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SUMMARY

Scale mixtures of uniform distributions are used to model non-normal data in both
univariate and multivariate settings. In addition to providing greater modelling
flexibility, the use of scale mixtures of uniforms also results in straightforward
computational strategies, particularly in a Bayesian analysis where Monte Carlo
methods are used.
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1 Introduction

Markov chain Monte Carlo (MCMC) methods, such as the Gibbs sampler
(Gelfand and Smith, 1990; Smith and Roberts, 1993} have made Bayesian
analysis of complex models relatively straightforward. Within the framework
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of MCMC, vartous methods have been developed to make computations sim-
pler; see, for example, Polson (1996), Damien et al. {1999).

It has also been recognised that statistical models can be generalised, in a
variety of ways, with Bayesian inference remaining tractable, due to MCMC.
This paper is concerned with generalising the popular scale mixture of normal
(SMN) model, Andrews and Mallows (1974), using the idea of a scale mixture
of uniform (SMU) model. We develop a richer class of model with uniform
distributions replacing normal distributions. Surprisingly perhaps, it turns
out that the MCMC is easier to implement for the scale mixture of uniform
model compared to the original scale mixture of normal model.

The important issues are as follows. Scale mixtures of normals only pro-
vide densities with heavier tails compared to the normal density. On the
other hand, scale mixtures of uniforms coincide with the class of unimodal
and symmetric densities. Another point is that we are able to consider vari-
ance regression models in a manner which is essentially no more complex
than the standard mean regression model.

The layout of the paper is as follows. In Section 2 we provide definitions
and facts relating to scale mixtures of uniforms. In Section 3 we demonstrate

_the usefulness of scale mixtures of uniforms for building and estimating a
mean and variance regression model, and include both simulated and real
examples. Section 4 provides a comparative analysis between SMU and SMN
models. Section 5 considers the extension to multivariate models and finally
we end with a brief discussion in Section 6.

2 Background

We start by considering scale mixture of normals (Andrews and Mallows,
1974).

Definition 2.1 Scale mixtures of normals
A random variable Y defined on IR has a scale mizture of normal distribution
if the density for Y can be wriiten in the form

pe(v)= [ Nwlf a()o?) m(3) )

where a(+) is a positive function on and w(A) is a probability density function.



The class of models defined above is very large and useful. However, a
restrictive property of py (+) is that it only provides densities with tails heavier
than normal, i.e. leptokurtic. To deal with this we can introduce the idea of
a scale mixture of uniform density:

Definition 2.2 Scale mixture of uniforms
A random variable Y defined on IR has a scale mizture of uniform represen-
tation if it may be written using the following representation:

Y|V =v]~ Un(p—ov,pp+ ov),
where 0 > 0, and V has density fv(-), defined on R,.

We now collect together some facts which can be easily established.
Fact 2.1 IfV ~ Ga(3/2,1/2) then Y ~ N{u,0?).

Fact 2.2 The class of unimodal, symmetric densities on IR coincides with
the scale mizture of uniform densities.

Fact 2.3 If Y has a scale mizture of normal representation, i.e.,
YA~ N, a?/2),

and
A~ owl),

then the corresponding representation via scale mizture of uniforms is given

by
Y|[V =]~ Un(p = ov/o,p+0v/v),

Ve~ folv),
where
fulo) = [peI) 7(3) dr
and p(u|A) is the density function of Ga(v|3/2,A/2).
In the next section we demonstrate how, using scale mixtures of uniforms,

we can analyse straightforwardly a mean/variance regression model. We
illustrate with some examples.



3 Application to variance regression

In this section we consider the basic model given by:

ElY)] = Xib,
logvar[Y;] = 226, (1)

fori=1,...,n, where
Xi=(1,Xq,..., %), B = (8o, b1,---,8),
Zi:(]-)z‘ila"wzi )) 0:‘(90191)"':9K)

are covariate and regression vectors, respectively. Many methods have been
proposed in the literature for parameter estimation. See, for example, Carroll
and Ruppert (1988).

Here we demonstrate the advantage of using the scale mixture of uniform
~ family in the analysis of a variance regression model. For convenience, we
reparameterise A, = e~%. A specific model which results in the specifications
(1) is given by

Y|Vi=uw]~Un| X;8 — —, X+ ———-],
I } ( [Tk )\f * Ik /\f *

and

Vi ~gid fr()-
The condition for the variance is satisfied provided we constrain EV = 3.
For example, for normal errors we can let V ~ Ga(3/2,1/2). For alternative
levels of kurtosis we can take V ~ Ga(3a/2,a/2), for & > 0. Here o > 1leads
to tails heavier than normal and a < 1 leads to lighter tails than normal.

