment Program." Bureau of the Census, Technical Paper No. 15, p. 63.

TABLE I

13-Term Henderson Weights

					Weight	Weight for Month	ıth						
Henderson MA for month	N-12	N-11	N-10	N-9	N-8	N-7	N-6	N-5	N-4	N-3	N-2	N-1	Z
N	0	0	0	0	0	0	092	058	.012	.012	. 244	. 353	.421
N-1	0	0	0	0	0	043	038	.002	.080	.174	. 254	. 292	.279
N-2	0	0	0	0	016	025	• 003	.068	.149	. 216	. 241	.216	.148
N-3	0	0	0	009	022	.004	.066	. 145	. 208	. 230	. 201	• 131	.046
N-4	0	0	011	022	.003	.067	.145	.210	. 235	. 205	.136	.050	018
N 15.	0	017	025	• 001	.066	.147	. 213	. 238	.212	.144	.061	006	034
N-6	019	028	0	.066	.147	. 214	. 240	.214	.147	.066	0	028	019

Source: Shiskin, J., Young, A. H., Musgrave, J. C. "The X-11 Variant of the Census Method II Seasonal Adjustment Program," Bureau of the Census, Technical Paper No. 15, p. 63. Division of the original series by the final seasonal factors yields a series which is seasonally adjusted:

$$FA_{t} = \frac{X_{t}}{S_{t}} = \frac{T_{t} \times C_{t} \times S_{t} \times I_{t}}{S_{t}} = T_{t} \times C_{t} \times I_{t}$$

where

 FA_t = final seasonally adjusted value in time t.

Elimination of random variations (I_t) from this time series yields the final trend-cycle component of the time series. It is obtained by applying thirteen-month Henderson MA's to the series of the final seasonally adjusted values (FA_t):

$$TC_{t} = \frac{FA_{t}}{I_{t}} = \frac{T_{t} \times C_{t} \times I_{t}}{I_{t}} = T_{t} \times C_{t}$$

where

 TC_t = final trend-cycle value in time t.

Separate forecasts are made for the final trend-cycle component (TC_t) and the seasonal factor (S_t) for twelve periods into the future. Random fluctuations (I_t) are unpredictable, and therefore I_t will be ignored in forecasts. The seasonal factors are predicted as the expected values of the seasonal factors for the same months of the previous two years. The trend-cycle component is predicted by trend-line extrapolation. In order to capture non-linear developments in the trend-cycle component, two attempts at extrapolation are made, one using the linear equation

$$Y = a + bX$$

the other using the nonlinear equation

$$Y = e^{a+bX}$$

where

X = time variable

Y = predicted variable

a, b = parameters to be estimated.

For the linear equation, the slope b will be estimated by the equation:

$$b = \frac{\sum Y \times \sum X}{n} - \sum (X \times Y) \frac{(\sum X)^2}{n} - \sum X^2$$

and the intercept a will be estimated by:

$$a = (\Sigma Y - b\Sigma X)/n$$

where

n = number of observations.

The coefficient of correlation (r) is obtained by the equation:

$$r = b \sqrt{\left(\sum X^2 - \frac{(\sum X)^2}{n}\right) / \left(\sum Y^2 - \frac{(\sum Y)^2}{n}\right)}$$

The parameters a and b and the coefficient of correlation are estimated in similar manner after $y=e^{a+bX}$ is transformed into a linear equation using the natural logarithm:

$$Y = e^{a+bX} \rightarrow 1n \ Y = a + b \times X$$

The final forecast is the combination of the predicted values of the linear and non-linear trend-cycle components with the predicted seasonal factor:

$$FF_t = TC_{T+\tau} \times S_{T+\tau}$$

where

FF = final forecast

 τ = forecasted period, τ = 1, ..., 12

T = last available period.

Several measures of forecast accuracy are offered. The program provides the mean squared error (MSE), the standard deviation (SD), the average error (AE), and the coefficient of correlation (r).

The MSE is the variance of the predicted value from the actual value. The program calculates the MSE by starting with year 2, predicting the trend-cycle component (TC), combining the TC with the seasonal factors for the respective period of the final forecast, and comparing this forecast with the actual values for available periods. This measure is labeled "variance" in the program output. The standard deviation is the square root of the MSE. The average error is the average deviation of the predicted from the actual value. The MSE and SD are measures of the magnitude by which the prediction deviates from the true value; the average provides information as to whether the program is, on the average, predicting correctly or is consistently over- or underestimating the true value.

$$MSE_{m} = \frac{\sum_{i=2}^{r} (X_{m,i} - FF_{m,i})}{r - 2}$$

$$SD_m = MSE_m$$

$$AE_{m} = \frac{\sum_{i=2}^{r} (X_{m,i} - FF_{m,i})}{r - 1}$$

where

MSE = mean squared error

SD = standard deviation

AE = average error

X = actual value

FF = final forecast

r = number of years input

m = predicted month, m = 1, ..., 12.

The coefficient of correlation for each trend line is also presented.

This number is a measure of the goodness of fit of the estimated trend line to the data points.

Winters' Three Parameter Model of Exponential Smoothing

Unlike the decomposition method Winters' model is capable of handling periods of different lengths. Every period length from yearly data to weekly data can be handled. The minimum input requirement is four years; thus, for monthly data, at least forty-eight values must be available. Basic equations for Winters' model are:

$$S_{t} = \alpha \frac{X_{t}}{I_{t-L}} + (1 - \alpha) (S_{t-1} + b_{t-1})$$

$$b_{t} = \gamma (S_{t} - S_{t-1}) + (1 - \gamma) b_{t-1}$$

$$I_{t} = \beta \frac{X_{t}}{S_{t}} + (1 - \beta) I_{t-L}$$

$$F_{t+m} = (S_{t} + B_{t} \times m) I_{t-L+m}$$

where

 S_t = simple exponentially smoothed value

 b_t = trend adjustment factor

 I_t = seasonal adjustment factor

 F_{t+m} = forecast for period m

 X_t = original observation

 $T = 1, \dots, T = observed time$

m = 1, ..., M = predicted time

 α = smoothing constant for S_t

 β = smoothing constant for b_t

 γ = smoothing constant for I_t

L = number of periods per cycle

The weights α , β , and γ can either be determined by the user or by the program. If the latter option is chosen the program selects the optimal combination of weights. The optimization criterion is the MSE. The weights are chosen so that the average MSE of the forecast for the first and sixth

period is minimized. The routine used for optimizing α , β , and γ is EXPLORE¹ based on an algorithm developed by Keefer and Gottfried.²

The user also has to determine how many years are to be used for initialization of S_t , b_t , and I_t . It is recommended that not more than half of the available years be used but the minimum requirement is at least two years.

Initial value for S will be the simple average of the observations for the first year.

Initial value for b_t will be the difference between the means of the last year and the first year used for initialization divided by the number of observations used for initialization less the number of periods in one cycle.

$$b_1 = \frac{\text{Mean } 2 - \text{Mean } 1}{(P-1)xL)}$$

where

Mean 1 = mean of the observations for the first year used for initialization

Mean 2 = mean of the observations for the last year used for initialization

P = total number of cycles used for initialization.

Under the assumption of a linear trend, b is the monthly increase or decrease per period due to the trend. For the seasonal component (I_t) , starting values have to be calculated for all periods used for initialization. Starting values for I_t will be the ratios of actual observations to seasonally adjusted values of the same periods for all periods used for initialization. The seasonal factors for the same months of succeeding years will be averaged to yield the starting values for the seasonal factors.

¹Becker, J. R. "EXPLORE, A Computer Code for Solving Nonlinear, Continuous Optimication Problems." Computer Application No. 10, Division of Research, Graduate School of Business Administration, The University of Michigan.

²Keefer, D. L., and Gottfried, B. S. "Differential Constraint Dealing in Penalty Function Optimization." <u>American Institute of Industrial Engineers</u> Transactions 2 (1970): 281-89.

$$I_{i} = \frac{1}{p} \sum_{k=1}^{p} \left(\frac{X(k-1) \times L+i}{S_{p} - (\frac{L+1}{2} - i) \times b_{i}} \right)$$

where

$$i = 1, \dots, L$$
.

Finally, these seasonal factors will be normalized so that their average is one. These initial values will be used as starting values for the original equations given above, which will be applied to the observations used for initialization. The values for S, b, and I obtained in this step will be the final starting values.

After the starting values have been calculated, the program proceeds with the basic equations of Winters' model as they are given above. Starting with the second year after the last year used for initialization, forecasts will be made and compared to the actual values. The output shows the forecast for the last available year together with the actual data for the same year, as well as the standard deviation of the forecasted from the actual data which allows the user to evaluate the quality of the forecast. A final forecast is then made for twelve periods in the future.

Trend-Line Extrapolation

If the number of observations is too small for either decomposition or for Winters' method, but exceeds twelve, a trend-line extrapolation can still be performed. This is done by using the same routine used to perform trend-li extrapolation of the cycle-trend component in decomposition. The linear an nonlinear extrapolations are also made using the equations

$$Y = a + bX$$

and

$$Y = e^{a+bX}$$

as previously described. The only measure of forecasting quality provided by this routine is the coefficient of correlation.

APPENDIX A

FORECAST.A PROGRAM USER GUIDE

FORECAST.A PROGRAM

Location:

N735:FCAST.OBJECT

Contents:

The object module of the FORECAST.A program.

Purpose:

To forecast time series.

Use:

This program is invoked by a \$SOURCE N735:FORECAST.A command.

MTS file run contains the following command:

\$RUN K45V:EXPLR.O+N735.OBJECT

5=INPUT 6=*DUMMY* 10=*MSOURCE* SCARDS=*MSOURCE*

SPRINT+*MSINK* T=5

Logical I/O units Referenced:

SCARDS - The source of commands to the FORECAST program (defaults to *SOURCE*).

SPRINT - Messages to user (defaults to *SINK*).

- Input data for optimization algorithm used by Winters' method. The user does not have to be concerned about this unit.

 Output of the optimization algorithm used by Winters' method. The user may reassign the unit (defaults to *DUMMY*).

Commands:

The FORECAST commands are described in the following pages.

COMMAND DESCRIPTIONS

This appendix contains a detailed description of each FORECAST command. The command descriptions are presented alphabetically with each command description starting on a new page.

Abbreviated portions of each command may be used as long as they include enough of the command to be distinguished from other commands. The following standard notation conventions are used in the command prototype descriptions:

- 1) Command prototype fields appearing in lower case are generic terms which are to be replaced by an item supplied by the programmer. Command prototype fields appearing in upper case are fields which are to be repeated verbatim in the command.
- 2) Brackets ([]) indicate that a particular field is optional.
- 3) An ellipsis (...) indicates that the preceding field may be repeated in the command.
- 4) Positional parameters must always follow the command name. However, other parameters options may be specified in any order.

Example: In the command

READ FDATA NUMVAR=12 NUMDAT=120

"FDATA" must follow "READ," while "NUMVAR=12" can be placed before or after "NUMDAT=120."

5) Character strings that are parameter values must be enclosed within single quotes.

A few of the generic terms which appear within the command descriptions require explanation:

- 1) "keyword" means any keyword option available for that command.
- 2) "FDname" means the name of a user MTS file.

FORECAST COMMAND SUMMARY

DECOMPOSITION - Forecasts by means of the decomposition method.

MTS - Returns to MTS mode.

PLOT - Plots the original and forecasted time series.

READ - Reads the time series data.

RTRDAY - Reads data about trading day adjustments.

STOP - Terminates program execution.

TREND - Forecasts by means of trend-line extrapolation method.

WINTERS - Forecasts using Winters' three-parameter exponential smoothing

model.

\$cmd - Immediately executes MTS command "cmd".

DECOMPOSITION

Prototype:

DECOMPOSITION [keyword=...].

Purpose:

To forecast using the decomposition method.

Notes:

This command can only be issued after the time series data have been read using the READ command. This method is limited to use with monthly data only.

Options:

Keyword options, their default values, and possible values for reassignment are the following:

CUTOFF = integer value

Extreme cutoff values stated in terms of number of standard deviations around the mean. All time series data that fall outside the specified limit are replaced by the average value of the preceding and following values. This parameter must be used very carefully, e.g., only in cases where it is known that the outliers exist because of abnormal environmental

conditions.

Example:

DECOMPOSITION

The time series is forecast using the decomposition method.

MTS

Prototype:

MTS [MTS command]

Purpose:

This command returns control to MTS.

Notes:

An optional MTS command may be specified. To restart execution of the FORECAST.A program, a \$RESTART should be invoked.

Example:

MTS

would return control to the MTS command mode.

PLOT

Prototype:

PLOT

Purpose:

To plot the original and forecasted time series.

Notes:

This command plots the forecasted time series data for all the

methods that have been used before issuing this command.

Example:

PLOT

A plot of the original and forecasted time series is produced

READ

Prototype:

READ FDname [key word=...].

Purpose:

To read the time series data points.

Options:

Keyword options, their default values, and possible values for reassignment are the following:

FMT = 'character string'

Format specification of data in FDname to be read. Note that the format specification must be enclosed within brackets and then parentheses.

NUMDAT = integer value

Total number of data points to be read from the FDname.

NUMVAR = integer value
 Number of data points in each line of FDname.

Example:

READ FDATA NUMVAR=12 NUMDAT=120 FMT='(12(F10.1,1X))'
The time series data points are read from the MTS file
FDATA. Each line of FDATA contains 12 data points, there
are 120 data points and the format of each line is
12(F10.1,1X).

RTRDAY

Prototype: RTRDAY FDname [keyword=...]

Purpose: To read trading day adjustment data.