In a Bayesian context, this model is straightforward to study via a Gibbs
sampler. This follows since all the full conditional densities required to im-
plement the Gibbs sampler are of standard type. Let 7(-) represent the prior
for (8, \) which comprises the product [Ti.o 7(8) [T, 7(A;). Consequently,
the full conditional densities are as follows:

.

m{vif - -+) o< exp(—v;/2)] {vi > (Y; - Xig)?ﬂ/\iz;k}



w(By| -} o w(Bo)] {ﬂ, € (m]a.x{Aj},mjin{Bj})} ,

where

A = mi Y- O/ T =% Yo+ B/ T AR + %
j = minix, 0 X * X. '
i ij

}/i - S AZ'* — i3 Y; + /Ui A?‘k + v
B; = maxix, 0 { A 3 Y ST 43 } |
3 ij

and v;j = Yy Xabr-

7 X
(| -+ W(Ak))\,:;‘ I {* log \x € (if&?fo{E“k}’f:er}:go{E"k})} ,

where

1/Z;y
Vi
Ey = ( \/_ z“) y
|V — XiB| Tl M
If Zy > 0 for all ¢ then max;.z, «o{ Eix} = 00. If Zyy, < 0 for all ¢ then
min;, z,, <o{ Eis } = —00.

Hence, all the full conditional densities are sampled using standard tech-
niques; see, for example, Devroye (1986), Damien and Walker (2000). Next,
we consider some examples.

3.1 Example 1
A simulated dataset contains 50 cases, generated as follows :
Yi = Po + Bizi + oici,

logo; =6+ bz, i=1,...,50,

with ¢; ~ N(0,1) independently. The regression parameters were taken to be
Be = 10, B =5, 6y = =3 and 6; = 1. The ‘standard’ ordinary least squares
estimates for 3 and (3, are 6.75 and 5.46, respectively.
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Table 1: Posterior summaries of model parameters 3y 51, 6y and §; for the
simulated dataset.

Bo B Bo &
mean | 10.149 | 4.960 | -2.384 | 0.890
std. dev | 0.095 | 0.019 | 0.151 | 0.037

In this example, and the others to follow, we used non-informative prior
distributions for the regression parameters; that is, we took

}Gj ~ N(OanZ'L

)‘k ~ Ga(ak, ak),

with large O'J? and with a; very small. Using the scale mixture of uniform
model, the resulting posterior estimates, obtained using the Gibbs sampler,
are summarized in Table 1. The true values appear to be well approximated
by the sample based statistics.

3.2 Example 2

The dataset used in this example is taken from the original epitaxial layer
growth experiment of Kackar and Shoemaker (1986), as reported in Shoe-
maker, Tsui and Wu (1991). One of the initial steps in fabricating integrated
circuit (IC) devices is to grow an epitaxial layer on polished silicon wafers.
The experimenters needed to find process factors that can be set to mini-
mize the epitaxial layer nonuniformity while maintaining average thickness
as closely as possible to nominal. Here we consider a simplified version of
this experiment, four experimental factors, susceptor-rotation method, noz-
zle position, deposition temperature and deposition time (labeled A, B, C
and D) are to be investigated at the two levels, — and +.

A four factor, full factorial design of 16 runs with 6 replications was
adopted. We are interested in both the location and dispersion effects. Tra-
ditionally, these two analyses will be performed separately, via linear regres-
sion. Since the assumption of equal variance is violated, such a dichotomous



Table 2: Posterior summaries of model parameters 3y 31, 6 and 6, for the
layer growth experiment example.

Bo B bo 8,
mean | 14.415 1] 0.430 | -1.388 | 0.616
std. dev | 0.014 | 0.013  0.047 | 0.060
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Figure 1: Posterior distributions of model parameters 8y f1, 8 and 6, for
the layer growth experiment.

approach may be inappropriate. Using screening techniques, such as half
normal plots, one can easily identify that factor D is the most influential fac-
tor for location effect and factor A is the most influential one for dispersion
effect.

Using the scale mixture models described earlier in this paper, the loca-
tion and dispersion effects are modelled simultaneously. The posterior statis-
tics are summarized in Table 2, and the histograms appear in Figure 1. The
sample based summaries provide a full analysis for the variance regression
model.



Table 3: Posterior summaries of model parameters 8y 51, B2, 0, 61 and 6,
for the tensile strength experiment.

Bo o Ba b 6 'R
mean | 42.903 ( 0.994 | 1.473 | -1.128 | -0.108 { 0.786
std. dev | 0.204 | 0.066 | 0.176 | 0.224 | 0.215 | 0.161

3.3 Example 3

In Example 2, it is easy to estimate variance under each setting, since there
are replications. However, in the absence of replication, it is difficult to
obtain estimates for the dispersion effects. We consider such an illustration.

Box and Meyer (1986) presented an interesting analysis of dispersion ef-
fects in a fractional-factorial experiment. The experiment concerns the tensile
strength of welds in an off-line welding experiment performed by the National
Railway Corporation of Japan (Taguchi and Wu, 1980). This experiment was
also studied by Carroll and Ruppert (1988) for dispersion effects. Box and
Meyer found that the mean could be adequately explained by two factors,
B and C. Here we also want to find out the effect of these two factors on
the dispersion. Using the model described earlier, a full Bayesian analysis of
the dispersion effects is obtained. The posterior statistics are summarized in
Table 3, and the histograms appear in Figure 2.

4 A Comparison of SMN and SMU models

In this section, we will demonstrate the differences between the two scale
mixture methodologies: Scale mixture of normals and scale mixture of uni-
forms.
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Figure 2: Posterior distributions of model parameters 8y 1, 52, 6o, 8; and
8, for the tensile strength experiment.

4.1 Regression model with Cauchy errors

We revisit the linear regression model under Cauchy errors with location and
scale parameters 0 and o, given by

¥i = o+ fr; + €, i=1,...,n

Scale mixture of normals
The scale mixture of normals representation is then given by:

viléi ~ N+ Bz, 0 /&),

and

| & ~ Ga(1/2,1/2).
Assuming the non-informative prior,
ﬂ(alﬁ) /\) & ’\1/21
the full conditionals are given by:

e For &'s:

14+
EJ.I...NEX( (y 5

a - .593]) )



e For a:

oo~ N =1 gi(yi - fBz;) 1 )
° ( n& AT G)]

e For f:
Yy ii(y — a) 1
d N ( L& AYL Ga?)
e For A: L
AL+~ Ga (n+37_ Ei(yi—a~ﬁwi)2> :
2 2 =1

Based on the development in Section 2, after some algebra, we obtain the
following posterior conditional distributions for the parameters of the model
using the SMU representation.

Without loss of generality, in canonical notation, 7(a) and 7(6) denote
prior distributions for «, B respectively. We assume, without loss of general-
ity,

m(A) ~ Ga(ax, Br);
i.e., the prior for A is a gamma density.

It is straightforward to derive the posterior conditional distributions for

the parameters, and the auxiliary variable. These are given by:

e For v;:
g +1v,-)2I[A(y" — a— B2, 00),
e For a:
af---ocn@) [T [ = s 5= B3]
=n(a)l [mzax {yi — Bz — \/—%} , Iin {yi — Pr; + \/%7}] ;
e For (:

)
i

n ; — O — Yi i_a_l_ i
ﬁl...m(ﬁ)ﬂf[y — \/:,y —
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= n(B)] [max{——_yi_a—‘ \/%},miin {__yi~af P\JH ;

T :[,',‘

e For A:

’\' KX ﬂ-(A) H P(yiaviaﬂl)‘)

o« Gamma(ay +nf2, B} (0, min {(yi — :ﬂmi)z}J }

a truncated gamma distribution. Here n({a) and #(8), in canonical
notation, are prior distributions for o and £.

Setting « and f to be 10 and 3, respectively, and ¢, the scale parameter
in the Cauchy distribution, to be 3, 100 pairs of (z;,3;) were generated.
- The least squares estimates for « = 6.6772 and § = 6.5973. Using the
Gibbs sampler detailed above, posterior summaries under the SMN and SMU
models are provided below.

Table 4: Comparison of SMN and SMU on the accuracy of estimated param-
eters for Cauchy distribution

para | True Value SMN SMU
mean | std dev | mean | std dev
o 10 10.100 | 0.628 | 9.770 | 0.598
g 3 3.119 | 0374 | 3.393| 0.282
o 3 2.948 | 0.380 2914 | 0.332

As expected, in both examples, the two representations yield comparable
results. This is partly because a non-informative prior was employed. The
effect of this prior is that the resulting full conditionals in the Gibbs sampler
under the SMN framework reduces to standard forms, sampling from which
is straightforward. However, in general, this is not true; take, for example,
in the Cauchy illustration, a normal prior for the regression parameters. On
the other hand, no matter what prior is used, under SMU, the resulting
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posterior full conditionals take the form of a truncated version of the prior.
It was this in mind a canonical notation for the prior distributions was used
in the earlier development.