Notes: This command should be issued after the READ command. Notice

no option is provided to specify total number of data points, since they must be equal to the number specified in the READ

command.

Options: Keyword options, their default values and possible values for

reassignment are the following:

FMT = 'character string'

Format specification of data in FDname to be read. Note that the format specification must be enclosed within

brackets and then parentheses.

NUMVAR = integer value Default = 1

Number of data points in each line of FDname.

Example: RTRDAY FDATA FMT='(F10.2)'

Data for trading day adjustment is read from file FDATA with

format specification F10.2.

STOP

Prototype: STOP

This command terminates processing and returns control to the MTS command mode. Purpose:

Execution of the FORECAST. A program $\underline{\text{cannot}}$ be restarted because the program is unloaded. Notes:

Example: STOP

TREND

Prototype:

TREND

Purpose:

To forecast using the trend-line extrapolation method.

Notes:

This command can only be issued after the READ command has

been executed.

Example:

TREND

The time series is a forecast using the trend line

extrapolation.

WINTERS

Prototype: WINTERS [keyword=...]

Purpose: To forecast using the Winters three-parameter exponential

smoothing model.

Notes: This command can only be issued after READ command has been

executed. Further, a minimum of four years cycles of data must

be available for using this method. Example

Options: Keyword options, their default values, and possible values for

reassignment are the following:

FPART = integer value Default = Half the time series First part of the time series used for initialization by the Winters' method. This value must be specified in terms of

number of years of the time series.

LCYCLE = integer value

Length of cycle of time series in terms of number of periods.

ALPHA = real value

BETA = real value Default = Optimal weights found by

GAMMA = real value the program

Smoothing parameters for Winters' method. Default option is taken if all the three weights are not explicitly specified

by the user.

Example: WINTERS FPART=3 LCYCLE=12

The time series is forecast using the Winters' method. The first three years of the time-series are used for initiali-

zation; each year consists of twelve periods.

APPENDIX B

AN EXAMPLE

The dataset used in the example contained the monthly Business Week Index for 495 months. Before the actual printout of the sample run of FORECAST.A is shown, this file is listed. Disregarding the line number, every line of the file contains the following information:

Column	Context
1-2	Month
4–5	Year
7-11	Business Week Index

```
'list
     -buj
       1
              01.39.021.7
2
              02.39.021.1
       ...
              03.39.020.7
              04.39.010.7
       a)
       ...;
!::;
              05,39,019,4
              06.39.020.9
       6
       7
              07.39.021.4
       8
              09.39.022.2
       9
              09.39.024.1
      10
              10.39.025.3
              11.39.025.9
      11
              12,39,026,2
      12
              01,40,025.7
      1.3
      14
              02,40,023,6
      15
              03.40.022.4
              04.40.021.9
      16
      17
              05.40.023.4
              06,40.025.8
      18
              07,40,026,7
      19
              08.40.026.8
      20
              09.40.027.5
      21
              10.40.028.3
      22
              11,40.029.5
      23
      24
              12,40,029,7
      25
              01.41.030.4
      26
              02.41.031.3
              03.41.032.5
      27
      28
              04.41.031.7
      29
              05,41,033,5
              06,41,034,7
      30
              07,41,035.3
      31
      32
              08,41,035,1
      33
              09,41,035,3
              10,41,035,4
      34
              11.41.035.7
      35
              12.41.036.2
      36
      37
              01.42.037.3
              02.42.038.8
      38
              03.42.039.8
      39
      40
              04.42.040.8
              05.42.040.9
      41
              06.42.041.5
      42
              07.42.042.1
      43
      44
              08.42.043.1
              09.42.043.9
      45
              10.42.044.7
      46
      47
              11,42,045,6
              12,42,046.0
      48
              01.43.046.6
      49
              02.43.047.4
      50
       51
              03,43,048,1
              04,43.048.8
       52
       53
              05,43,048,9
       54
              06.43.048.7
       55
              07,43,049,3
       56
              09.43.049.7
              09.43.049.9
       57
               10.43.050.3
       59
       59
               11.43.050.4
       60
               12,43,049,8
               01.44.049.9
       61
       62
               02.44.050.0
       63
               03.44.049.8
```

```
04,44,050.0
÷
      54
     65
             CE, 44,049,6
06:44.049,1
     66
     67
             07,44,049.1
     68
             08.44.048.9
     60
             09,44,048,3
     70
             10.44.048.2
     71
             11,44,048.2
     72
             12,44,048.3
     73
             01.45.048.3
     74
             02,45,047,9
     75
             03.45.048.4
     76
             04.45.048.3
     77
             05.45.047.3
     78
             06,45,046,0
     79
             07.45.045.0
     80
             08.45.040.5
     81
             09.45.035.5
             10.45.033.3
     82
             11.45.034.8
     83
     84
             12.45.036.0
     85
             01,46,034,2
     86
             02,46,031.4
     87
             03,46,035,3
     88
             04.46.034.8
     89
             05.46.033.5
     90
             06.46.035.5
      91
             07.46.037.5
      92
             08,46,038,3
      93
             09,46,038,2
      94
             10.46.038.4
     95
             11.46.038.7
      93
             12,46,038,6
      97
             01.47.038.7
     98
             02.47.038.7
      99
             03.47.040.3
    100
             04,47,039,8
             05.47.039.0
    101
             03.47.039.3
    102
             07.47.038.8
    103
             08.47.039.0
    104
    105
             09.47.039.5
             10.47.039.5
    106
    107
             11.47.039.3
    108
             12,47,040,0
    109
             01,48,040.3
    110
             02.48.040.1
    111
             03,48,040,4
    112
             04.48.040.5
     113
             05.48.040.8
    114
             06,48,041,3
     115
             07.48.041.9
    116
             08.48.041.9
    117
             09,48,040,4
    118
             10.48.041.5
    110
             11.48.040.5
    120
             12.48.040.8
    121
             01.49.040.5
    122
             02,49,039,6
    123
             03,49,039,9
    124
             04.49.040.7
    125
             05.49,039.3
     126
             06.49.039.2
     127
             07.49.038.7
     128
             08,49,039,0
     129
             09,49.039.2
```

```
>
    130
              10.49.070.1
÷
    131
              11.49.038,7
÷
              12,49.039.5
    132
.
              01.50.040.5
    133
    134
              02,50,039,0
>
>
>
    135
              03.50.040.9
              04.50.043.1
    136
    137
              05,50,044.0
÷
    138
              06.50.045.6
>
>
              07.50:046.4
    139
              08.50.047.6
    140
>
>
    141
              09.50.047.4
    142
              10.50.047.7
>
    143
              11.50.046.5
>
>
    144
              12.50.048.1
    145
              01.51.049.1
:
    146
              02.51.049.2
>
              03.51.050.3
    147
:
    148
              04.51.049.9
÷
    149
              05.51.049.9
>
>
    150
              06.51.050.4
              07,51,049,6
    151
>
    152
              08.51.048.3
>
>
>
              09.51.048.6
    153
    154
              10.51.048.6
     155
              11,51,048,6
>
              12.51.049.4
     156
>
              01.52.049.6
     157
:
              02.52.049.8
     158
>
>
>
    159
              03.52.050.6
              04.52.050.3
    160
    161
              05.52.049.8
>
              06.52.049.3
    162
÷
              07.52.049.4
    163
>
    164
              08.52.051.9
>
     165
              09.52.054.5
:
     166
              10.52.054.8
>
     167
              11.52,054.9
>
>
     168
              12.52.055.8
    169
              01.53.056.3
>
     170
              02.53.055.4
>
>
     171
              03.53.056.9
     172
              04.53.057.6
÷
     173
              05.53.057.3
>
>
     174
              06.53.057.9
     175
              07.53:058.9
>
     176
              08.53.058.4
>
     177
              09.53.057.4
>
:>
     179
              10.53.057.1
     179
              11.53.054.8
÷
     180
              12.53.054.3
>
     181
              01.54.053.9
.
              02.54.052.7
     182
:
:>
     183
              03.54.052.8
     184
              04.54.052.6
:
              05.54.053.4
     185
>
>
>
              06.54.054.3
    18ć
     187
              07:54:054:3
              09,54,053,3
     188
.
    189
              09.54.053.6
÷
     190
              10.54.053.8
>
     191
              11.54.054.5
>
>
>
     192
              12.54.056.8
     193
              01,55,057,8
     194
              02.55.058.1
     195
              03,55,059,6
```

```
>
                 195
                                                04.55.060.3
 .
                                                05.55.061.1
                 197
• ;-
                                               06:55.061.7
                 198
 >>>>>>
                 199
                                                07,55,063,1
                 200
                                                08.55:062.4
                201
                                                09.55.062.9
                 202
                                                10.55.063.3
                                                11,55,033,2
                 203
  12,55.064.3
                 204
                 205
                                                01,56,062,9
                 206
                                                02.56.061.8
                 207
                                                03.56.062.2
                 208
                                                04.56.062.9
                 209
                                                05,56,062,8
  >
>
>
                 210
                                                06.56.062.7
                 211
                                                07.56.060.7
                 212
                                                08.56.062.2
  >
>
>
                                                09.56.063.2
                 213
                 214
                                                10:56,063,6
                 215
                                                11.56.063.1
  ;
;
                 216
                                                12.56.064.8
                 217
                                                01.57.065.4
  >
>
                 218
                                                02.57.064.8
                 219
                                                03.57.065.0
  >>>>>>
                 220
                                                04.57.064.9
                 221
                                                05,57,063,6
                 222
                                                06.57.064.3
                                                07.57.065.4
                 223
                 224
                                                08,57,065,0
  >
>
>
                 225
                                                09.57.064.1
                 226
                                                10.57.062.4
                 227
                                                11.57.060.2
  :
:>
                 228
                                                12,57,059,6
                  229
                                                01.58.058.1
  >
>
>
                  230
                                                02.58.056.5
                  231
                                                03.58.055.8
                  232
                                                04.58.054.6
  >
                  233
                                                05.58.055.3
  :
:
                  234
                                                06,58,057,9
                  235
                                                07.58.058.6
  :
                  236
                                                08.58.059.8
  ÷
                  237
                                                09.58.060.5
  ÷
                  238
                                                 10.58.061.3
  .
                  239
                                                11.58.061.9
  ÷
                  240
                                                 12,58,064,1
  >
                  241
                                                 01.59.064.0
  :
                  242
                                                 02.59.064.0
  >
>
>
                  243
                                                03.59.045.4
                                                 04.59:066.6
                  244
                  245
                                                05.59.067.2
  .>
                                                06.59.048.2
                  246
  >
                  247
                                                 07.59.067.1
  ÷
                  248
                                                 08.59.065.6
  >
                  249
                                                 09.59.044.8
  .
                  250
                                                 10,59,064,0
  >
                  251
                                                 11,59,044.3
  >
>
>
                  252
                                                 12.59.068.3
                  255
                                                01.40.048.8
                  254
                                                 02,60,067.8
  >
                  \sum_{i=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j
                                                 03,60,067,7
  >
>
                  256
                                                 04,60,067,0
                  257
                                                 05.60.066.2
  >
>
>
                  258
                                                 06.60.065.7
                  259
                                                 07.60.066.6
                  260
                                                 08.60.066.9
                                                 09:60.066.9
                  261
```

```
262
             10.60.066.0
:
:>
    263
             11.60.064.1
             12.60.063.8
    264
265
             01.61.063.4
    266
             02.61.06%.2
    267
             03,61,063,7
    268
             04.61.065.5
    269
             05.61.066.3
             06.61.067.6
    270
    271
             07.61.069.8
    272
             08.61.070.3
    273
             09.61.070.9
    274
             10.61.070.0
    275
             11.61.071.0
    276
             12.61.072.9
    277
             01.62.072.5
    278
             02.62.072.4
    279
             03.62.073.2
    280
             04.62.072.8
    281
             05,62,072,3
    282
             06.62.071.8
    283
             07.62.073.0
    284
             08.62.073.6
    285
             09.62.074.2
    286
             10.62.073.6
    287
             11.62.073.2
    298
             12.62.074.4
    289
             01.63.076.0
    290
             02.63.075.7
    291
             03.63.075.4
    292
             04.63.075.8
    293
             05.63.076.3
    294
             06.63.077.8
    295
             07.63.077.8
    296
             08.63.077.4
    297
             09.63.078.5
    298
             10.63.079.2
    299
             11.63.078.4
    300
             12.63.079.2
    301
             01.64.080.1
    302
             02.64.079.7
    303
             03.64.080.2
    304
             04.64.081.6
    305
             05.64.081.2
    306
             06.64.081.9
    307
             07,64,083,0
    308
             08,64,083,0
    309
             09.64,083.9
    310
             10.64.083.0
    311
             11.64.084.1
    312
             12.64.085.0
    313
             01.65.086.6
    314
             02.65.086.8
    315
             03.65.087.4
    316
             04.65.087.8
    317
             05.65.087.7
    318
             06.65.088.4
    319
             07.65.090.0
    320
             08.65.090.1
    321
             09.65.089.8
    322
             10.65.090.5
             11.35.090.8
    323
    324
             12.65.092.1
    325
             01.66.094.9
    326
             02.66.095.7
    327
             03.66.097.4
```

```
÷
    722
              04,66,097,6
:
    529
              05,66,098 8
÷
              04,680,098,6
    330
>>>>>>>>>
    271
              07.66.099.1
    732
              00.66.098.8
    233
              09.66.099.8
    334
              10.66.100.9
    335
              11,66,097,3
    336
              12.66.100.5
              01.67.099.6
    337
.
              02.67.090.3
    338
>
:>
:>
    339
              03.67.097.6
    340
              04.67.098.7
    341
              05.67.099.4
>
>
>
              06.67.099.0
    342
              07.67.098.6
    343
    344
              08.67.100.9
>
    345
              09.67.100.7
:
:
    326
              10.67.100.8
    347
              11,67,102,8
>
              12:67:104:0
    348
>>>>>>
    349
              01.68.103.8
    350
              02.68.104.3
    351
              03,68,104,5
    352
              04.68.105.0
    353
              05,68,106,6
>
>
>
>
    354
              06.68.107.1
    355
              07,68:107,1
    356
              08.68.106.2
    357
              09,68,106,3
358
              10.68.106.9
    359
              11.68.108.0
    360
              12,68,108,4
    361
              01.69.108.9
    362
              02.69.109.3
    363
              03.69.110.8
              04.69.110.7
    364
>
>
>
    365
              05.69.110.0
              06.69.111.2
    366
    367
              07.69.111.2
338
              08.69.112.2
    369
              09.69.112.1
    370
              10.69.111.9
    371
              11.69.111.0
    372
              12.69.110.0
    373
              01.70.108.8
÷
    374
              02.70.109.0
375
              03.70.109.3
    376
              04.70.108.9
    377
              05.70.108.8
    378
              06.70.108.3
    379
              07.70.108.7
    380
              08.70.108.8
381
              09.70.106.8
    382
              10.70.104.3
    383
              11.70.104.2
    394
              12.70.106.2
    325
              01,71,108,0
    386
              02.71.107.9
    387
              03.71.108.4
    388
              04.71.108.8
    386
              05.71.109.6
    390
              06.71.109.7
    391
              07.71.109.1
    392
              08.71.108.3
    393
              09.71.109.7
```

```
394
              10,71,110,7
11.71.111.5
     395
     396
              12.71.112.4
    397
             01.72.114.2
    398
             02.72.115.0
             03.72.116.3
    399
     400
             04.72.117.6
             05.72.118.3
     401
     402
             06.72.119.0
             07.72.120.0
    403
     404
             08,72,120,7
             09.72.122.2
     405
    406
             10.72.123.8
    407
             11.72.124.2
    408
             12.72.124.8
    409
             01.73.126.0
    410
             02,73,127,5
    411
             03.73.128.3
    412
             04.73.128.6
    413
             05.73.129.7
    414
             06.73.129.9
    415
             07.73.130.1
    416
             08.73.130.1
    417
             09.73.130.7
    419
             10.73.131.5
    419
             11.73.131.8
    420
             12.73.130.8
    421
             01.74.129.3
    422
             02.74.129.3
    423
             03.74.130.6
    424
             04.74.130.3
    425
             05.74.131.6
    426
             06.74.131.6
    427
             07.74.131.5
    428
             08.74.131.2
    429
             09.74.131.6
    430
             10.74.130.4
    431
             11.74.125.6
    432
             12,74,119,6
    433
             01.75.115.0
    434
             02.75.112.8
    435
             03.75.111.3
             04.75.112.0
    436
    437
             05.75.113.7
    438
             06.75.116.0
    439
             07.75.117.8
    A \land 0
             08.75.119.8
    441
             09.75.121.3
    442
             10.75.121.4
    443
             11,75,122,7
    444
             12.75.123.5
    445
             01.76.125.2
             02.76.126.7
    444
    447
             03,76,127,7
    448
             04,76,128,2
    449
             05.76,129.4
    450
             06.76.129.6
    451
             07.76.130.1
    452
             09.76.130.8
    453
             09.76.130.6
    454
             10,76,130,4
    455
             11,76,131,3
    456
             12,76,132.4
    457
             01.77.131.9
    458
             02.77.132.5
    459
             03.77:134.3
```

```
460
              04.77.135.5
.:
    461
              05.77.137.2
^^^^^^^^^^^
     462
              06,77,138.1
              07.77.138.9
    463
              08.77.138.3
    464
    465
              09.77.138.8
     466
              10.77.139.1
     467
              11.77,139,4
              12,77,139,6
    468
              01.78/139/1
    469
    470
              02.79.139.3
    471
              03.78.140.9
    472
              04.78.142.3
     473
              05.78.143.2
     474
              06.78.143.8
     475
              07.78.144.2
     476
              08.78.145.1
>
>
>
>
     477
              09.78.145.7
     478
              10.78.146.5
    479
              11.78.147.3
    480
              12.78.148.4
>
>
    481.
              01.79.149.2
    492
              02.79.150.0
>>>>>>>
    483
              03.79.151.0
    484
              04.79.151.5
    485
              05.79.151.9
     486
              06.79.151.8
              07.79.151.4
    487
              08.79.150.9
    488
> ,
    489
              09.79.150.9
>
    \Delta \Theta Q
              10.79.151.1
>
    491
              11.79.149.8
>
    492
              12.79.149.2
>
    493
              01.80.148.5
\Rightarrow
    494
              02.80.149.1
    495
              03,80,148,9
#END OF FILE
```