The SMU representation, typically, converges more slowly than SMN be-
cause of the nature of the resulting Markov chain. This, of course, is hardly
problematic in an era where fast computers and sophisticated software is a
norm. It then seems appropriate to consider models that result in algorithms
that are trivial to code ~ an ubiquitous feature of the SMU enterprise. Also,
at least as important, the SMU includes the SMN as a special case, thus
making it a more flexible and practically appealing family of models.

5  Multivariate distributions

In this section, we briefly describe how the SMN concept can be extended to
multivariate distributions. In one dimension, we generated a scale mixture
of uniform density using intervals with random lengths. In two or higher
dimensions, intervals are replaced by ellipses, ellipsoids or hyper-ellipsoids,
and lengths replaced by radii. Hence, multivariate scale mixtures of uniform
distributions can be generated via uniform distributions on ellipses, ellipsoids
or hyper-ellipsoids, with random radii.

Let a denote a d-dimensional vector (a;,as,...,aq4), A denotes a d X d
positive definite matrix and r > 0. Let E4(a, A, r) denote the ¢ dimensional
ellipse, ellipsoid or hyper-ellipsoid which satisfies

(x —a) Az - a) <72

Definition 5.1 Multivariate scale mixture of uniforms
Suppose for a vector Y = (Y1,Ys,...,Yy,), we have

Y[V = o] ~ Un{En (1, Z,0)},

and
V ~ fV('):

where ¥ is positive definite and V is positive, then Y has a multivariate scale
mizture of uniform density, with fy(-) being the generating density.
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For example, the density function of a multivariate normal distribution
with mean p and covariance matrix % is given by

flz) = (2m) 3|5 demde- =T (e RY),

The multivariate scale mixture of uniform representation is given by:
(Y1, Y2)|[V = v] is uniformly distributed in Ea(p, £7!, \/v) and

v~ Ga(2,1/2).

Generalising, we have for a m-dimensional vector ¥ = (Y5,...,Y,) if Y|[V =
v] is uniformly distributed in B, (¢, 271, /v) and

v~ Qa(l +m/2,1/2),

then Y will have an m dimensional multivariate normal distribution with
" mean g and covariance matrix I.

This result is similar to a result of Johnson and Ramberg (1977). It is clear
that this result can be extended to a very general “symmetric” multivariate
distribution family: by symmetric, we mean the density function f satisfies

flz1, 29, ..., 20) = f(—21, =32, ..., —2Zn).

Tong (1990) describes Y to have an elliptically contoured distribution if its
density function

fus(z) =127 g{(z ~ W)= 2 - n)},  zeR™

where g : R — [0, c0) is nonincreasing. It is clear that this family is included
in our development above. Similarly, “elliptically symmetric distributions”,
Kelker (1970), is also a special case under our definition.

The density function of n dimensional multivariate ¢ distribution is as
follows:

)

r 2 1 g1
flw,m, p, ) = SRR OIRE {1 + (e —p)E (@ - p)

3

} —(m+2)/2

where z, 1 € R™, ¥ is a m X m positive definite matrix and ¢ is the degrees
of freedom.
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The scale mixture representation for the multivariate ¢ distribution is
similar to the one for the multivariate normal except the distribution of v is

i by:
given by .

(15 Tp)—rorz’

fr(v)

The multivariate Cauchy is a special case of the multivariate ¢, having one
degree of freedom.

6 Discussion

In this paper, we have developed a new class of models, namely, a scale mix-
ture of uniform distributions, that enables analysis of data when normality
assumptions are violated. The scale mixture representation provides a gen-
eral and flexible approach to modelling; this was illustrated via examples in
. the context of variance regressions. An attractive feature of the approach is
that the full conditional distributions in the resulting Gibbs sampler are all
uniform; this makes coding a trivial task. Introducing auxiliary variables in
the constructions described in this paper could likely lead to autocorrelation
in the Markov chain. In a related work, Damien et al. (1999) provide a
comparative study of the efficiency rates of Gibbs samplers constructed via
the introduction of auxiliary variables.
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