*SOURCE N735;FORECAST.A

8*** Forecast.A Program ***

& ®AD -BWI NUMDAT=495 FMT=′(6X,F5.1)′ &TREND

FINAL FORECAST USING REGRESSION ANALYSIS, ROW 1: Y=A+B*X, ROW 2: Y=A*B**X, X= TIME

COEFFICIENT OF CORRELATION:0,96742

	140.		164.	
	1.40.		163.	
	140.		163.	
	139.		162.	
	139.		162.	
	139.		161.	
	139.		161.	
	138.		160.	
	138,		160.	
**************************************	138.	ION:0.97218	159.	
CONTENT.	138,	F CORRELAT:	158.	
מיין די מייונן מן ממונורייון זימוני על נמי שני	137.	COEFFICIENT OF CORRELATION:0.97218	158.	
		-		٥¢

DECOMPOSITION CUTOFF=0,

TRENU-CYCLE FORECASTS ARE MADE USING THE REGRESSION EQUATIONS; 1. Y=A+B*X 2. Y=A*B**X ORIGINAL SERIES

26.	30.	36.	46.	50.	48.	36.	39.	40.	41.	40.	48.	49.	56.	54.	57.	64.	65,	*09	64.	68,	64,	73.	74.	79.	85.	92.	101.
26.	30.	36.	46.	50.	48.	30.	39.	39.	41.	39.	47.	49.	55.	ر د د	35.	63.	63.	.09	62.	64.	64.	71.	73.	78.	84.	91.	97.
25	28.	30.	45.	500	48.	33.	38	40.	42.	39.	48.	49.	55.	57.	54.	63.	64.	62.	61.	64.	.66.	70.	74.	79.	83.	91.	101.
24.	28.	35.	44.	50.	48.	36.	38.	40.	40.	39.	47.	49.	מ	57.	54.	63.	63.	64.	61.	65.	.76	71.	74.	79.	84.	90·	100.
22.	27.	30.	43.	50.	49.	41.	38.	39.	42.	39.	48.	48.	52.	58.	53.	62.	62.	65.	.00	.99	.76	70.	74.	77.	83.	.06	• 66
21.	27.	35.	42.	49.	49.	45.	38.	39.	42.	39.	46.	50.	49.	59.	54.	.59	61.	65.	59.	67.	67.	70.	73.	78.	. 83	.06	• 66
21.	26.	30.	42.	49.	49.	46.	36.	39.	41.	39.	46.	50.	49.	58.	54.	62.	63.	64.	58.	•89	.99	•89	72.	78.	82.	888	* 66
19.	23.	34.	41.	49.	50.	47.	34.	39.	41.	39.	44.	50.	50.	57.	on On	61.	63.	64.	00	67.	.99	.99	72.	76.	81.	88	* 66
20.	G	32.	41.	49.	50.	48.	35.	40.	41.	41.	43.	50.	50.	58.	53.	*09	63.	65.	, 0	67.	67.	66.	73.	76.	82.	88	98.
21.	* %	999	40.	48.	50.	48.	м Ю	40.	40.	40.	41.	50.	io :	57.	53,	60.	62.	65.	56.	65.	·89·	64.	73.	75.	80.	87.	97.
21.	24.	31.	39.	47.	50.	48.	31.	39.	40.	40.	39.	49.	20.	56.	53.	58.	62.	65.	57.	64.	•89	63.	72.	76.	80.	87.	96.
22.	26.	30.	37.	47.	50.	48.	34.	39.	41.	41.	41.	49.	50.	56.	54.	58.	63.	65.	58	64.	• 69	63.	73.	76.	80.	87.	95.

0.99393	9923 1.01568 9158 1.01488		.99953	0.98673	1.01454	1.00161	1.00451	1.00655
1.01100	98169	·		0.98989	1.01554	1.01902	1.00139	0.98186
35 0.97904 0.97945	98135	1.01631 0.9	1.01568	1.02780	1.03228	1.01250	1.00241	1.00068
0.99939	~ %			0.97789	1.00548	1.02270	1.01281	1.01249
5855 0.98261 0.99734	÷	0.99524 0.9	1.00278	1.02222	1.01302	1.01407	0.99884	1.00057
8843 0.99789 1.00727	36	1.00551 0.9	1,01233	1.00927	1.00091	1.01046	1.00710	1.03472
8959 1.00073 0.99848	86	1.01040 0.98	0.99750	1.01113	1.01015	1.00881	0.99780	1.01567
8902 1.00165 1.00015	86	0.99130 0.9	0.99088	1.00991	1.01528	1.00902	0.99709	1.01621
8978 1.00340 0.99837	98	0.98182 0.9	0.98437	1.00950	1.02042	1.00963	0.99810	1.01529
0.99121 1.00384 0.99739	₹0	0.97657 0.9	0.98200	1.00808	1.02146	1.00961	1.00162	1.01531
0.99378 1.00185 0.99629	56	0.97979 0.9	0.98458	1.00629	1.01816	1.00805	1,00320	1.01097
0.99802 0.99968 0.99647	\$ €	0.98834 0.9	0.99126	1.00469	1.01370	1.00664	1.00061	1.00100
0458 1.00021 0.99850	ž	0.99899 1.0	0.99949	1.00355	1.01104	1.00672	0.99249	0.98593
1.01308 1.00595 1.00355	္ :	1.00855 1.0	1.00654	1.00201	1.01060	1.00825	0.98101	0.96995
1.02111 1.01358 1.00947	ပ္	1.01571 1.0	1.01138	1.00025	1.01092	1.01010	0.97023	0.95774
2650 1.01986 1.01436	ب	1.02002 1.0	1.01406	0.99861	1.01075	1.01102	0.96322	0.95166
							CTORS	SEASONAL FACTORS
151. 151. 151.		151.	152.	152.	152.	151.	150.	149.
145. 146. 147.	<u></u>	144.	144.	143.	142.	141.	139.	139.
138. 139. 139.		139.	138.	137.	136.	134.	133.	132.
131. 131. 130.		130.	130.	129.	128.	128.	127.	125.
120. 121. 121.		118.	116.	114.	112.	111.	113.	115.
131. 132. 130.	-	132.	132.	132.	130.	131.	129.	129.
130. 131. 132.		130.	130.	130.	129.	128.	128.	126.
121. 122. 124.		120.	119.	118.	.118.	116.	115.	114.
108. 110. 111.		109.	110.	110.	109.	108.	108.	108.
109. 107. 104.		109.	108.	109.	109.	109.	109.	109.
112. 112. 112.		:- :- :- •	11 11 1	110.	111.	111.	109.	109.
106. 106. 107.		107.	107.	107.	105.	105.	104.	104.
101. 101. 101.		99.	99.	99.	99.	•86	\$8.	100.

7,7440 U 82,750 U 27,000 U 20,000 U 20,000 U 20,000 U 20,000 U 21,000 U 21,000 U 28,000 U 28,000 U 28,000 U 28,000 U

									FINAL																					ı	
39.	34.	48.	49.	48.	41.	33. •	24.	20.		1.00590	1,00019	1,00091	1.00704	0,95523	0.99482	1.00184	1.00493	1.00851	1.00194	1.00278	0.99907	0.99373	1,00815	1.00463	1,00637	0.99549	1,00235	0.98482	1.00825	1.01999	0.94202
39.	35.	47.	49.	49.	41.	34.	24.	20.	TREND-CYCLE COMPONENT	1.00628	1.00176	1.00815	1.00998	0.97345	1.00799	1.00563	1.00090	1.01187	1.00635	0.99324	1.00937	0.99992	1.01194	0.99734	0.99574	0.99652	0.99425	0.98593	1,00038	1.02096	0.95561
39.	35.	4 5 •	49.	49.	42.	34.	ស ហ •	N1 •	PONENT.	1.00372	1.00079	1.00974	1.00581	0.99315	1.01351	1.00326	0.99728	1.00798	1.00616	1.00190	1.00956	0.99387	1.00285	0.99869	0.99834	1.01069	0.98571	0.99381	0.99772	1.02913	0.99813
39.	37.	43.	49.	49.	42.	ы (Л	26.	ಬ •		0.99962	0.99810	1.01091	1.00467	1.00450	1.02066	1.00178	0.99669	0.99724	1.01296	1.00088	1.00528	0.98663	1.00273	1.00943	1.00543	1.00549	0.99986	1.01452	1.01681	1.00696	1.00364
39.	38.	40.	49.	50.	43.	ង ច.	27.	23 •		0.99581	0.99865	1.00222	1.00556	1.01385	1.02841	0.99955	0.99409	0.98451	1.01553	1.00984	0.99279	1.00524	0.99637	1.00251	16866*0	0.99533	1.00507	1.01066	1.02670	0.98045	1.01380
39.	38.	38.	49.	50.	44.	હ્યુ ઇ •	27.	24		0.99660	0.99708	1.00181	0.99973	1.01639	1.04330	1.00254	0.99836	0.99160	0.99738	1.00959	0.98985	0.99806	1.00461	0.99058	1.00304	1.00451	1.00967	1.00894	1.03125	0.96596	1.01251
40.	39.	36.	49.	50.	4 5 •	35 •	28.	25.		1.00024	0.99706	1.00015	0.99385	1.00623	1.04624	1.00740	1.00352	0.99476	0.97402	1.00874	0.99170	0.99349	1.01465	0.98946	0.98560	1.00844	0.99758	0.98681	1.02088	0.95251	1.01154
40.	39.	35.	49.	5 0•	455 •	36.	29.	ស •		0.99517	0.99736	0.99864	0.99610	1,00616	1.01980	1.00853	0.99909	0.99562	0.97298	1.00176	0.99824	1.00736	0.97787	0.98388	0.99199	0.99316	0.98795	0.99273	0.99330	0.95633	1.00700
40.	39•	34.	49.	50.	46.	36.	30.	25.		0.99540	1.00005	0.99650	0.99952	1.00259	0.98230	0.99970	0.99661	0.99660	0.99141	0.99437	0.99827	1.01303	1.00985	0.98893	0.99607	0.99805	0.99942	1.01281	0.98795	1.01634	1.02838
40.	39.	34.	49.	50.	47.	37.	30.	ស •		0.99477	1.00105	0.98937	0.99055	1.00708	0.95489	0.98713	0.99924	1.00452	1.00766	0.98606	0.99905	1.00495	1.00098	1.00958	1.00842	1.00404	1.01567	1.00271	0.97838	1.02524	1.01341
40.	39.	34.	48.	50.	47.	39.	31.	224.		1.00237	1.00238	0.98711	0.98964	1.01061	0.94616	0.98636	1.00456	1.00259	1.00553	0.99162	0.99866	1.00376	0.98832	1.00845	1.00458	0.99370	1.00609	0.99846	0.96940	1.01245	1.00141
41.	39.	34.	48.	50.	48.	40.	લ :> •	N 4 •		1.00413	1.00554	0.99449	0.99755	1.01074	0.94192	0.99628	1.00475	1.00419	1.00810	0.99922	1.00818	0.99994	0.98167	1.01654	1.00551	0.99458	0.99639	1.00780	0.96898	1.01368	1.01255

1.00342	1.00236	0.99163	0.99307	0.99407	1.00183	0.99636	0.99439	1.00039	1.~00518	1+00855	1+00875-
									FACTORS	SEASONAL	FORECAST OF
148.	149.	149.	150.	150.	151.	151.	151.	151.	151.	151.	151.
150.	150.	149.	148.	148.	147.	146.	145.	144.	144.	143.	142.
142.	141.	141.	140.	140.	139.	139.	138.	137.	137.	136.	135.
135.	134.	133.	132.	132.	131.	131.	130.	129.	129.	128.	127.
126.	125.	124.	123.	122.	121.	119.	118.	117.	117.	117.	117.
118.	119.	120.	122.	123.	125.	126.	128.	129.	130.	130.	131.
131.	131.	131.	131.	131.	131.	130.	130.	130.	129.	129.	128.
128.	127.	126.	125.	124.	123.	122.	121.	120.	119.	118.	117.
116.	115.	114.	113.	112.	111.	111.	110.	109.	109.	108.	108.
108.	107.	107.	107.	107.	107.	107.	107.	107.	108.	108.	109.
109.	110.	110.	111.	111.	111.	111.	111.	1111.	111.	111.	110.
110.	109.	109.	109.	108.	108.	107.	107.	107.	106.	106.	105.
105.	104.	103.	103.	102.	101.	101.	100.	100.	100.	99.	99.
99.	99.	99.	100.	100.	99.	99.	99.	99.	98.	98+	97.
96.	95,	94.	93.	92.	91.	91.	90.	89.	89.	88.	87.
87.	86.	86.	85.	85 •	84.	84.	83.	83.	82.	82•	81.
81.	80.	80.	79.	79.	79.	78.	78.	77.	77.	77.	76.
76.	75.	75.	74.	74.	74.	73.	73.	73.	73.	73.	73.
73.	72.	72.	72.	71.	71.	70.	70.	69.	68.	67.	66.
66.	65.	65.	65.	65. •	6J.	65.	65.	65.	66.	66.	66.
67.	67.	67.	67.	67.	67.	67.	67.	67.	66.	66.	65.
65.	64.	63·	62.	61.	61.	60+	59.	58.	58. •	50.	58.
58.	59.	59.	60.	61.	61.	62.	63.	63.	64.	64.	64.
64.	64.	64.	64.	64.	63.	63.	63.	63.	63.	63.	63.
63.	63.	63.	63.	63.	63.	63.	63.	60.	62.	61.	60.
59.	58 •	57.	56.	ហ	55 •	54.	54.	54.	53.	5a.	54.
01 4 •	5 4.		ហ ហ •	56.	56.	57.	57.	57.	57.	57.	57,
57.	56.	55.	១	54.	53.	53.	თ 22 •	П.	51. •	51 •	50.
50.	50.	50.	49.	49.	49.	49.	49.	49.	49.	49.	49.
49.	49.	49.	49.	48.	48.	47.	47.	46.	45.	44.	43.

_

.

.

138. 138. 138. 138. COEFFICIENT OF CORRELATION:0.96800	<u></u>	138.	138.	138.	139.	139.	139.	139.	140.	140.	140.	140.
COEFFICIE												
	er of cor	RRELATIO	N:0.96800									
FINAL FORECAST	CAST 12	12 PERIODS AHEAD	AHEAD									
139.		139.	139.	138.	138.	138.	139.	138.	139.	139.	140.	141.
FORECASTING	O ERROR:		ROW 1: VARIANCE, ROW		STANDARD	2: STANDARD DEVIATION,	ROW 3:	AVERAGE ERROR	X			
84.		88.	90.	93.	97.	101.	105.	106.	110.	114.	118.	123.
• 6	·	9.	10.	10.	10.	10.	10.	10.	10.	11.	11.	11.
\$	•	•	<u>۵</u>	4	4	4.	4	4.	•	4.	نة. •	U 1
FORECAST OF		TREND-CYCLE C	COMPONENT									
157.		158.	158.	159.	159.	160.	160.	161.	162.	162.	163.	163.
COEFFICIENT OF		RRELATIO	CORRELATION:0.97156									
FINAL FORECAST		12 PERIODS) AHEAD									
159.		159.	159.	159.	159+	159.	161.	160.	160.	161.	163.	164.
FORECASTING	NG ERROR:		ROW 1: VARIANCE, ROW	CE, ROW 2:		STANDARD DEVIATION,		ROW 3: AVERAGE ERROR	ЭR			
44.		47.	5 0.	បា ស •	<u>មា</u> ១	62.	67.	7.0 .	75.	81.	85.	93.
7.	•	7.	7.	7.	ω	œ	8	8	\$	\$	9.	10.
• 0 •		-0.	-0.	-0+	-0.		-0.	· · ·	··· O •	0.	•	-0.
*												

1 138.650 + 1 1 125.400 +	;-						÷						
	; 1	- , :				-: I	- { :		-	⊢ ; !		⊢	* *
	i	 - -	- + -	r		- i }-	-		⊣ ⊢	 ; ;=-		- i ;-	* * *
	€ }- -	4 F		- -			+ 			i		: H	: *
				*······			+		···			·**-+	******
	ri	H	H	г		H	H		H	H		* ∺	
	⊢ ;	⊢ ; !	⊢ :			₩:	:		- 4 :	H		* *	
	1 F	+	 ∤ }-			}	: }		⊢; ⊦		* * * :	* * !	
	-; -	- -	- i -			- ; -	⊣ -		- i -	~ 3 -; -	÷ *	* - * :	
-	- 1-						 - -	! ! ! !		₩ . ₩ . ₩ . ₩ .	: * !	! ! ! ! ! !	
i ⊢ i	: I	: I	(-		- : -	- F-		-	6 % ÷ %	*	}- 	
3	-	: !- -	: }- -	-		: -	: - -		{ }-	: >	: **	4 F	
ı —	i I	: - -	i	-		÷ :-	4 - -		4 ⊢	÷ ÷	(4 F	
112,150 +							+:		*****	***	***		
-	-	- 1	- 1	- }-		. ;-			*******	- 	+	- -	
: }- -	: - -	- F	4 J-	- F		-i i-	-: H		******	- + - + +		- F	
: :-	÷ 1-	- ; -	-{ }-			- I-	-; }-		€ 3 € 3	 		⊣ ⊢	
4 F	4 }	-: }	-: }	- 1		-: 1	-: H	•		-: : €		1	
-i -		- ; -	⊣•			- ; .	⊣ .	*	∺ · * :	⊷.		⊢ ; .	
				 			<u> </u> 	+***		! ! ! ! !		! ! 	
-: }	-: ;	- ; ;	I			 : i	- ; !	* *	-	⊣ 1		- ; :	
⊣ •	- ; ;	 ∤ !	- 4∶	 (-	⊢ € :	*	:	⊢ :		-	
 € \$	- ; :	: i	-: :			-	 i	* *	⊢ ;	H		- ;	
⊢. ·	₩,	:	н	Η		H	× ∺	*	- :	H		;!	
85.650 +	······································		+	+			***		<u> </u>				
I	F	}	 - }-				* * → -: →		⊢ ;	F		i -	
- I-	. +	⊣	-i F	-		∹ F	€ € ÷		-: }-	-t F		-: F	
4 F	-1 -	-i I	-: F			÷ -: :-	ξ ÷ ξ → →		; I	- -		- F	
72.400 4	7		4 -	4 4	- 1	€ ÷ → → · · · · · · · · · · · · · · · · ·	7 -		-	-		-	
- - -	- 1-	- ;	-	- - -		****	- ;		- 1-			- ;	
-	· 	: -	: -	· -	*	· * ***	: 1		: - -	-		-	
H	H	H	H	*	*	*** ***	H		H	H		H	
H	H	H	H	*	* * *	ľ	; ;			; 4			
59,150 +			+	+**-	**	+				+		+	1
H	H	H	H	×		-	-		-	-		-	
-	H	-	*		×		-		-	3		3	
H	**************************************	 	** **			-	-		: 1 - (-		· 	
Н	*****	-	****	-		: H	: -		! ⊨:	: - -		: ;	
45,900 +			+**-	+			+		+				1
H	# ₩		∺ *	H		H	H		H	:- -		H	
- -	⊢ ;	*****	H **	H		H	H		H	H		<u></u> ;	
₩	H	*	H *	H		H	H		H	∺		∺	
H	H	⊢ ;	H	H		H	H		H	H		H	
32,650 +			+	+					4	+			
-	∺	H	H	H		H	-		H	-		H	
* H	∺ *	H	H	H			H			H		H	
*** I	 *>	H	H	H			H		H	-		H	
*****	i:	1	-	1		. }	-		_	-		-	
10.400				7						-			
	•	_	-	-		-	-			-		-	

*** FORECASTING BY WINTERS' METHOD:

Ortimization ortion used: Alpha = 0.801 Beta = 0.982 Gamma = 0.006

Comparison of ACTUAL DATA and FORECASTS over the last excle of data points provided:

Note: For	ecasting is done	Note: Forecasting is done from the cycle before the last one.	before the Li	sst one.	
Period	Trend	Seasonal	Smoothed	Actual	Forecasted
#	Factor	Factor	Data	Data	Data
	0.362	826.0	155,111	151,500	152,073
C4	0.362	0.984	155,111	151,900	153,364
м	0.362	0.987	155,111	151,800	154.099
4	0.362	0.988	155,111	151,400	154,703
ហ	0.362	0.989	155,111	150,900	155,141
. 9	0.362	0.989	155,111	150,900	155.545
7	0.362	0.985	155,111	151,100	155,328
8	0.362	0.979	155,111	1.49.800	154.609
6	0.362	0.971	155,111	149.200	153,712
10	0.362	0.965	155,111	148,500	153.110
- -	0.362	0.967	155,111	149.100	153,781
1.2	0.362	0.974	155,111	148,900	155,225

Standard deviation of forecasting error = 4.29

Forecasts for next cycle:

Forecasts	50.1357	151.99022	152,93259	153,34914	10	151.64029 152.72676
Period #	₩ (%)	м 4	IO 90	V 8		O ∺ (\ ' = =

8*** Forecast.A Program ***

KEY: @ Winters' # Decomposition (Linear) \$ Decomposition (Non-linear) × Trend (Linear) % Trend (Non-linear)

Selected References

- 1) Becker, J. R. "EXPLORE, A Computer Code for Solving Nonlinear, Continuous Optimization Problems." Computer Applications No. 10. Ann Arbor: The University of Michigan, Division of Research, Graduate School of Business Administration, 1974.
- 2) Keefer, D. L., and Gottfried, B. S. "Differential Constraint Dealing in Penalty Function Optimization." American Institute of Industrial Engineers Transactions 2 (1970): 281-89.
- 3) Maridakis, J., and Wheelwright, S. C. "Forecasting, Methods and Applications." New York: John Wiley & Sons, 1978.
- 4) Shiskin, J., Young, A. H.; and Musgrave, J. C. "The X-11 Variant of the Census Method II Seasonal Adjustment Program." Technical Paper No. 15. Washington D.C.: Bureau of the Census, n.d.
- 5) Winters, P. R. "Forecasting Sales by Exponentially Weighted Moving Averages." Management Science Vol. 6 (1960): 324-42.